import json from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks, Licenses _CITATION = """\ @article{mahadi2023indonesian, author = {Made Raharja Surya Mahadi and Nugraha Priya Utama}, title = {Indonesian Text-to-Image Synthesis with Sentence-BERT and FastGAN}, journal = {arXiv preprint arXiv:2303.14517}, year = {2023}, url = {https://arxiv.org/abs/2303.14517}, } """ _DATASETNAME = "cub_bahasa" _DESCRIPTION = """\ Semi-translated dataset of CUB-200-2011 into Indonesian. This dataset contains thousands of image-text annotation pairs of 200 subcategories belonging to birds. The natural language descriptions are collected through the Amazon Mechanical Turk (AMT) platform and are required at least 10 words, without any information on subcategories and actions. """ _LOCAL=False _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _HOMEPAGE = "https://github.com/share424/Indonesian-Text-to-Image-synthesis-with-Sentence-BERT-and-FastGAN" _LICENSE = Licenses.UNKNOWN.value _URLS = { "text": "https://raw.githubusercontent.com/share424/Indonesian-Text-to-Image-synthesis-with-Sentence-BERT-and-FastGAN/master/dataset/indo_cub_200_2011_captions.json", "image": "https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz" } _SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class CubBahasaDataset(datasets.GeneratorBasedBuilder): """CUB-200-2011 image-text dataset in Indonesian language for bird domain.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "imtext" IMAGE_CLASS = { 1: '001.Black_footed_Albatross', 2: '002.Laysan_Albatross', 3: '003.Sooty_Albatross', 4: '004.Groove_billed_Ani', 5: '005.Crested_Auklet', 6: '006.Least_Auklet', 7: '007.Parakeet_Auklet', 8: '008.Rhinoceros_Auklet', 9: '009.Brewer_Blackbird', 10: '010.Red_winged_Blackbird', 11: '011.Rusty_Blackbird', 12: '012.Yellow_headed_Blackbird', 13: '013.Bobolink', 14: '014.Indigo_Bunting', 15: '015.Lazuli_Bunting', 16: '016.Painted_Bunting', 17: '017.Cardinal', 18: '018.Spotted_Catbird', 19: '019.Gray_Catbird', 20: '020.Yellow_breasted_Chat', 21: '021.Eastern_Towhee', 22: '022.Chuck_will_Widow', 23: '023.Brandt_Cormorant', 24: '024.Red_faced_Cormorant', 25: '025.Pelagic_Cormorant', 26: '026.Bronzed_Cowbird', 27: '027.Shiny_Cowbird', 28: '028.Brown_Creeper', 29: '029.American_Crow', 30: '030.Fish_Crow', 31: '031.Black_billed_Cuckoo', 32: '032.Mangrove_Cuckoo', 33: '033.Yellow_billed_Cuckoo', 34: '034.Gray_crowned_Rosy_Finch', 35: '035.Purple_Finch', 36: '036.Northern_Flicker', 37: '037.Acadian_Flycatcher', 38: '038.Great_Crested_Flycatcher', 39: '039.Least_Flycatcher', 40: '040.Olive_sided_Flycatcher', 41: '041.Scissor_tailed_Flycatcher', 42: '042.Vermilion_Flycatcher', 43: '043.Yellow_bellied_Flycatcher', 44: '044.Frigatebird', 45: '045.Northern_Fulmar', 46: '046.Gadwall', 47: '047.American_Goldfinch', 48: '048.European_Goldfinch', 49: '049.Boat_tailed_Grackle', 50: '050.Eared_Grebe', 51: '051.Horned_Grebe', 52: '052.Pied_billed_Grebe', 53: '053.Western_Grebe', 54: '054.Blue_Grosbeak', 55: '055.Evening_Grosbeak', 56: '056.Pine_Grosbeak', 57: '057.Rose_breasted_Grosbeak', 58: '058.Pigeon_Guillemot', 59: '059.California_Gull', 60: '060.Glaucous_winged_Gull', 61: '061.Heermann_Gull', 62: '062.Herring_Gull', 63: '063.Ivory_Gull', 64: '064.Ring_billed_Gull', 65: '065.Slaty_backed_Gull', 66: '066.Western_Gull', 67: '067.Anna_Hummingbird', 68: '068.Ruby_throated_Hummingbird', 69: '069.Rufous_Hummingbird', 70: '070.Green_Violetear', 71: '071.Long_tailed_Jaeger', 72: '072.Pomarine_Jaeger', 73: '073.Blue_Jay', 74: '074.Florida_Jay', 75: '075.Green_Jay', 76: '076.Dark_eyed_Junco', 77: '077.Tropical_Kingbird', 78: '078.Gray_Kingbird', 79: '079.Belted_Kingfisher', 80: '080.Green_Kingfisher', 81: '081.Pied_Kingfisher', 82: '082.Ringed_Kingfisher', 83: '083.White_breasted_Kingfisher', 84: '084.Red_legged_Kittiwake', 85: '085.Horned_Lark', 86: '086.Pacific_Loon', 87: '087.Mallard', 88: '088.Western_Meadowlark', 89: '089.Hooded_Merganser', 90: '090.Red_breasted_Merganser', 91: '091.Mockingbird', 92: '092.Nighthawk', 93: '093.Clark_Nutcracker', 94: '094.White_breasted_Nuthatch', 95: '095.Baltimore_Oriole', 96: '096.Hooded_Oriole', 97: '097.Orchard_Oriole', 98: '098.Scott_Oriole', 99: '099.Ovenbird', 100: '100.Brown_Pelican', 101: '101.White_Pelican', 102: '102.Western_Wood_Pewee', 103: '103.Sayornis', 104: '104.American_Pipit', 105: '105.Whip_poor_Will', 106: '106.Horned_Puffin', 107: '107.Common_Raven', 108: '108.White_necked_Raven', 109: '109.American_Redstart', 110: '110.Geococcyx', 111: '111.Loggerhead_Shrike', 112: '112.Great_Grey_Shrike', 113: '113.Baird_Sparrow', 114: '114.Black_throated_Sparrow', 115: '115.Brewer_Sparrow', 116: '116.Chipping_Sparrow', 117: '117.Clay_colored_Sparrow', 118: '118.House_Sparrow', 119: '119.Field_Sparrow', 120: '120.Fox_Sparrow', 121: '121.Grasshopper_Sparrow', 122: '122.Harris_Sparrow', 123: '123.Henslow_Sparrow', 124: '124.Le_Conte_Sparrow', 125: '125.Lincoln_Sparrow', 126: '126.Nelson_Sharp_tailed_Sparrow', 127: '127.Savannah_Sparrow', 128: '128.Seaside_Sparrow', 129: '129.Song_Sparrow', 130: '130.Tree_Sparrow', 131: '131.Vesper_Sparrow', 132: '132.White_crowned_Sparrow', 133: '133.White_throated_Sparrow', 134: '134.Cape_Glossy_Starling', 135: '135.Bank_Swallow', 136: '136.Barn_Swallow', 137: '137.Cliff_Swallow', 138: '138.Tree_Swallow', 139: '139.Scarlet_Tanager', 140: '140.Summer_Tanager', 141: '141.Artic_Tern', 142: '142.Black_Tern', 143: '143.Caspian_Tern', 144: '144.Common_Tern', 145: '145.Elegant_Tern', 146: '146.Forsters_Tern', 147: '147.Least_Tern', 148: '148.Green_tailed_Towhee', 149: '149.Brown_Thrasher', 150: '150.Sage_Thrasher', 151: '151.Black_capped_Vireo', 152: '152.Blue_headed_Vireo', 153: '153.Philadelphia_Vireo', 154: '154.Red_eyed_Vireo', 155: '155.Warbling_Vireo', 156: '156.White_eyed_Vireo', 157: '157.Yellow_throated_Vireo', 158: '158.Bay_breasted_Warbler', 159: '159.Black_and_white_Warbler', 160: '160.Black_throated_Blue_Warbler', 161: '161.Blue_winged_Warbler', 162: '162.Canada_Warbler', 163: '163.Cape_May_Warbler', 164: '164.Cerulean_Warbler', 165: '165.Chestnut_sided_Warbler', 166: '166.Golden_winged_Warbler', 167: '167.Hooded_Warbler', 168: '168.Kentucky_Warbler', 169: '169.Magnolia_Warbler', 170: '170.Mourning_Warbler', 171: '171.Myrtle_Warbler', 172: '172.Nashville_Warbler', 173: '173.Orange_crowned_Warbler', 174: '174.Palm_Warbler', 175: '175.Pine_Warbler', 176: '176.Prairie_Warbler', 177: '177.Prothonotary_Warbler', 178: '178.Swainson_Warbler', 179: '179.Tennessee_Warbler', 180: '180.Wilson_Warbler', 181: '181.Worm_eating_Warbler', 182: '182.Yellow_Warbler', 183: '183.Northern_Waterthrush', 184: '184.Louisiana_Waterthrush', 