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Abstract

Autonomous driving technology, a catalyst for
revolutionizing transportation and urban mobility,
has the tend to transition from rule-based sys-
tems to data-driven strategies. Traditional module-
based systems are constrained by cumulative er-
rors among cascaded modules and inflexible pre-
set rules. In contrast, end-to-end autonomous driv-
ing systems have the potential to avoid error accu-
mulation due to their fully data-driven training pro-
cess, although they often lack transparency due to
their “black box™ nature, complicating the valida-
tion and traceability of decisions. Recently, large
language models (LLMs) have demonstrated abil-
ities including understanding context, logical rea-
soning, and generating answers. A natural thought
is to utilize these abilities to empower autonomous
driving. By combining LLM with foundation vi-
sion models, it could open the door to open-world
understanding, reasoning, and few-shot learning,
which current autonomous driving systems are
lacking. In this paper, we systematically review
a research line about Large Language Models for
Autonomous Driving (LLM4AD). This study eval-
uates the current state of technological advance-
ments, distinctly outlining the principal challenges
and prospective directions for the field. For the
convenience of researchers in academia and indus-
try, we provide real-time updates on the latest ad-
vances in the field as well as relevant open-source
resources via the designated link: https://github.
com/Thinklab-SJTU/Awesome-LLM4AD.

1 Introduction

Autonomous driving is rapidly reshaping our understanding
of transportation, heralding a new era of technological rev-
olution. This transformation means not only the future of
transportation but also a fundamental shift across various in-
dustries. In conventional autonomous driving systems, algo-
rithms typically adopt the modular design [Liang e al., 2020;
Luo et al., 2018; Sadat et al., 2020], with separate compo-
nents responsible for critical tasks such as perception [Li et
al., 2022¢; Liu et al., 2023d], prediction [Shi et al., 2022;
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Jia et al., 2022a; Jia et al., 2023b], and planning [Treiber
et al., 2000; Dauner et al., 2023]. Specifically, the percep-
tion component handles object detection [Li et al., 2022c;
Liu er al., 2023d], tracking [Zeng et al., 2022], and sophisti-
cated semantic segmentation tasks [Cheng ef al., 2022]. The
prediction component analyzes the external environment [Jia
et al., 2021] and estimates the future states of the surrounding
agents [Jia et al., 2022b]. The planning component, often re-
liant on rule-based decision algorithms [Treiber et al., 20001,
determines the optimal and safest route to a predetermined
destination. While the module-based approach provides reli-
ability and enhanced security in a variety of scenarios, it also
presents challenges. The decoupled design between system
components may lead to key information loss during tran-
sitions and potentially redundant computation as well. Ad-
ditionally, errors may accumulate within the system due to
inconsistencies in optimization objectives among the mod-
ules, affecting the vehicle’s overall decision-making perfor-
mance [Chen et al., 2023al.

Rule-based decision systems, with their inherent limita-
tions and scalability issues, are gradually giving way to data-
driven methods. End-to-end autonomous driving solutions
are increasingly becoming a consensus in the field [Wu et
al., 2022b; Chitta et al., 2023; Chen and Krihenbiihl, 2022;
Jia er al., 2023c; Jia et al., 2023a; Hu et al., 2023b]. By
eliminating integration errors between multiple modules and
reducing redundant computations, the end-to-end system en-
hances the expression of visual [Wu et al., 2022a] and sensory
information while ensuring greater efficiency. However, this
approach also introduces the “black box” problem, meaning
a lack of transparency in the decision-making process, com-
plicating interpretation and validation.

Simultaneously, the explainability of autonomous driving
has become an important research focus [Jin er al., 2023al.
Although smaller language models (like early versions of
BERT [Devlin et al., 2018] and GPT [Brown et al., 2020])
employed in massive data collection from driving scenarios
help address this issue, they often lack sufficient generaliza-
tion capabilities to perform optimally. Recently, large lan-
guage models [OpenAl, 2023; Touvron et al., 2023] have
demonstrated remarkable abilities in understanding context,
generating answers, and handling complex tasks. They are
also now integrated with multimodal models [Brohan e al.,
2023a; Liu et al., 2023a; Driess et al., 2023; Xu et al., 2023,
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Figure 1: The limitation of current autonomous driving paradigm (green arrow) and where LLMs can potentially enhance autonomous driving

ability (blue arrow).

