
ar
X

iv
:2

30
2.

11
38

2v
1

 [
cs

.S
E

]
 2

1
Fe

b
20

23

A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,

Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt

Department of Computer Science

Vanderbilt University, Tennessee

Nashville, TN, USA

{jules.white, quchen.fu, george.s.hays, michael.sandborn, carlos.olea, henry.gilbert,

ashraf.elnashar, jesse.spencer-smith, douglas.c.schmidt}@vanderbilt.edu

Abstract—Prompt engineering is an increasingly important
skill set needed to converse effectively with large language models
(LLMs), such as ChatGPT. Prompts are instructions given to an
LLM to enforce rules, automate processes, and ensure specific
qualities (and quantities) of generated output. Prompts are also
a form of programming that can customize the outputs and
interactions with an LLM.

This paper describes a catalog of prompt engineering tech-
niques presented in pattern form that have been applied to solve
common problems when conversing with LLMs. Prompt patterns
are a knowledge transfer method analogous to software patterns
since they provide reusable solutions to common problems faced
in a particular context, i.e., output generation and interaction
when working with LLMs.

This paper provides the following contributions to research on
prompt engineering that apply LLMs to automate software de-
velopment tasks. First, it provides a framework for documenting
patterns for structuring prompts to solve a range of problems
so that they can be adapted to different domains. Second, it
presents a catalog of patterns that have been applied successfully
to improve the outputs of LLM conversations. Third, it explains
how prompts can be built from multiple patterns and illustrates
prompt patterns that benefit from combination with other prompt
patterns.

Index Terms—large language models, prompt patterns, prompt
engineering

I. INTRODUCTION

Conversational large language models (LLMs) [1], such as

ChatGPT [2], have generated immense interest in a range

of domains for tasks ranging from answering questions on

medical licensing exams [3] to generating code snippets. This

paper focuses on enhancing the application of LLMs in several

domains, such as helping developers code effectively and

efficiently with unfamiliar APIs or allowing students to acquire

new coding skills and techniques.

LLMs are particularly promising in domains where humans

and AI tools work together as trustworthy collaborators to

more rapidly and reliably evolve software-reliant systems [4].

For example, LLMs are being integrated directly into software

tools, such as Github’s Co-Pilot [5]–[7] and included in inte-

grated development environments (IDEs), such as IntelliJ [8]

and Visual Studio Code, thereby allowing software teams to

access these tools directly from their preferred IDE.

A prompt [9] is a set of instructions provided to an

LLM that programs the LLM by customizing it and/or en-

hancing or refining its capabilities. A prompt can influence

subsequent interactions with—and output generated from—an

LLM by providing specific rules and guidelines for an LLM

conversation with a set of initial rules. In particular, a prompt

sets the context for the conversation and tells the LLM what

information is important and what the desired output form and

content should be.

For example, a prompt could specify that an LLM should

only generate code that follows a certain coding style or

programming paradigm. Likewise, it could specify that an

LLM should flag certain keywords or phrases in a generated

document and provide additional information related to those

keywords. By introducing these guidelines, prompts facilitate

more structured and nuanced outputs to aid a large variety of

software engineering tasks in the context of LLMs.

Prompt engineering is the means by which LLMs are

programmed via prompts. To demonstrate the power of

prompt engineering, we provide the following prompt:

Prompt: “From now on, I would like you to ask me

questions to deploy a Python application to AWS.

When you have enough information to deploy the

application, create a Python script to automate the

deployment.”

This example prompt causes ChatGPT to begin asking the

user questions about their software application. ChatGPT will

drive the question-asking process until it reaches a point where

it has sufficient information to generate a Python script that

automates deployment. This example demonstrates the pro-

gramming potential of prompts beyond conventional “generate

a method that does X” style prompts or “answer this quiz

question”.

Moreover, prompts can be engineered to program an LLM

to accomplish much more than simply dictating the output type

or filtering the information provided to the model. With the

right prompt, it is possible to create entirely new interaction

paradigms, such as having an LLM generate and give a quiz

associated with a software engineering concept or tool, or

even simulate a Linux terminal window. Moreover, prompts

have the potential for self-adaptation, suggesting other prompts

to gather additional information or generate related artifacts.

These advanced capabilities of prompts highlight the impor-

tance of engineering them to provide value beyond simple text

or code generation.

Prompt patterns are essential to effective prompt engi-

neering. A key contribution of this paper is the introduction

of prompt patterns to document successful approaches for

http://arxiv.org/abs/2302.11382v1

systematically engineering different output and interaction

goals when working with conversational LLMs. We focus

largely on engineering domain-independent prompt patterns

and introduce a catalog of essential prompt patterns to solve

problems ranging from production of visualizations and code

artifacts to automation of output steps that help fact check

outputs.

The remainder of this paper is organized as follows: Sec-

tion II introduces prompt patterns and compares these patterns

to well-known software patterns [10]; Section III describes

16 prompt patterns that have been applied to solve common

problems in the domain of conversational LLM interaction and

output generation for automating software development tasks;

Section IV discusses related work; and Section V presents

concluding remarks and lessons learned.

II. COMPARING SOFTWARE PATTERNS

WITH PROMPT PATTERNS

The quality of the output(s) generated by a conversational

LLM is directly related to the quality of the prompts provided

by the user. As discussed in Section I, the prompts given to

a conversational LLM can be used to program interactions

between a user and an LLM to better solve a variety of

problems. One contribution of this paper is the framework it

provides to document patterns that structure prompts to solve

a range of software tasks that can be adapted to different

domains.

This framework is useful since it focuses on codifying

patterns that can be applied to help users better interact

with conversational LLMs in a variety of contexts, rather

than simply discussing interesting examples or domain-specific

prompts. Codifying this knowledge in pattern form enhances

reuse and transferability to other contexts and domains where

users face similar—but not identical—problems.