185: '185.Bohemian_Waxwing', 186: '186.Cedar_Waxwing', 187: '187.American_Three_toed_Woodpecker', 188: '188.Pileated_Woodpecker', 189: '189.Red_bellied_Woodpecker', 190: '190.Red_cockaded_Woodpecker', 191: '191.Red_headed_Woodpecker', 192: '192.Downy_Woodpecker', 193: '193.Bewick_Wren', 194: '194.Cactus_Wren', 195: '195.Carolina_Wren', 196: '196.House_Wren', 197: '197.Marsh_Wren', 198: '198.Rock_Wren', 199: '199.Winter_Wren', 200: '200.Common_Yellowthroat' } BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "image_id": datasets.Value("int64"), "class_id": datasets.Value("int64"), "image_path": datasets.Value("string"), "class_name": datasets.Value("string"), "captions": [ { "caption_eng": datasets.Value("string"), "caption_ind": datasets.Value("string"), } ] } ) elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.image_text_features(label_names=list(self.IMAGE_CLASS.values())) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: # expect several minutes to download image data ~1.2GB data_path = dl_manager.download_and_extract(_URLS) # working with image dataset image_meta = Path(data_path["image"]) / "CUB_200_2011" / "images.txt" df_image = pd.read_csv(image_meta, sep=" ", names=["image_id", "image_path"]) df_image['image_path'] = df_image['image_path'].apply(lambda x: Path(image_meta.parent, 'images', x)) label_meta = Path(data_path["image"]) / "CUB_200_2011" / "image_class_labels.txt" df_label = pd.read_csv(label_meta, sep=" ", names=["image_id", "class_id"]) # working with text dataset text_path = Path(data_path["text"]) with open(text_path, "r") as f: text_data = json.load(f) df_text = pd.DataFrame([ { 'image_name': item['filename'], 'en_caption': caption['english'], 'id_caption': caption['indo'] } for item in text_data['dataset'] for caption in item['captions'] ]) grouped_text = df_text.groupby('image_name').agg(list).reset_index() # working with split split_dir = Path(data_path["image"]) / "CUB_200_2011" / "train_test_split.txt" df_split = pd.read_csv(split_dir, sep=" ", names=["image_id", "is_train"]) # merge all data df_image['image_name'] = df_image['image_path'].apply(lambda x: x.name) df = pd.merge(df_image, grouped_text, on="image_name") df.drop(columns=['image_name'], inplace=True) df = pd.merge(df, df_label, on="image_id") df = pd.merge(df, df_split, on="image_id") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": df[df['is_train'] == 1], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data": df[df['is_train'] == 0], "split": "test", }, ), ] def _generate_examples(self, data: pd.DataFrame, split: str) -> Tuple[int, Dict]: if self.config.schema == "source": for key, row in data.iterrows(): example = { "image_id": row["image_id"], "class_id": row["class_id"], "image_path": row["image_path"], "class_name": self.IMAGE_CLASS[row["class_id"]], "captions": [ { "caption_eng": row["en_caption"][i], "caption_ind": row["id_caption"][i], } for i in range(len(row["en_caption"])) ] } yield key, example elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": key = 0 for _, row in data.iterrows(): for i in range(len(row["id_caption"])): example = { "id": str(key), "image_paths": [row["image_path"]], "texts": row["id_caption"][i], "metadata": { "context": row["en_caption"][i], "labels": [self.IMAGE_CLASS[row["class_id"]]], } } yield key, example key += 1