Chen et al., 2023b]. This integration achieves a unified fea-
ture space mapping for images, text, videos, point clouds,
etc. Such consolidation significantly enhances the system’s
generalization capabilities and equips them with the capacity
to quickly adapt to new scenarios in a zero-shot or few-shot
manner.

In this context, developing an interpretable and efficient
end-to-end autonomous driving system has become a re-
search hotspot [Chen et al., 2023al. Large language models,
with their extensive knowledge base and exceptional gener-
alization, could facilitate easier learning of complex driving
behaviors. By leveraging the visual-language model (VLM)’s
robust and comprehensive capabilities of open-world under-
standing and in-context learning [Bommasani et al., 2021;
Brohan et al., 2023b; Liu et al., 2023a; Driess et al., 2023],
it becomes possible to address the long-tail problem for per-
ception networks, assist in decision-making, and provide in-
tuitive explanations for these decisions.

This paper aims to provide a comprehensive overview of
this rapidly emerging research field, analyze its basic princi-
ples, methods, and implementation processes, and introduce
in detail regarding the application of LLMs for autonomous
driving. Finally, we discuss related challenges and future re-
search directions.

2 Motivation of LLM4AD

In today’s technological landscape, large language models
such as GPT-4 and GPT-4V [OpenAl, 2023; Yang et al.,
2023b] are drawing attention with their superior contextual
understanding and in-context learning capabilities. Their en-
riched common sense knowledge has facilitated significant
advancements in many downstream tasks. We ask the ques-
tion: how do these large models assist in the domain of au-
tonomous driving, especially in playing a critical role in the
decision-making process?

In Fig. 1, we give an intuitive demonstration of the lim-
itation of current autonomous driving paradigm and where
LLMs can potentially enhance autonomous driving ability.
We summarize two primary aspects of driving skills. The
orange circle represents the ideal level of driving compe-
tence, akin to that possessed by an experienced human driver.

There are two main methods to acquire such proficiency: one,
through learning-based techniques within simulated environ-
ments; and two, by learning from offline data through similar
methodologies. It’s important to note that due to discrepan-
cies between simulations and the real world, these two do-
mains are not fully the same, i.e. sim2real gap [Hofer et al.,
2021]. Concurrently, offline data serves as a subset of real-
world data since it’s collected directly from actual surround-
ings. However, it is difficult to fully cover the distribution as
well due to the notorious long-tailed nature [Jain er al., 2021]
of autonomous driving tasks.

The final goal of autonomous driving is to elevate driv-
ing abilities from a basic green stage to a more advanced
blue level through extensive data collection and deep learn-
ing. However, the high cost associated with data gathering
and annotation, along with the inherent differences between
simulated and real-world environments, mean there’s still a
gap before reaching the expert level of driving skills. In
this scenario, if we can effectively utilize the innate com-
mon sense embedded within large language models, we might
gradually narrow this gap. Intuitively, by adopting this ap-
proach, we could progressively enhance the capabilities of
autonomous driving systems, bringing them closer to, or po-
tentially reaching, the ideal expert level of driving profi-
ciency. Through such technological integration and innova-
tion, we anticipate significant improvements in the overall
performance and safety of autonomous driving.

The application of large language models in the field of au-
tonomous driving indeed covers a wide range of task types,
combining depth and breadth with revolutionary potential.
LLMs in autonomous driving pipelines is shown in the Fig. 2.

3 Application of LLM4AD

In the following sections, we divide existing works based
on the perspective of applying LLMs: planning, perception,
question answering, and generation. The corresponding tax-
onomy tree is shown in Fig. 3.