The topic of knowledge transfer has been studied exten-

sively in the software patterns literature [10], [11] at multiple

levels, e.g., design, architectural, and analysis. This paper

applies a variant of a familiar pattern form as the basis of

our prompt engineering approach. Since prompts are a form

of programming, it is natural to document them in pattern

form.

A. Overview of Software Patterns

A software pattern provides a reusable solution to a recur-

ring problem within a particular context [10]. Documenting

software patterns concisely conveys (and generalizes) from

specific problems being addressed to identify important forces

and/or requirements that should be resolved and/or addressed

in successful solutions.

A pattern form also includes guidance on how to implement

the pattern, as well as information on the trade-offs and

considerations to take into account when implementing a

pattern. Moreover, example applications of the pattern are

often provided to further showcase the pattern’s utility in

practice. Software patterns are typically documented in a

stylized form to facilitate their use and understanding, such

as:

• A name and classification. Each pattern has a name that

identifies the pattern and should be used consistently. A

classification groups patterns into broad categories, such

as creational, structural, or behavioral.

• The intent concisely conveys the purpose the pattern is

intended to achieve.

• The motivation documents the underlying problem the

pattern is meant to solve and the importance of the

problem.

• The structure and participants. The structure describes

the different pattern participants (such as classes and

objects) and how they collaborate to form a generalized

solution.

• Example code concretely maps the pattern to some

underlying programming language(s) and aids developers

in gaining greater insight into how that pattern can be

applied effectively.

• Consequences summarize the pros and cons of applying

the pattern in practice.

B. Overview of Prompt Patterns

Prompt patterns are similar to software patterns in that they

offer reusable solutions to specific problems. They focus more

specifically, however, on the context of output generation from

large-scale language models (LLMs), such as ChatGPT. Just

as software patterns provide a codified approach to solving

common software development challenges, prompt patterns

provide a codified approach to customizing the output and

interactions of LLMs.

By documenting and leveraging prompt patterns in the

context of automating software development tasks, individual

users and teams can enforce constraints on the generated

output, ensure that relevant information is included, and

change the format of interaction with the LLM to better

solve problems they face. Prompt patterns can be viewed as a

corollary to the broad corpus of general software patterns, just

adapted to the more specific context of LLM output generation.

Prompt patterns follow a similar format to classic software

patterns, with slight modifications to match the context of

output generation with LLMs.1 Each of the analogous sections

for the prompt pattern form used in this paper is summarized

below:

• A name and classification. The prompt pattern name

uniquely identifies the pattern and ideally indicates the

problem that is being addressed. For the classification,

we have developed a series of initial categories of pattern

types, which are summarized in Table I and include

Output Customization, Error Identification, Prompt

Improvement, Interaction, and Context Control.

• The intent and context describes the problem the prompt

pattern solves and the goals it achieves. The problem

1The most direct translation of software pattern structure to prompt patterns
is the naming, intent, motivation, and sample code. The structure and
classification, however, although named similarly, require more adaptation.

should ideally be independent of any domain, though

domain-specific patterns may also be documented with

an appropriate discussion of the context where the pattern

applies.

• The motivation provides the rationale for the problem

and explains why solving it is important. The motivation

is explained in the context of users interacting with a

conversational LLM and how it can improve upon users

informally prompting the LLM in one or more circum-

stances. Specific circumstances where the improvements

are expected are documented.

• The structure and key ideas. The structure describes

the fundamental contextual information, as a series of

key ideas, that the prompt pattern provides to the LLM.

These ideas are similar to “participants” in a software pat-

tern. The contextual information may be communicated

through varying wording (just as a software pattern can

have variations in how it is realized in code), but should

have fundamental pieces of information that form a core

element of the pattern.

• Example implementation demonstrates how the prompt

pattern is worded in practice.

• Consequences summarize the pros and cons of applying

the pattern and may provide guidance on how to adapt

the prompt to different contexts.

C. Evaluating Means for Defining a Prompt Pattern’s Struc-

ture and Ideas

In software patterns, the structure and participants are

normally defined in terms of UML diagrams, such as structure

diagrams and/or interaction diagrams. These UML diagrams

explain what the participants of the pattern are and how they

interact to solve the problem. In prompt patterns, something

analogous is needed, though UML may not be an appro-

priate structural documentation approach since it is intended

to describe software structures, as opposed to the ideas to

communicate in a prompt.

Several possible approaches could be used, ranging from di-

agrams to defining grammars for a prompt language. Although

grammars may seem attractive due to their formal nature, they

also incur the following challenges:

• The goal of prompts is to communicate knowledge in a

clear and concise way to conversation LLM users, who

may or may not be computer scientists or programmers.

As a community, we should strive to create an approach-

able format that communicates knowledge clearly to a

diverse target audience.

• It is possible to phrase a prompt in many different ways.

It is hard, however, to define a grammar that accurately

and completely expresses all the nuanced ways that

components of a prompt could be expressed in text or

symbols.

• Prompts fundamentally convey ideas to a conversational

LLM and are not simply the production of tokens for

input. In particular, an idea built into a prompt pattern

can be communicated in many ways and its expression

should be at a higher-level than the underlying tokens

representing the idea.

• It is possible to program an LLM to introduce novel

semantics for statements and words that create new ways

for communicating an idea. In contrast, grammars may

not easily represent ideas that can be expressed through

completely new symbology or languages that the gram-

mar designer was not aware of.

D. A Way Forward: Fundamental Contextual Statements

An open research question, therefore, is what approach is

more effective than formal grammars for describing prompt

pattern structure and ideas. We propose the concept of funda-

mental contextual statements, which are written descriptions

of the important ideas to communicate in a prompt to an LLM.

An idea can be rewritten and expressed in arbitrary ways based

on user needs and experience. The key ideas to communicate,

however, are presented to the user as a series of simple, but

fundamental, statements.

