File size: 5,438 Bytes
891f6c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Malaysia AI Hansard Scrape dataset contains 142,766 PDFs from the Malaysian Parliament website.
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{malaysua_ai_hansard,
author = {{Malaysia-AI}},
title = {Crawl Malaysian Hansard},
year = {2023}, % Change to the relevant year if known
url = {https://huggingface.co/datasets/malaysia-ai/crawl-malaysian-hansard}
}
"""
_DATASETNAME = "malaysia_ai_hansard"
_DESCRIPTION = """\
The Malaysia AI Hansard Scrape dataset contains 142,766 PDFs from the Malaysian Parliament website.
(https://www.parlimen.gov.my/hansard-dewan-rakyat.html?uweb=dr).
It includes a JSON file for each document with the text labeled "original", page numbers "no_page" and "actual_no_page", the document's "date", and the "url" of the original PDF.
"""
_HOMEPAGE = "https://huggingface.co/datasets/malaysia-ai/crawl-malaysian-hansard"
_LANGUAGES = ["zlm"]
_LICENSE = Licenses.APACHE_2_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://huggingface.co/datasets/malaysia-ai/crawl-malaysian-hansard",
}
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MalaysiaAIHansardDataset(datasets.GeneratorBasedBuilder):
"""Malaysia AI Hansard Scrape dataset contains 142,766 PDFs from the Malaysian Parliament website."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="malaysia_ai_hansard_source",
version=SOURCE_VERSION,
description="malaysia_ai_hansard source schema",
schema="source",
subset_id="malaysia_ai_hansard",
),
SEACrowdConfig(
name="malaysia_ai_hansard_seacrowd_ssp",
version=SEACROWD_VERSION,
description="malaysia_ai_hansard SEACrowd schema",
schema="seacrowd_ssp",
subset_id="malaysia_ai_hansard",
),
]
DEFAULT_CONFIG_NAME = "malaysia_ai_hansard_source"
def _info(self) -> datasets.DatasetInfo:
# Create the source schema; this schema will keep all keys/information/labels as close to the original dataset as possible.
# You can arbitrarily nest lists and dictionaries.
# For iterables, use lists over tuples or `datasets.Sequence`
if self.config.schema == "source":
features = datasets.Features(
{
"original": datasets.Value("string"),
"cleaned": datasets.Value("string"),
"no_page": datasets.Value("string"),
"actual_no_page": datasets.Value("string"),
"date": datasets.Value("string"),
"url": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_ssp":
features = schemas.ssp_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
# data_dir = dl_manager.download_and_extract(urls)
# dl_manager not used since dataloader uses HF 'load_dataset'
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": urls,
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
data = datasets.load_dataset("/".join(filepath.split("/")[-2:]), split="train")
for key, sample in enumerate(data):
if self.config.schema == "source":
yield key, {
"original": sample["original"],
"cleaned": sample["cleaned"],
"no_page": sample["no_page"],
"actual_no_page": sample["actual_no_page"],
"date": sample["date"],
"url": sample["url"],
}
elif self.config.schema == "seacrowd_ssp":
yield key, {
"id": key,
"text": sample["cleaned"],
}
|