3.1 Planning

Large language models (LLMs) have achieved great suc-
cess with their open-world cognitive and reasoning capa-
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Figure 2: LLMs in Autonomous Driving Pipelines.

bilities [Radford et al., 2018; Radford et al., 2019; Brown
et al., 2020; Ouyang er al., 2022; OpenAl, 2023]. These
capabilities could provide a transparent explanation of the
autonomous driving decision-making process, significantly
enhancing system reliability and user trust in the technol-
ogy [Deruyttere et al., 2019; Kim ef al., 2019a; Atakishiyev
et al., 2023; Jin ef al., 2023a; Malla et al., 2023]. Within
this domain, based on whether tuning the LLM, related re-
search can be categorized into two main types: fine-tuning
pre-trained models and prompt engineering.

In the application of fine-tuning pre-trained models, MTD-
GPT [Liu et al, 2023b] translates multi-task decision-
making problems into sequence modeling problems. Through
training on a mixed multi-task dataset, it addresses various
decision-making tasks at unsignaled intersections. Although
this approach outperforms the performance of single-task
decision-making RL models, the used scenes are limited to
unsignaled intersections, which might be enough to demon-
strate the complexity of the real world application. Driving
with LLMs [Chen ef al., 2023b] designs an architecture that
fuses vectorized inputs into LLMs with a two-stage pretrain-
ing and fine-tuning method. Due to the limitation of vector-
ized representations, their method are only tested in the sim-
ulation. DriveGPT4 [Xu et al., 2023] presents a multimodal
LLM based on Valley [Luo er al., 2023a] and develops a vi-
sual instruction tuning dataset for interpretable autonomous
driving. Beside predicting a vehicle’s basic control signals,
it also responds in real-time, explaining why the action was
taken. It outperforms baseline models in a variety of QA tasks
while the experiments about planning is simple.

In the prompt engineering perspective, some methods tried
to tap into the deep reasoning potential of the LL.Ms through
clever prompt design. DiLu [Wen et al., 2023] designs a

framework of LLMs as agents to solve closed-loop driving
tasks. This method introduces a memory module to record ex-
perience, to leverage LLMs to facilitate reasoning and reflec-
tion processes. DiLu exhibits strong generalization capabili-
ties compared with SOTA RL-based methods. However, the
reasoning and reflection processes require multiple rounds of
question-answering, and its inference time cannot be ignored.
Similarly, Receive Reason and React [Cui et al., 2023b] and
Drive as You Speak [Cui erf al., 2023a] integrate the language
and reasoning capabilities of LLMs into autonomous vehi-
cles. In addition to memory and reflection processes, these
methods introduce additional raw sensor information such
as camera, GNSS, lidar, and radar. However, the inference
speed is unsolved as well. Furthermore, SurrealDriver [Jin et
al., 2023b] divides the memory module into short-term mem-
ory, long-term guidelines, and safety criteria. Meanwhile,
it interviews 24 drivers and uses their detailed descriptions
of driving behaviors as chain-of-thought prompts to develop
a ‘coach agent’” module. However, there is a lack of com-
parison with traditional algorithms to prove that large lan-
guage models indeed bring performance improvements. Lan-
guageMPC [Sha et al., 2023] also designs a chain-of-thought
framework for LLMs in driving scenarios and it integrates
with low-level controllers by guided parameter matrix adap-
tation. Although its performance exceeds MPC and RL-based
methods in the simplified simulator environments, it lacks
validation in complex environments. TrafficGPT [Zhang et
al., 2023b] is a fusion of ChatGPT and traffic foundation
models which can tackle complex traffic-related problems
and provide insightful suggestions. It leverages multimodal
data as a data source, offering comprehensive support for var-
ious traffic-related tasks. Talk2BEV [Dewangan et al., 2023]
introduces a large vision-language model (LVLM) interface
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for bird’s-eye view (BEV) maps in autonomous driving con-
texts. It does not require any training or fine-tuning, only
relying on pre-trained image-language models. In addition,
it presents a benchmark for evaluating subsequent work in
LVLMs for AD applications. GPT-Driver [Mao et al., 2023]
transforms the motion planning task into a language model-
ing problem. It exceeds the UniAD[Hu et al., 2023b] in the
L2 metric. Nevertheless, since it uses past speed and acceler-
ation information, there is concern about unfair comparison
with UniAD. Additionally, L2 only reflects the fitting degree
of the driving route and might not reflect the driving perfor-
mance [Dauner et al., 2023]. DriveLM [Contributors, 2023]
uses a trajectory tokenizer to process ego-trajectory signals to
texts, making them belong to the same domain space. Such a
tokenizer can be applied to any general vision language mod-
els. Moreover, they utilize a graph-structure inference with
multiple QA pairs in logical order, thus improving the final
planning performance.

