import os import tensorflow as tf # @tf.function def build_data(split, shuffle=False): """Build CLEVR dataset.""" file_path_base = 'X-VoE/' # file_path_base = '/scratch/LargeTaskPlatform/daibo/VoE_dataset/' def _parse_tfr_element(element): # use the same structure as above; it's kinda an outline of the structure we now want to create data = { 'raw_image': tf.io.FixedLenFeature([], tf.string), 'mask': tf.io.FixedLenFeature([], tf.string), 'slot': tf.io.VarLenFeature(tf.float32), } content = tf.io.parse_single_example(element, data) raw_image = content['raw_image'] raw_mask = content['mask'] raw_slot = content['slot'] image_ori = tf.io.parse_tensor(raw_image, out_type=tf.uint8) image = tf.cast(image_ori, tf.float32) image = ((image / 255.0) - 0.5) * 2.0 # get our 'feature'-- our image -- and reshape it appropriately raw_mask = tf.io.parse_tensor(raw_mask, out_type=tf.uint8) mask = tf.cast(raw_mask, tf.float32) mask = tf.clip_by_value(mask, 0.0, 1.0) slot = raw_slot.values return { "image_ori": image_ori, "raw_mask": raw_mask, "image": image, "mask": mask, "slot": slot } AUTOTUNE = tf.data.AUTOTUNE if split == "train": num_file = 100 file_path = os.path.join(file_path_base, 'train') filename = [ os.path.join(file_path, "train-part-{:0>3}.tfrecord".format(i)) for i in range(num_file) ] elif split in ["collision", "blocking", "continuity"]: num_file = 6 file_path = os.path.join(file_path_base, "test") file_path = os.path.join(file_path, split) filename = [ os.path.join(file_path, "eval-part-{:0>3}.tfrecord".format(i)) for i in range(num_file) ] elif split in ["permanence"]: num_file = 4 file_path = os.path.join(file_path_base, "test") file_path = os.path.join(file_path, split) filename = [ os.path.join(file_path, "eval-part-{:0>3}.tfrecord".format(i)) for i in range(4) ] elif split == "eval": num_file = 4 file_path = os.path.join(file_path_base, "test") eval_list = ["collision", "blocking", "permanence", "continuity"] filename = [ file_path + i + '/' + "eval-part-000.tfrecord" for i in eval_list ] else: raise ValueError("Error dataset type") if shuffle: filename = tf.data.Dataset.from_tensor_slices(filename) filename = filename.shuffle(num_file) ds = filename.interleave( lambda x: tf.data.TFRecordDataset(x, compression_type="GZIP"), cycle_length=num_file, block_length=1) ds = ds.shuffle(1000) else: ds = tf.data.TFRecordDataset(filename, compression_type="GZIP") ds = ds.map(_parse_tfr_element, num_parallel_calls=AUTOTUNE) return ds def load_data(batch_size, split, **kwargs): ds = build_data(split=split, **kwargs) ds = ds.batch(batch_size, drop_remainder=True) return ds