One benefit of adopting and applying the fundamental con-

textual statements approach is that it is intentionally intuitive

to users. In particular, we expect users will understand how to

express and adapt the statements in a contextually appropriate

way for their domain. Moreover, since the underlying ideas of

the prompt are captured, these same ideas can be expressed

by the user in alternate symbology or wording that has been

introduced to the LLM using patterns, such as the Meta

Language Creation pattern presented in Section III-B.

Our ultimate goal is to enhance prompt engineering by

providing a framework for designing prompts that can be

reused and/or adapted to other LLMs in the same way that

software patterns can be implemented in different program-

ming languages and platforms. For the purposes of this paper,

however, all prompts were tested with ChatGPT [12] using the

ChatGPT+ service. We use ChatGPT as the LLM for all exam-

ples presented in this paper due to its widespread availability

and popularity. These examples were documented through a

combination of exploring the corpus of community-posted

prompts on the Internet and independent prompt creation from

our use of ChatGPT to automating software development

tasks.

III. A CATALOG OF PROMPT PATTERNS

FOR CONVERSATIONAL LLMS

This section presents our catalog of prompt patterns that

have been applied to solve common problems in the domain

of conversational LLM interaction and output generation for

automating software tasks. Each prompt pattern is accompa-

nied by concrete implementation samples and examples with

and without the prompt.

A. Summary of the Prompt Pattern Catalog

The classification of prompt patterns is an important consid-

eration in documenting the patterns. Table I outlines the initial

classifications for the catalog of prompt patterns we identified

in our work with ChatGPT thus far.

TABLE I
CLASSIFYING PROMPT PATTERNS

Pattern Category Prompt Pattern

Input Semantics Meta Language Creation

Output Output Automater

Customization Persona

Visualization Generator

Recipe

Template

Error Identification Fact Check List

Reflection

Prompt Question Refinement

Improvement Alternative Approaches

Cognitive Verifier

Refusal Breaker

Interaction Flipped Interaction

Game Play

Infinite Generation

Context Control Context Manager

As shown in this table, there are five categories of prompt

patterns in our classification framework: Input Semantics,

Output Customization, Error Identification, Prompt Im-

provement, and Interaction, each of which is summarized

below.

The Input Semantics category deals with how an LLM

understands the input and how it translates the input into

something it can use to generate output. This category in-

cludes the Meta Language Creation pattern, which focuses on

creating a custom language for the LLM to understand. This

pattern is useful when the default input language is ill-suited

for expressing ideas the user wants to convey to the LLM.

The Output Customization category focuses on constrain-

ing or tailoring the types, formats, structure, or other properties

of the output generated by the LLM. The prompt patterns in

this category include Output Automater, Persona, Visualiza-

tion Generator, Recipe, and Template patterns. The Output

Automater pattern allows the user to create scripts that can

automate any tasks the LLM output suggests the user should

perform. The Persona pattern gives the LLM a persona or role

to play when generating output. The Visualization Generator

pattern allows the user to generate visualizations by producing

textual outputs that can be fed to other tools, such as other

AI-based image generators, like DALL-E [13]. The Recipe

pattern allows the user to obtain a sequence of steps or actions

to realize a stated end result, possibly with partially known

information or constraints. The Template pattern allows the

user to specify a template for the output, which the LLM fills

in with content.

The Error Identification category focuses on identifying

and resolving errors in the output generated by the LLM. This

category includes the Fact Check List and Reflection patterns.

The Fact Check List pattern requires the LLM to generate a

list of facts the output depends on that should be fact-checked.

The Reflection pattern requires the LLM to introspect on its

output and identify any errors.

The Prompt Improvement category focuses on improving

the quality of the input and output. This category includes

the Question Refinement, Alternative Approaches, Cognitive

Verifier, and Refusal Breaker patterns. The Question Refine-

ment pattern ensures the LLM always suggests a better version

of the user’s question. The Alternative Approaches pattern

requires the LLM to suggest alternative ways of accomplishing

a user-specified task. The Cognitive Verifier pattern instructs

the LLM to automatically suggest a series of subquestions

for the user to answer before combining the answers to the

subquestions and producing an answer to the overall question.

The Refusal Breaker pattern requires the LLM to automatically

reword the user’s question when it refuses to produce an

answer.

The Interaction category focuses on the interaction be-

tween the user and the LLM. This category includes the

Flipped Interaction, Game Play, and Infinite Generation pat-

terns. The Flipped Interaction pattern requires the LLM to

ask questions rather than generate output. The Game Play

pattern requires the LLM to generate output in the form of

a game. The Infinite Generation pattern requires the LLM to

generate output indefinitely without the user having to reenter

the generator prompt each time.

Finally, the Context Control category focuses on control-

ling the contextual information in which the LLM operates.

This category includes the Context Manager pattern, which

allows the user to specify the context for the LLM’s output.

The remainder of this section describes each of these prompt

patterns using the pattern form discussed in Section II-B.

B. The Meta Language Creation Pattern

1) Intent and Context: During a conversation with an LLM,

the user would like to create the prompt via an alternate

language, such as a textual short-hand notation for graphs, a

description of states and state transitions for a state machine, a

set of commands for prompt automation, etc. The intent of this

pattern is to explain the semantics of this alternative language

to the LLM so the user can write future prompts using this

new language and its semantics.

2) Motivation: Many problems, structures, or other ideas

communicated in a prompt may be more concisely, unam-

biguously, or clearly expressed in a language other than

English (or whatever conventional human language is used

to interact with an LLM). To produce output based on an

alternative language, however, an LLM needs to understand

the language’s semantics.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

When I say X, I mean Y (or would like you to do Y)

The key structure of this pattern involves explaining the

meaning of one or more symbols, words, or statements to

the LLM so it uses the provided semantics for the ensuing

conversation. This description can take the form of a simple

translation, such as “X” means “Y”. The description can also

take more complex forms that define a series of commands

and their semantics, such as “when I say X, I want you to do

”. In this case, “X” is henceforth bound to the semantics of

“take action”.

