from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from nusacrowd.utils import schemas from nusacrowd.utils.configs import NusantaraConfig from nusacrowd.utils.constants import Tasks _CITATION = """ @INPROCEEDINGS{8629181, author={Ilmania, Arfinda and Abdurrahman and Cahyawijaya, Samuel and Purwarianti, Ayu}, booktitle={2018 International Conference on Asian Language Processing (IALP)}, title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis}, year={2018}, volume={}, number={}, pages={62-67}, doi={10.1109/IALP.2018.8629181 } """ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _DATASETNAME = "casa" _DESCRIPTION = """ CASA: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms (Ilmania et al., 2018). The dataset covers six aspects of car quality. We define the task to be a multi-label classification task, where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral. """ _HOMEPAGE = "https://github.com/IndoNLP/indonlu" _LICENSE = "CC-BY-SA 4.0" _URLS = { "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/train_preprocess.csv", "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/valid_preprocess.csv", "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/test_preprocess.csv", } _SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] _SOURCE_VERSION = "1.0.0" _NUSANTARA_VERSION = "1.0.0" class CASA(datasets.GeneratorBasedBuilder): """CASA is an aspect based sentiment analysis dataset""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) BUILDER_CONFIGS = [ NusantaraConfig( name="casa_source", version=SOURCE_VERSION, description="CASA source schema", schema="source", subset_id="casa", ), NusantaraConfig( name="casa_nusantara_text_multi", version=NUSANTARA_VERSION, description="CASA Nusantara schema", schema="nusantara_text_multi", subset_id="casa", ), ] DEFAULT_CONFIG_NAME = "casa_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "index": datasets.Value("int64"), "sentence": datasets.Value("string"), "fuel": datasets.Value("string"), "machine": datasets.Value("string"), "others": datasets.Value("string"), "part": datasets.Value("string"), "price": datasets.Value("string"), "service": datasets.Value("string"), } ) elif self.config.schema == "nusantara_text_multi": features = schemas.text_multi_features(["positive", "neutral", "negative"]) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"])) validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"])) test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"])) data_dir = { "train": train_csv_path, "validation": validation_csv_path, "test": test_csv_path, } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir["train"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir["test"], "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir["validation"], "split": "dev", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" df = pd.read_csv(filepath, sep=",", header="infer").reset_index() if self.config.schema == "source": for row in df.itertuples(): entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service} yield row.index, entry elif self.config.schema == "nusantara_text_multi": for row in df.itertuples(): entry = { "id": str(row.index), "text": row.sentence, "labels": [label for label in row[3:]], } yield row.index, entry