Metric:

MTD-GPT [Liu et al., 2023b] uses single-subtask suc-
cess rates as the metric in simulation and it exceeds RL ex-
pert. DriveGPT4 [Xu et al., 2023] uses root mean squared
error (RMSE) and threshold accuracies for evaluation. In ve-
hicle action description, justification, and full sentences, it
uses BLEU-4 [Papineni et al., 2002], METEOR [Banerjee
and Lavie, 2005], CIDER[Vedantam et al., 2015] and chat-
gpt score [Fu et al., 2023b]. Driving with LLMs [Chen et
al., 2023b] uses the Mean Absolute Error (MAE) for the pre-
dictions of the number of cars and pedestrians, normalized
acceleration, and brake pressure. Additionally, it measures
the accuracy of traffic light detection as well as the mean ab-
solute distance error in meters for traffic light distance predic-
tion. Besides perception-related metrics, it also uses GPT-3.5
to grade their model’s answers which is a recently emerging
technique - grading natural language responses [Fu et al.,
2023b; Wang et al., 2023a; Liu er al., 2023¢c]. DiLu [Wen
et al., 2023] uses Success Steps in simulation as a metric
to evaluate generalization and transformation abilities. Sur-
realDriver [Jin et al., 2023b] evaluates agents based on two
main dimensions: safe driving ability and humanness. Safe
driving capabilities are assessed through collision rates, while
human likeness is assessed through user experiments with 24
adult participants (age 29.3 + 4.9 years, male = 17 years) who
are legal to drive. LanguageMPC [Sha et al., 2023] customs
some metrics: failure/collision cases, the efficiency of traf-
fic flow, time cost by ego vehicle, and the safety of the ego
vehicle’s driving behavior. Similarly, Talk2BEV [Dewangan
et al., 2023] measures their methods from the perspective of
spatial reasoning, instance attribute, instance counting, and
visual reasoning. GPT-Driver [Mao et al., 2023] and Driv-
eLLM [Contributors, 2023] contains two metrics: L2 error (in
meters) and collision rate (in percentage). The average L2
error is calculated by measuring the distance of each way-
point in the planned trajectory and the offline recorded hu-
man driver trajectory. It reflects the fitting of the planned tra-
jectory to the human driving trajectory. The collision rate is
calculated by placing an ego vehicle box at each waypoint of
the planned trajectory and then checking for collisions with
the ground truth bounding boxes of other objects. It reflects

the safety of the planned trajectory.

At present, LLM4AD regarding the planning task lacks a
unified metric and cannot uniformly evaluate the pros and
cons between each method and traditional counterparts.