4) Example Implementation: The key to successfully using

the Meta Language Creation pattern is developing an unam-

biguous notation or shorthand, such as the following:

“From now on, whenever I type two identifiers

separated by a “→”, I am describing a graph. For

example, “a → b” is describing a graph with nodes

“a” and “b” and an edge between them. If I separate

identifiers by “-[w:2, z:3]→”, I am adding properties

of the edge, such as a weight or label.”

This example of the Meta Language Creation pattern estab-

lishes a standardized notation for describing graphs by defining

a convention for representing nodes and edges. Whenever the

author types two identifiers separated by a “→” symbol, it is

an indication that a graph is being described. For example, if

the author types “a → b”, this indicates that a graph is being

defined with nodes “a” and “b”, and that there is an edge

between them. This convention provides a clear and concise

way to communicate the structure of a graph in written form.

Moreover, the prompt goes on to specify that additional

information about the edges, such as a weight or label, can

be provided using the syntax “-[w:2, z:3]→”. This notation

allows for the specification of additional properties beyond

the basic structure of the graph. The specified properties are

associated with the edge between the two nodes and can

provide important context for the interpretation of the graph.

This standardized notation for describing graphs can make it

easier to communicate graph structures and properties, which

may not be easy or are very verbose to describe as a series of

sentences.

5) Consequences: Although this pattern provides a pow-

erful means to customize a user’s interaction with an LLM,

it may create the potential for confusion within the LLM.

As important as it is to clearly define the semantics of the

language, it is also essential to ensure the language itself

introduces no ambiguities that degrade the LLM’s performance

or accuracy. For example, the prompt “whenever I separate

two things by commas, it means that the first thing precedes

the second thing” will likely create significant potential for

ambiguity and create the potential for unexpected semantics

if punctuation involving commas is used in the prompt.

To showcase the potential for confusion, ChatGPT will

warn the user and potentially be unable to perform a specific

mapping of a symbol or term to a new meaning. For example,

if following prompt is given to ChatGPT

“Whenever I say “a”, I am referring to Marie An-

toinette.”

it will respond that this prompt creates too much confusion

as “a” is an indefinite article and too commonly used, as shown

below:

“Referring to Marie Antoinette using “a” could

potentially cause confusion, as “a” is an indefinite

article commonly used to refer to a noun that has

not been mentioned before. It may be more clear

to use her name, “Marie Antoinette”, or a pronoun

such as “she” or “her” to refer to her. Moreover,

using context to establish who you are referring to

can also help avoid confusion in conversation.”

In general, an LLM will perform better on data it was

trained on. Therefore, when an existing notation is available—

but may not be the dominant meaning—the Meta Language

Creation pattern can provide context to scope the meaning of

the symbol to improve the accurately and utility of the output.

For example, the symbol “→” conveys slightly different infor-

mation in graphs and propositional logic. The statement “p →
q, q → p” may therefore make sense, but only if the LLM

is given the appropriate context through a Meta Language

Creation prompt.

Although Meta Language Creation is a powerful pattern it

must be used carefully, particularly when describing concepts

that may otherwise be hard to precisely or concisely describe.

These types of prompts are thus best used in completely

new conversation sessions. Using a single meta-language-per-

conversation session may also be a best practice since it avoids

the potential for conflicting or unexpected semantics being

applied to the conversation over time.

C. The Output Automater Pattern

1) Intent and Context: The intent of this pattern is to have

the LLM generate a script or other automation artifact that can

automatically perform any steps it recommends taking as part

of its output. The goal is to reduce the manual effort needed

to implement any LLM output recommendations.

2) Motivation: The output of an LLM is often a sequence

of steps for the user to follow. For example, when asking an

LLM to generate a Python configuration script it may suggest

a number of files to modify and changes to apply to each file.

However, having users continually perform the manual steps

dictated by LLM output is tedious and error-prone.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Whenever you produce an output that has at least one

step to take and the following properties (alternatively,

always do this)

Produce an executable artifact of type X that will

automate these steps

The first part of the pattern identifies the situations under

which automation should be generated. A simple approach

is to state that the output includes at least two steps to

take and that an automation artifact should be produced. The

scoping is up to the user, but helps prevent producing an

output automation scripts in cases where running the output

automation script will take more user effort than performing

the original steps produced in the output. The scope can be

limited to outputs requiring more than a certain number of

steps.

The next part of this pattern provides a concrete statement

of the type of output the LLM should output to perform the

automation. For example, “produce a Python script” gives the

LLM a concrete understanding to translate the general steps

into equivalent steps in Python. The automation artifact should

be concrete and must be something that the LLM associates

with the action of “automating a sequence of steps”.

4) Example Implementation: A sample of this prompt pat-

tern applied to code snippets generated by the ChatGPT LLM

is shown below:

“From now on, whenever you generate code that

spans more than one file, generate a Python script

that can be run to automatically create the specified

files or make changes to existing files to insert the

generated code.”

This pattern is particularly effective in software engineering

as a common task for software engineers using LLMs is to

then copy/paste the outputs into multiple files. Some tools,

such as Copilot, insert limited snippets directly into the section

of code that the coder is working with, but tools, such as

ChatGPT, do not provide these facilities. This automation trick

is also effective at creating scripts for running commands on

a terminal, automating cloud operations, or reorganizing files

on a file system.

This pattern is a powerful complement for any system that

can be computer controlled. The LLM can provide a set of

steps that should be taken on the computer-controlled system

and then the output can be translated into a script that allows

the computer controlling the system to automatically take

the steps. This is a direct pathway to allowing LLMs, such

as ChatGPT, to integrate quality into—and to control—new

computing systems that have a known scripting interface.
5) Consequences: An important usage consideration of

this pattern is that the automation artifact must be defined

concretely. Without a concrete meaning for how to “automate”

the steps, the LLM often states that it “can’t automate things”

since that is beyond its capabilities. LLMs typically accept

requests to produce code, however, so the goal is to instruct the

LLM to generate text/code, which can be executed to automate

something. This subtle distinction in meaning is important to

help an LLM disambiguate the prompt meaning.

