import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {Small htr examples images}, author={Gabriel Borg}, year={2023} } """ _DESCRIPTION = """\ Demo dataset for the htr demo. """ _HOMEPAGE = "https://huggingface.co/datasets/Riksarkivet/test_images_demo" _LICENSE = "" _REPO = "https://huggingface.co/datasets/Riksarkivet/test_images_demo" class ExampleImages(datasets.GeneratorBasedBuilder): """Small sample of image-text pairs""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'text': datasets.Value("string"), 'image': datasets.Image(), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images_archive = dl_manager.download(f"{_REPO}/resolve/main/images.tar.gz") metadata_path = dl_manager.download(f"{_REPO}/resolve/main/images.txt") image_iters = dl_manager.iter_archive(images_archive) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters, "metadata_path": metadata_path } ), ] def _generate_examples(self, images, metadata_path): """Generate images and text.""" with open(metadata_path, encoding="utf-8") as f: metadata_list = f.read().split("\n") for idx, (img_obj, meta_txt) in enumerate(zip(images, metadata_list)): filepath, image = img_obj text_value = meta_txt.split("= ")[-1].strip() yield idx, { "image": {"path": filepath, "bytes": image.read()}, "text": text_value, }