3.2 Percetion

Large language models have demonstrated their unique value
and strong capabilities in “perception” tasks [Radford et al.,
2021; Li et al., 2022b; Li et al., 2023a; Li et al., 2023b;
Li et al., 2022a]. Especially in environments where data
is relatively scarce, these models can rely on their few-shot
learning characteristics to achieve fast and accurate learning
and reasoning [P ef al., 2023; Lin et al., 2023]. This learn-
ing ability is of significance in the perception stage of the
autonomous driving system, which greatly improves the sys-
tem’s adaptability and generalization capabilities in chang-
ing and complex driving environments. PromptTrack [Wu ef
al., 2023] fuses cross-modal features in a prompt reasoning
branch to predict 3D objects. It uses language prompts as
semantic cues and combines LLMs with 3D detection tasks
and tracking tasks. Although it achieves better performance
compared to other methods, the advantages of LLMs do not
directly affect the tracking task. Rather, the tracking task
serves as a query to assist LLMs in performing 3D detec-
tion tasks. HiLM-D [Ding et al., 2023] incorporates high-
resolution information into multimodal large language mod-
els for the Risk Object Localization and Intention and Sug-
gestion Prediction (ROLISP) task. It combines LLMs with
2D detection tasks and obtains better performance in detec-
tion tasks and QA tasks compared to other multi-modal large
models such as Video-LLaMa [Zhang et al., 2023al, eP-
ALM [Shukor et al., 2023]. It is worth noting to point out
one potential limitation of the dataset: each video contains
only one risk object, which might not capture the complex-
ity of real-world scenarios. [Keysan et al., 2023] integrates
pre-trained language models as text-based input encoders for
the autonomous driving trajectory prediction task. Joint en-
coders(image and text) over both modalities perform better
than using a single encoder in isolation. While the joint
model significantly improves the baseline, its performance
has not reached the state-of-the-art level yet [Deo et al., 2021;
Gilles er al., 2021].

Metric:

PromptTrack [Wu et al., 2023] uses the Average Multi-
ple Object Tracking Precision (AMOTA) metric [Bernardin
and Stiefelhagen, 2008], the Average MultiObject Track-
ing Precision (AMOTP) [Bashar et al., 2022] and Identity
Switches (IDS) [Huang et al., 2023] metrics. HILM-D [Ding
et al., 2023] uses the BLEU-4 [Papineni et al., 2002], ME-
TEOR [Banerjee and Lavie, 2005], CIDER[Vedantam et al.,
2015] and SPICE [Anderson et al., 2016], ToU [Rezatofighi
et al., 2019] as metrics to compare with the state-of-the-art.
[Keysan et al., 2023] uses the standard evaluation metrics that
are provided in the nuScenes-devkit [Caesar et al., 2019;
Fong ef al., 2021]: minimum Average Displacement Error
(minADEKk), Final Displacement Error (minFDEk), and the
miss rate over 2 meters.



3.3 Question Answering

Question-Answering is an important task that has a wide
range of applications in intelligent transportation, assisted
driving, and autonomous vehicles [Xu er al., 2021a; Xu
et al., 2021b]. It mainly reflects through different ques-
tion and answer paradigms, including traditional QA mech-
anism [Tang et al., 2023] and more detailed visual QA meth-
ods [Xu et al., 2023]. [Tang et al., 2023] constructs the
domain knowledge ontology by “chatting” with ChatGPT.
It develops a web-based assistant to enable manual supervi-
sion and early intervention at runtime and it guarantees the
quality of fully automated distillation results. This question-
and-answer system enhances the interactivity of the vehi-
cle, transforms the traditional one-way human-machine in-
terface into an interactive communication experience, and
might be able to cultivate the user’s sense of participation
and control. These sophisticated models [Tang et al., 2023;
Xu et al., 2023], equipped with the ability to parse, under-
stand, and generate human-like responses, are pivotal in real-
time information processing and provision. They design com-
prehensive questions related to the scene, including but not
limited to vehicle states, navigation assistance, and under-
standing of traffic situations.

Metric:

In terms of QA tasks, NLP’s metric is often used.
In DriveFPT4 [Xu et al., 2023], it uses BLEU-4 [Pap-
ineni et al., 2002], METEOR [Banerjee and Lavie, 2005],
CIDER[Vedantam et al., 2015] and chatgpt score [Fu et al.,
2023b].