One caveat of the Output Automater pattern is the LLM

needs sufficient conversational context to generate an automa-

tion artifact that is functional in the target context, such as

the file system of a project on a Mac vs. Windows computer.

This pattern works best when the full context needed for the

automation is contained within the conversation, e.g., when

a software application is generated from scratch using the

conversation and all actions on the local file system are

performed using a sequence of generated automation artifacts

rather than manual actions unknown to the LLM. Alternatively,

self-contained sequences of steps work well, such as “how do

I find the list of open ports on my Mac computer”.

In some cases, the LLM may produce a long output with

multiple steps and not include an automation artifact. This

omission may arise for various reasons, including exceeding

the output length limitation the LLM supports. A simple

workaround for this situation is to remind the LLM via a

follow-on prompt, such as “But you didn’t automate it”, which

provides the context that the automation artifact was omitted

and should be generated.

At this point in the evolution of LLMs, the Output Auto-

mater pattern is best employed by users who can read and

understand the generated automation artifact. LLMs can (and

do) produce inaccuracies in their output, so blindly accepting

and executing an automation artifact carries significant risk.

Although this pattern may alleviate the user from performing

certain manual steps, it does not alleviate their responsibility

to understand the actions they undertake using the output.

When users execute automation scripts, therefore they assume

responsibility for the outcomes.

D. The Flipped Interaction Pattern

1) Intent and Context: You want the LLM to ask questions

to obtain the information it needs to perform some tasks.

Rather than the user driving the conversation, therefore, you

want the LLM to drive the conversation to focus it on

achieving a specific goal. For example, you may want the

LLM to give you a quick quiz or automatically ask questions

until it has sufficient information to generate a deployment

script for your application to a particular cloud environment.

2) Motivation: Rather than having the user drives a con-

versation, an LLM often has knowledge it can use to more

accurately obtain information from the user. The goal of the

Flipped Interaction pattern is to flip the interaction flow so the

LLM asks the user questions to achieve some desired goal. The

LLM can often better select the format, number, and content

of the interactions to ensure that the goal is reached faster,

more accurately, and/or by using knowledge the user may not

(initially) possess.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

I would like you to ask me questions to achieve X

You should ask questions until this condition is met or

to achieve this goal (alternatively, forever)

(Optional) ask me the questions one at a time, two at

a time, etc.

A prompt for a flipped interaction should always specify the

goal of the interaction. The first idea (i.e., you want the LLM to

ask questions to achieve a goal) communicates this goal to the

LLM. Equally important is that the questions should focus on a

particular topic or outcome. By providing the goal, the LLM

can understand what it is trying to accomplish through the

interaction and tailor its questions accordingly. This “inversion

of control” enables more focused and efficient interaction since

the LLM will only ask questions that it deems relevant to

achieving the specified goal.

The second idea provides the context for how long the in-

teraction should occur. A flipped interaction can be terminated

with a response like “stop asking questions”. It is often better,

however, to scope the interaction to a reasonable length or

only as far as is needed to reach the goal. This goal can be

surprisingly open-ended and the LLM will continue to work

towards the goal by asking questions, as is the case in the

example of ”until you have enough information to generate a

Python script”.

By default, the LLM is likely to generate multiple questions

per iteration. The third idea is completely optional, but can

improve usability by limiting (or expanding) the number of

questions that the LLM generates per cycle. If a precise

number/format for the questioning is not specified, the ques-

tioning will be semi-random and may lead to one-at-a-time

questions or ten-at-a-time questions. The prompt can thus be

tailored to include the number of questions asked at a time,

the order of the questions, and any other formatting/ordering

considerations to facilitate user interaction.

4) Example Implementation: A sample prompt for a flipped

interaction is shown below:

“From now on, I would like you to ask me questions

to deploy a Python application to AWS. When you

have enough information to deploy the application,

create a Python script to automate the deployment.”

In general, the more specific the prompt regarding the

constraints and information to collect, the better the outcome.

For instance, the example prompt above could provide a menu

of possible AWS services (such as Lambda, EC2, etc.) with

which to deploy the application. In other cases, the LLM may

be permitted to simply make appropriate choices on its own for

things that the user doesn’t explicitly make decisions about.

One limitation of this prompt is that, once other contextual

information is provided regarding the task, it may require

experimentation with the precise phrasing to get the LLM to

ask the questions in the appropriate number and flow to best

suit the task, such as asking multiple questions at once versus

one question at a time.

5) Consequences: One consideration when designing the

prompt is how much to dictate to the LLM regarding what

information to collect prior to termination. In the example

above, the flipped interaction is open-ended and can vary sig-

nificantly in the final generated artifact. This open-endedness

makes the prompt generic and reusable, but may potentially

ask additional questions that could be skipped if more context

is given.

If specific requirements are known in advance, it is better to

inject them into the prompt rather than hoping the LLM will

obtain the needed information. Otherwise, the LLM will non-

nondeterministically decide whether to prompt the user for the

information or make an educated guess as to an appropriate

value.

For example, the user can state that they would like to

deploy an application to Amazon AWS EC2, rather than

simply state ”the cloud” and require multiple interactions to

narrow down the deployment target. The more precise the

initial information, the better the LLM can use the limited

questions that a user is likely willing to answer to obtain

information to improve its output.

