Datasets:
license: cc-by-nc-sa-4.0
language:
- ind
- ban
- mad
- nij
- sun
- jav
- mak
- bjn
- abl
pretty_name: Indommlu
task_categories:
- question-answering
tags:
- question-answering
IndoMMLU is the first multi-task language understanding benchmark for Indonesian culture and languages, which consists of questions from primary school to university entrance exams in Indonesia. By employing professional teachers, we obtain 14,906 questions across 63 tasks and education levels, with 46% of the questions focusing on assessing proficiency in the Indonesian language and knowledge of nine local languages and cultures in Indonesia.
Languages
ind, ban, mad, nij, sun, jav, mak, bjn, abl
Supported Tasks
Question Answering
Dataset Usage
Using datasets
library
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/indommlu", trust_remote_code=True)
Using seacrowd
library
# Load the dataset using the default config
dset = sc.load_dataset("indommlu", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("indommlu"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
Dataset Homepage
https://huggingface.co/datasets/indolem/IndoMMLU
Dataset Version
Source: 1.0.0. SEACrowd: 2024.06.20.
Dataset License
Creative Commons Attribution Non Commercial Share Alike 4.0 (cc-by-nc-sa-4.0)
Citation
If you are using the Indommlu dataloader in your work, please cite the following:
@inproceedings{koto-etal-2023-large,
title = "Large Language Models Only Pass Primary School Exams in {I}ndonesia: A Comprehensive Test on {I}ndo{MMLU}",
author = "Koto, Fajri and
Aisyah, Nurul and
Li, Haonan and
Baldwin, Timothy",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.760",
doi = "10.18653/v1/2023.emnlp-main.760",
pages = "12359--12374",
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}