3.4 Generation

In the realm of “generation” task, large language models
leverage their advanced knowledge-base and generative ca-
pabilities to create realistic driving videos or intricate driving
scenarios under specific environmental factors [Khachatryan
et al., 2023; Luo et al., 2023b]. This approach offers rev-
olutionary solutions to the challenges of data collection and
labeling for autonomous driving, also constructing a safe and
easily controllable setting for testing and validating the deci-
sion boundaries of autonomous driving systems. Moreover,
by simulating a variety of driving situations and emergency
conditions, the generated content becomes a crucial resource
for refining and enriching the emergency response strategies
of autonomous driving systems.

The common generative models include the Variational
Auto-Encoder(VAE) [Kingma and Welling, 2022], Genera-
tive Adversarial Network(GAN) [Goodfellow et al., 20141,
Normalizing Flow(Flow)[Rezende and Mohamed, 20161, and
Denoising Diffusion Probabilistic Model(Diffusion)[Ho et
al., 2020]. With diffusion models have recently achieved
great success in text-to-image [Ronneberger et al., 2015;
Rombach et al., 2021; Ramesh et al., 2022], some research
has begun to study using diffusion models to generate au-
tonomous driving images or videos. DriveDreamer [Wang
et al., 2023b] is a world model derived from real-world driv-
ing scenarios. It uses text, initial image, HDmap, and 3Dbox
as input, then generates high-quality driving videos and rea-
sonable driving policies. Similarly, Driving Diffusion [Li et

al., 2023c] adopts a 3D layout as a control signal to gener-
ate realistic multi-view videos. GAIA-1 [Hu et al., 2023a]
leverages video, text, and action inputs to generate traffic
scenarios, environmental elements, and potential risks. In
these methods, text encoder both adopt CLIP [Radford er al.,
2021] which has a better alignment between image and text.
In addition to generating autonomous driving videos, traffic
scenes can also be generated. CTG++ [Zhong et al., 2023]
is a scene-level diffusion model that can generate realistic
and controllable traffic. It leverages LLMs for translating a
user query into a differentiable loss function and use a diffu-
sion model to transform the loss function into realistic, query
compliant trajectories. MagicDrive [Gao er al., 2023] gener-
ates highly realistic images, exploiting geometric information
from 3D annotations by independently encoding road maps,
object boxes, and camera parameters for precise, geometry-
guided synthesis. This approach effectively solves the chal-
lenge of multi-camera view consistency. Although it achieves
better performance in terms of generation fidelity compared
to BEVGen [Swerdlow et al., 2023] and BEVControl [Yang
et al., 2023al, it also faces huge challenges in some complex
scenes, such as night views and unseen weather conditions.

These methods explore the customized authentic genera-
tions of autonomous driving data. Although these diffusion-
based models achieved good results on video and image-
generated metrics, it is still unclear whether they could really
be used in closed-loop to really boost the performance of the
autonomous driving system.

Metric:

DriveDreamer [Wang et al., 2023b] and DrivingDiffu-
sion [Li er al., 2023¢c] use the frame-wise Frechet Incep-
tion Distance (FID) [Parmar et al., 2022] to evaluate the
quality of generated images and the Frechet Video Distance
(FVD) [Unterthiner et al., 2019] for video quality evalua-
tion. DrivingDiffusion also uses average intersection cross-
ing (mloU) [Rezatofighi et al., 2019] scores for drivable areas
and NDS [Yin et al., 2021] for all the object classes by com-
paring the predicted layout with the ground-truth BEV lay-
out. CTG++ [Zhong er al., 2023] following [Xu et al., 2022;
Zhong et al., 2022], uses the failure rate, Wasserstein distance
between normalized histograms of driving profiles, realism
deviation (real), and scene-level realism metric (rel real) as
metrics. MagicDrive [Gao et al., 2023] utilizes segmentation
metrics such as Road mIoU and Vehicle mloU [Taran et al.,
20181, as well as 3D object detection metrics like mAP[Hen-
derson and Ferrari, 2017] and NDS [Yin et al., 2021].