When developing prompts for flipped interactions, it is im-

portant to consider the level of user knowledge, engagement,

and control. If the goal is to accomplish the goal with as little

user interaction as possible (minimal control), that should be

stated explicitly.Conversely, if the goal is to ensure the user

is aware of all key decisions and confirms them (maximum

engagement) that should also be stated explicitly. Likewise, if

the user is expected to have minimal knowledge and should

have the questions targeted at their level of expertise, this

information should be engineered into the prompt.

E. The Persona Pattern

1) Intent and Context: In many cases, users would like

LLM output to always take a certain point of view or per-

spective. For example, it may be useful for to conduct a code

review as if the LLM was a security expert. The intent of this

pattern is to give the LLM a “persona” that helps it select what

types of output to generate and what details to focus on.

2) Motivation: Users may not know what types of outputs

or details are important for an LLM to focus on to achieve

a given task. They may know, however, the role or type of

person that they would normally ask to get help with these

things. The Persona pattern enables the users to express what

they need help with without knowing the exact details of the

outputs they need.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Act as persona X

Provide outputs that persona X would create

The first statement conveys the idea that the LLM needs

to act as a specific persona and provide outputs that such a

persona would. This persona can be expressed in a number

of ways, ranging from a job description, title, fictional char-

acter, historical figure, etc. The persona should elicit a set

of attributes associated with a well-known job title, type of

person, etc.2

The secondary idea—provide outputs that persona X would

create—offers opportunities for customization. For example, a

teacher might provide a large variety of different output types,

ranging from assignments to reading lists to lectures. If a more

specific scope to the type of output is known, the user can

provide it in this statement.

2Be aware, however, that personas relating to living people or people
considered harmful make be disregarded due to underlying LLM privacy and
security rules.

4) Example Implementation: A sample implementation for

code review is shown below:

“From now on, act as a security reviewer. Pay close

attention to the security details of any code that

we look at. Provide outputs that a security reviewer

would regarding the code.”

In this example, the LLM is instructed to provide outputs

that a ”security reviewer” would. The prompt further sets the

stage that code is going to be evaluated. Finally, the user

refines the persona by scoping the persona further to outputs

regarding the code.

Personas can also represent inanimate or non-human en-

tities, such as a Linux terminal, a database, or an animal’s

perspective. When using this pattern to represent these entities,

it can be useful to also specify how you want the inputs

delivered to the entity, such as “assume my input is what the

owner is saying to the dog and your output is the sounds the

dog is making”. An example prompt for a non-human entity

that uses a “pretend to be” wording is shown below:

“You are going to pretend to be a Linux terminal

for a computer that has been compromised by an

attacker. When I type in a command, you are going

to output the corresponding text that the Linux

terminal would produce.”

This prompt is designed to simulate a computer that has

been compromised by an attacker and is being controlled

through a Linux terminal. The prompt specifies that the user

will input commands into the terminal, and in response, the

simulated terminal will output the corresponding text that

would be produced by a real Linux terminal. This prompt

is more prescriptive in the persona and asks the LLM to, not

only be a Linux terminal, but to further act as a computer that

has been compromised by an attacker.

The persona causes ChatGPT to generate outputs to com-

mands that have files and contents indicative of a computer that

was hacked. The example illustrates how an LLM can bring

its situational awareness to a persona, in this case, creating

evidence of a cyberattack in the outputs it generates. This

type of persona can be very effective for combining with the

Game Play pattern, where you want the exact details of the

output characteristics to be hidden from the user (e.g., don’t

give away what the cyberattack did by describing it explicitly

in the prompt).

5) Consequences: An interesting aspect of taking non-

human personas is that the LLM may make interesting as-

sumptions or “hallucinations” regarding the context. A widely

circulated example on the Internet asks ChatGPT to act as

a Linux terminal and produce the expected output that you

would get if the user typed the same text into a terminal.

Commands, such as ls -l, will generate a file listing for an

imaginary UNIX file system, complete with files that can have

cat file1.txt run on them.

In other examples, the LLM may prompt the user for more

context, such as when ChatGPT is asked to act as a MySQL

database and prompts for the structure of a table that the user

is pretending to query. ChatGPT can then generate synthetic

rows, such as generating imaginary rows for a “people” table

with columns for “name” and “job”.

F. The Question Refinement Pattern

1) Intent and Context: This pattern engages the LLM in

the prompt engineering process. The intent of this pattern is

to ensure the conversational LLM always suggests potentially

better or more refined questions the user could ask instead of

their original question. Using this pattern, the LLM can aid the

user in finding the right question to ask in order to arrive at an

accurate answer. In addition, the LLM may help the user find

the information or achieve their goal in fewer interactions with

the user than if the user employed trial and error prompting.

2) Motivation: If a user is asking a question, it is possible

they are not an expert in the domain and may not know the

best way to phrase the question or be aware of additional

information helpful in phrasing the question. LLMs will often

state limitations on the answer they are providing or request

additional information to help them produce a more accurate

answer. An LLM may also state assumptions it made in

providing the answer. The motivation is that this additional

information or set of assumptions could be used to generate

a better prompt. Rather than requiring the user to digest

and rephrase their prompt with the additional information,

the LLM can directly refine the prompt to incorporate the

additional information.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Within scope X, suggest a better version of the question

to use instead

(Optional) prompt me if I would like to use the better

version instead

The first contextual statement in the prompt is asking the

LLM to suggest a better version of a question within a specific

scope. The scope is provided to ensure that not all questions

are automatically reworded or that they are refined with a

given goal. The second contextual statement is meant for

automation and allows the user to automatically use the refined

question without having to copy/paste or manually enter it. The

engineering of this prompt can be further refined by combining

it with the Reflection pattern, which allows the LLM to explain

why it believes the refined question is an improvement.

4) Example Implementation:

“From now on, whenever I ask a question about a

software artifact’s security, suggest a better version

of the question to use that incorporates information

specific to security risks in the language or frame-

work that I am using instead and ask me if I would

like to use your question instead.”

