# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KoPI-NLLB corpus.""" import json import datasets import zstandard as zstd from nusacrowd.utils import schemas from nusacrowd.utils.configs import NusantaraConfig from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks) logger = datasets.logging.get_logger(__name__) _CITATION = """ Hefferman et al, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages. Arxiv https://arxiv.org/abs/2205.12654, 2022. NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv https://arxiv.org/abs/2207.04672, 2022. """ _DESCRIPTION = """\ KopI(Korpus Perayapan Indonesia)-NLLB, is Indonesian family language(aceh,bali,banjar,indonesia,jawa,minang,sunda) only extracted from NLLB Dataset, allenai/nllb each language set also filtered using some some deduplicate technique such as exact hash(md5) dedup technique and minhash LSH neardup """ _TYPE = ["raw", "dedup", "neardup"] _CONF_LANG = ["ace_Latn", "ban_Latn", "bjn_Latn", "ind_Latn", "jav_Latn", "min_Latn", "sun_Latn"] _CONFIGS = [] for j in _CONF_LANG: for m in _TYPE: _CONFIGS.append(j + "-" + m) _ALL_CONFIG = ["all-raw", "all-dedup", "all-neardup"] + _CONFIGS _HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI-NLLB" _LICENSE = "ODC_C" _BASE_URL = "https://huggingface.co/datasets/munggok/KoPI-NLLB/resolve/main/{tipe}/{lang}.json.zst" _DATASETNAME = "kopi_nllb" _SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] _LANGUAGES = ["ind", "jav", "ace", "ban", "bjn", "min", "sun"] _NUSANTARA_VERSION = "1.0.0" _SOURCE_VERSION = "2022.09.13" _LOCAL = False _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME _URL = "https://huggingface.co/datasets/allenai/nllb" def nusantara_config_constructor(lang, schema, version): """Construct NusantaraConfig""" if schema != "source" and schema != "nusantara_ssp": raise ValueError(f"Invalid schema: {schema}") if lang == "": raise ValueError(f"Snapshot is required. Choose one of these Snapshot: {_ALL_CONFIG}.") elif lang in _ALL_CONFIG: return NusantaraConfig( name=f"{_DATASETNAME}_{lang}_{schema}", version=datasets.Version(version), description=f"KoPI-NLLB with {schema} schema for {lang}", schema=schema, subset_id="kopi_nllb", ) else: raise ValueError(f"Invalid language: {lang}. Choose one of these snapshots: {_ALL_CONFIG}.") class KoPINLLBConfig(datasets.BuilderConfig): """BuilderConfig for the Clean KoPI corpus.""" def __init__(self, **kwargs): """BuilderConfig for Clean KoPI corpus. Args: **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) class KoPINLLB(datasets.GeneratorBasedBuilder): """KoPI NLLB corpus.""" BUILDER_CONFIGS = [nusantara_config_constructor(sn, "source", _SOURCE_VERSION) for sn in _ALL_CONFIG] + [nusantara_config_constructor(sn, "nusantara_ssp", _NUSANTARA_VERSION) for sn in _ALL_CONFIG] def _info(self): if self.config.schema == "source": features = datasets.Features( { "text": datasets.Value("string"), "url": datasets.Value("string"), "score": datasets.Value("float32"), "source": datasets.Value("string"), } ) elif self.config.schema == "nusantara_ssp": features = schemas.self_supervised_pretraining.features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): name = self.config.name.replace("_" + self.config.schema, "") name = name.replace(_DATASETNAME + "_", "") split_name = name.split("-") if split_name[0] == "all": train = [_BASE_URL.format(tipe=split_name[1], lang=m) for m in _CONF_LANG] else: train = [_BASE_URL.format(tipe=split_name[1], lang=split_name[0])] train_downloaded_files = dl_manager.download(train) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files})] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: logger.info(f"Generating examples from {filepath}") with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) if self.config.schema == "nusantara_ssp": yield id_, {"id": str(id_), "text": example["text"]} id_ += 1 else: yield id_, {"text": example["text"], "url": example["url"], "source": example["source"], "score": float(example["score"])} id_ += 1