4 Datasets in LLM4AD

Traditional datasets such as nuScenes dataset [Caesar er
al., 2019; Fong et al., 2021] lack action description, de-
tailed caption, and question-answering pairs which are used
to interact with LLMs. The BDD-x [Kim et al., 2018],
Rank2Tell [Sachdeva et al., 2023], DriveLM [Contributors,
2023], DRAMA [Malla et al., 20231, NuPrompt [Wu et al.,
2023] and NuScenes-QA [Qian et al., 2023] datasets rep-
resent key developments in LLM4AD research, each bring-
ing unique contributions to understanding agent behaviors
and urban traffic dynamics through extensive, diverse, and



Dataset Task Size Description
BDD-X Planning 77 hours, 6970 videos, E hicl ” d ot d lanati
[Kim et al., 2018] VQA 8.4M frames, 26228 captions go-vehicle actions description and explanation.
HAD Planning 30 hours, 5744 videos Joint action description for goal-oriented advice and
[Kim et al., 2019b] Perception | 22366 captions attention description for stimulus-driven dvice.
Talk2Car Planning 15 hours, 850 videos of 20s each ((:)()lgia;lt;;idfservr&]a;li t?:;aisrftngzitrslog trim]jlsa e for
[Deruyttere et al., 20191 | Perception | 30k frames, 11959 captions . guag
self-driving cars.
DriveLM Perce.:ptllon 15 hours, 30k frames, 360k QA P3 with reasoning logic; ?onn?Ft the Q/} pairs
. Prediction . in a graph-style structure; Use “What if’-style
[Contributors, 2023] . pairs .
Planning questions.

91 hours, 17785 videos, 77639 Joint risk localization with visual reasoning of

DRAMA . . L
VQA question, 102830 answering, driving risks in a free-form language

[Malla et al., 2023] . 2

17066 captions description.
Rank2Tell Perception | several hours, 118 videos of 20s | Joint important object identification, important
[Sachdeva et al., 2023] | VQA each object localization ranking, and reasoning.
NuPrompt P . 15 hours, 35367 prompts for 3D | Object-centric language prompt set for
[Wu et al., 2023] ereeption objects perception tasks.

15 hours, Train(24149 scences, LeV.e.rage 3].) anno tatlons(pbjecF caFegory, .
NuScenes-QA . position, orientation, relationships information)

- VQA 459941 QA pairs), Test(6019 . .

[Qian et al., 2023] . and designed question templates to construct

scences, 83337 QA pairs) QA pairs

Table 1: Description of different datasets regarding LLM4AD.

situation-rich annotations. We give a summary of each
dataset in Table 1. We give detailed descriptions below.

BDD-X Dataset [Kim ez al., 2018]: With over 77 hours
of diverse driving conditions captured in 6,970 videos, this
dataset is a collection of real-world driving behaviors, each
annotated with descriptions and explanations. It includes 26K
activities across 8.4M frames and thus provides a resource for
understanding and predicting driver behaviors across differ-
ent conditions.

Honda Research Institute-Advice Dataset (HAD) [Kim
et al., 2019b]: HAD offers 30 hours of driving video data
paired with natural language advice and videos integrated
with can-bus signal data. The advice includes Goal-oriented
advice(top-down signal) which is designed to guide the vehi-
cle in a navigation task and Stimulus-driven advice(bottom-
up signal) which highlights specific visual cues that the user
expects the vehicle controller to actively focus on.

Talk2Car [Deruyttere et al, 2019]: The Talk2Car
dataset contains 11959 commands for the 850 videos of the
nuScenes [Caesar et al., 2019; Fong et al., 2021] training set
as 3D bounding box annotations. Of the commands, 55.94%
were from videos recorded in Boston, while 44.06% were
from Singapore. On average, each command contains 11.01
words, which includes 2.32 nouns, 2.29 verbs, and 0.62 ad-
jectives. Typically, there are about 14.07 commands in every
video. It is a object referral dataset that contains commands
written in natural language for self-driving cars.