In the context of the example above, the LLM will use

the Question Refinement pattern to improve security-related

questions by asking for or using specific details about the

software artifact and the language or framework used to build

it. For instance, if a developer of a Python web application with

FastAPI asks ChatGPT “How do I handle user authentication

in my web application?”, the LLM will refine the question

by taking into account that the web application is written in

Python with FastAPI. The LLM then provides a revised ques-

tion that is more specific to the language and framework, such

as “What are the best practices for handling user authentication

securely in a FastAPI web application to mitigate common

security risks, such as cross-site scripting (XSS), cross-site

request forgery (CSRF), and session hijacking?”

The additional detail in the revised question is likely

to not only make the user aware of issues they need to

consider, but lead to a better answer from the LLM. For

software engineering tasks, this pattern could also incorporate

information regarding potential bugs, modularity, or other

code quality considerations. Another approach would be to

automatically refine questions so the generated code cleanly

separates concerns or minimizes use of external libraries, such

as:

Whenever I ask a question about how to write some

code, suggest a better version of my question that

asks how to write the code in a way that minimizes

my dependencies on external libraries.

5) Consequences: The Question Refinement pattern helps

bridge the gap between the user’s knowledge and the LLM’s

understanding, thereby yielding more efficient and accurate

interactions. One risk of this pattern is its tendency to rapidly

narrow the questioning by the user into a specific area that

guides the user down a more limited path of inquiry than

necessary. The consequence of this narrowing is that the

user may miss important ”bigger picture” information. One

solution to this problem is to provide additional scope to the

pattern prompt, such as “do not scope my questions to specific

programming languages or frameworks.”

Another approach to overcoming arbitrary narrowing or

limited targeting of the refined question is to combine the

Question Refinement pattern with other patterns. In particular,

this pattern can be combined with the Cognitive Verifier pattern

so the LLM automatically produces a series of follow-up ques-

tions that can produce the refined question. For example, in

the following prompt the Question Refinement and Cognitive

Verifier patterns are applied to ensure better questions are

posed to the LLM:

“From now on, whenever I ask a question, ask four

additional questions that would help you produce a

better version of my original question. Then, use my

answers to suggest a better version of my original

question.”

As with many patterns that allow an LLM to generate

new questions using its knowledge, the LLM may introduce

unfamiliar terms or concepts to the user into the question.

One way to address this issue is to include a statement that

the LLM should explain any unfamiliar terms it introduces into

the question. A further enhancement of this idea is to combine

the Question Refinement pattern with the Persona pattern so

the LLM flags terms and generates definitions that assume a

particular level of knowledge, such as this example:

“From now on, whenever I ask a question, ask four

additional questions that would help you produce a

better version of my original question. Then, use my

answers to suggest a better version of my original

question. After the follow-up questions, temporarily

act as a user with no knowledge of AWS and define

any terms that I need to know to accurately answer

the questions.”

An LLM can always produce factual inaccuracies, just

like a human. A risk of this pattern is that the inaccuracies

are introduced into the refined question. This risk may be

mitigated, however, by combining the Fact Check List pattern

to enable the user to identify possible inaccuracies and the

Reflection pattern to explain the reasoning behind the question

refinement.

G. The Alternative Approaches Pattern

1) Intent and Context: The intent of the pattern is to ensure

an LLM always offers alternative ways of accomplishing a task

so a user does not pursue only the approaches with which they

are familiar. The LLM can provide alternative approaches that

always force the user to think about what they are doing and

determine if that is the best approach to meet reach their goal.

In addition, solving the task may inform the user or teach them

about alternative concepts for subsequent follow-up.

2) Motivation: Humans often suffer from cognitive biases

that lead them to choose a particular approach to solve a

problem even when it is not the right or “best” approach.

Moreover, humans may be unaware of alternative approaches

to what they have used in the past. The motivation of the

Alternative Approaches pattern is to ensure the user is aware

of alternative approaches to select a better approach to solve

a problem by dissolving their cognitive biases.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Within scope X, if there are alternative ways to accom-

plish the same thing, list the best alternate approaches

(Optional) compare/contrast the pros and cons of each

approach

(Optional) include the original way that I asked

(Optional) prompt me for which approach I would like

to use

The first statement, “within scope X”, scopes the interaction

to a particular goal, topic, or bounds on the questioning. The

scope is the constraints that the user is placing on the alter-

native approaches. The scope could be “for implementation

decisions” or “for the deployment of the application”. The

scope ensures that any alternatives fit within the boundaries

or constraints that the user must adhere to.

The second statement, “if there are alternative ways to

accomplish the same thing, list the best alternate approaches”

instructs the LLM to suggest alternatives. As with other

patterns, the specificity of the instructions can be increased or

include domain-specific contextual information. For example,

the statement could be scoped to “if there are alternative ways

to accomplish the same thing with the software framework that

I am using” to prevent the LLM from suggesting alternatives

that are inherently non-viable because they would require too

many changes to other parts of the application.

Since the user may not be aware of the alternative ap-

proaches, they also may not be aware of why one would

choose one of the alternatives. The optional statement “com-

pare/contrast the pros and cons of each approach” adds de-

cision making criteria to the analysis. This statement ensures

the LLM will provide the user with the necessary rationale

for alternative approaches. The final statement, “prompt me

for which approach I would like to use”, helps eliminate the

user needing to manually copy/paste or enter in an alternative

approach if one is selected.

4) Example Implementation: Example prompt implementa-

tion to generate, compare, and allow the user to select one or

more alternative approaches:

“Whenever I ask you to deploy an application to

a specific cloud service, if there are alternative

services to accomplish the same thing with the

same cloud service provider, list the best alternative

services and then compare/contrast the pros and cons

of each approach with respect to cost, availability,

and maintenance effort and include the original way

that I asked. Then ask me which approach I would

like to proceed with.”