DriveLM Dataset [Contributors, 2023]: This dataset in-
tegrates human-like reasoning into autonomous driving sys-
tems, enhancing Perception, Prediction, and Planning (P3).
It employs a “Graph-of-Thought” structure, encouraging a
futuristic approach through “What if” scenarios, thereby
promoting advanced, logic-based reasoning and decision-

making mechanisms in driving systems.

DRAMA Dataset [Malla et al., 2023]: Collected from
Tokyo’s streets, it includes 17,785 scenario clips captured us-
ing the video camera, each clipped to 2 seconds in duration. It
contains different annotations: Video-level Q/A, Object-level
Q/A, Risk object bounding box, Free-form caption, separate
labels for ego-car intention, scene classifier, and suggestions
to the driver.

Rank2Tell Dataset [Sachdeva et al., 2023]: It is captured
from a moving vehicle on highly interactive traffic scenes in
the San Francisco Bay Area. It includes 116 clips ( 20s each)
of 10FPS captured using an instrumented vehicle equipped
with three Point Grey Grasshopper video cameras with a res-
olution of 1920 x 1200 pixels, a Velodyne HDL-64E S2 Li-
DAR sensor, and high precision GPS. The dataset includes
Video-level Q/A, Object-level Q/A, LiDAR and 3D bound-
ing boxes (with tracking), Field of view from 3 cameras
(stitched), important object bounding boxes (multiple impor-
tant objects per frame with multiple levels of importance-
High, Medium, Low), free-form captions (multiple captions
per object for multiple objects), ego-car intention.

NuPrompt Dataset [Wu er al., 2023]: It represents an ex-
pansion of the nuScenes dataset, enriched with annotated lan-
guage prompts specifically designed for driving scenes. This
dataset includes 35,367 language prompts for 3D objects, av-
eraging 5.3 instances per object. This annotation enhances
the dataset’s practicality in autonomous driving testing and
training, particularly in complex scenarios requiring linguis-
tic processing and comprehension.

NuScenes-QA dataset [Qian et al., 2023]: It is a dataset
in autonomous driving, containing 459,941 question-answer
pairs from 34,149 distinct visual scenes. They are partitioned
into 376,604 questions from 28,130 scenes for training, and




83,337 from 6,019 scenes for testing. NuScenes-QA show-
cases a wide array of question lengths, reflecting different
complexity levels, making it challenging for Al models. Be-
yond sheer numbers, the dataset ensures a balanced range of
question types and categories, from identifying objects to as-
sessing their behavior, such as whether they are moving or
parked. This design inhibits the model’s tendency to be bi-
ased or rely on linguistic shortcuts.

5 Conclusion

In this paper, we have provided a comprehensive survey on
LLM4AD. We classify and introduce different applications
employing LLMs for autonomous driving and summarize the
representative approaches in each category. At the same time,
we summarize the latest datasets related to LLM4AD. We
will continue to monitor developments in the field and high-
light future research directions.

Ethical Statement

When applying LLMs to the field of autonomous driving,
we must deeply consider their potential ethical implications.
First, the illusion of the model may cause the vehicle to
misunderstand the external environment or traffic conditions,
thus causing safety hazards. Second, model discrimination
and bias may lead to vehicles making unfair or biased de-
cisions in different environments or when facing different
groups. Additionally, false information and errors in reason-
ing can cause a vehicle to adopt inappropriate or dangerous
driving behaviors. Inductive advice may leave the vehicle
vulnerable to external interference or malicious behavior. Fi-
nally, privacy leakage is also a serious issue, as vehicles may
inadvertently reveal sensitive information about the user or
the surrounding environment. To sum up, we strongly rec-
ommend that before deploying a large language model to an
autonomous driving system, an in-depth and detailed ethi-
cal review should be conducted to ensure that its decision-
making logic is not only technically accurate but also ethi-
cally appropriate. At the same time, we call for following the
principles of transparency, responsibility, and fairness to en-
sure the ethics and safety of technology applications. We call
on the entire community to work together to ensure reliable
and responsible deployment of autonomous driving technol-
ogy based on large language models.
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