This implementation of the Alternative Approaches pattern

is being specifically tailored for the context of software

engineering and focuses on the deployment of applications

to cloud services. The prompt is intended to intercept places

where the developer may have made a cloud service selection

without full awareness of alternative services that may be

priced more competitively or easier to maintain. The prompt

directs ChatGPT to list the best alternative services that can

accomplish the same task with the same cloud service provider

(providing constraints on the alternatives), and to compare and

contrast the pros and cons of each approach.

5) Consequences: This pattern is effective in its generic

form and can be applied to a range of tasks effectively.

Refinements could include having a standardized catalog of

acceptable alternatives in a specific domain from which the

user must select. The Alternative Approaches pattern can also

be used to incentivize users to select one of an approved set

of approaches while informing them of the pros/cons of the

approved options.

H. The Cognitive Verifier Pattern

1) Intent and Context: Research literature has documented

that LLMs can often reason better if a question is subdivided

into additional questions that provide answers combined into

the overall answer to the original question [14]. The intent of

the pattern is to force the LLM to always subdivide questions

into additional questions that can be used to provide a better

answer to the original question.

2) Motivation: The motivation of the Cognitive Verifier

pattern is two-fold:

• Humans may initially ask questions that are too high-

level to provide a concrete answer to without additional

follow-up due to unfamiliarity with the domain, laziness

in prompt entry, or being unsure about what the correct

phrasing of the question should be.

• Research has demonstrated that LLMs can often perform

better when using a question that is subdivided into

individual questions.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

When you are asked a question, follow these rules

Generate a number of additional questions that would

help more accurately answer the question

Combine the answers to the individual questions to

produce the final answer to the overall question

The first statement is to generate a number of additional

questions that would help more accurately answer the original

question. This step instructs the LLM to consider the context

of the question and to identify any information that may be

missing or unclear. By generating additional questions, the

LLM can help to ensure that the final answer is as complete

and accurate as possible. This step also encourages critical

thinking by the user and can help to uncover new insights or

approaches that may not have been considered initially, which

subsequently lead to better follow-on questions.

The second statement is to combine the answers to the

individual questions to produce the final answer to the overall

question. This step is designed to ensure that all of the infor-

mation gathered from the individual questions is incorporated

into the final answer. By combining the answers, the LLM

can provide a more comprehensive and accurate response to

the original question. This step also helps to ensure that all

relevant information is taken into account and that the final

answer is not based on any single answer.

4) Example Implementation:

“When I ask you a question, generate three addi-

tional questions that would help you give a more

accurate answer. When I have answered the three

questions, combine the answers to produce the final

answers to my original question.”

This specific instance of the prompt pattern adds a refine-

ment to the original pattern by specifying a set number of

additional questions that the LLM should generate in response

to a question. In this case, the prompt specifies that ChatGPT

should generate three additional questions that would help to

give a more accurate answer to the original question. The

specific number can be based on the user’s experience and

willingness to provide follow-up information. A refinement

to the prompt can be to provide a context for the amount

of knowledge that the LLM can assume the user has in the

domain to guide the creation of the additional questions:

“When I ask you a question, generate three addi-

tional questions that would help you give a more

accurate answer. Assume that I know little about

the topic that we are discussing and please define

any terms that are not general knowledge. When

I have answered the three questions, combine the

answers to produce the final answers to my original

question.”

The refinement also specifies that the user may not have

a strong understanding of the topic being discussed, which

means that the LLM should define any terms that are not

general knowledge. This helps to ensure that the follow-up

questions are not only relevant and focused, but also accessible

to the user, who may not be familiar with technical or domain-

specific terms. By providing clear and concise definitions, the

LLM can help to ensure that the follow-up questions are easy

to understand and that the final answer is accessible to users

with varying levels of knowledge and expertise.

5) Consequences: This pattern can dictate the exact number

of questions to generate or leave this decision to the LLM.

There are pros and cons to dictating the exact number. A pro

is that specifying an exact number of questions can tightly

scope the amount of additional information the user is forced

to provide so it is within a range they are willing and able to

contribute.

A con, however, is that given N questions there may be

an invaluable N + 1 question that will always be scoped out.

Alternatively, the LLM can be provided a range or allowed

to ask additional questions. Of course, by omitting a limit on

the number of questions the LLM may generate numerous

additional questions that overwhelm the user.

I. The Fact Check List Pattern

1) Intent and Context: The intent of this pattern is to ensure

that the LLM outputs a list of facts that are present in the

output and form an important part of the statements in the

output. This list of facts helps inform the user of the facts

(or assumptions) the output is based on. The user can then

perform appropriate due diligence on these facts/assumptions

to validate the veracity of the output.

2) Motivation: A current weakness of LLMs (including

ChatGPT) is they often rapidly (and even enthusiastically!)

generate convincing text that is factually incorrect. These

errors can take a wide range of forms, including fake statistics

to invalid version numbers for software library dependencies.

Due to the convincing nature of this generated text, however,

users may not perform appropriate due diligence to determine

its accuracy.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Generate a set of facts that are contained in the output

The set of facts should be inserted in a specific point

in the output

The set of facts should be the fundamental facts that

could undermine the veracity of the output if any of

them are incorrect

One point of variation in this pattern is where the facts are

output. Given that the facts may be terms that the user is not

familiar with, it is preferable if the list of facts comes after

the output. This after-output presentation ordering allows the

user to read and understand the statements before seeing what

statements should be checked. The user may also determine

additional facts prior to realizing the fact list at the end should

be checked.

4) Example Implementation: A sample wording of the Fact

Check List pattern is shown below:

“From now on, when you generate an answer, create

a set of facts that the answer depends on that should

be fact-checked and list this set of facts at the

end of your output. Only include facts related to

cybersecurity.”

The user may have expertise in some topics related to the

question but not others. The fact check list can be tailored to

topics that the user is not as experienced in or where there

is the most risk. For example, in the prompt above, the user

is scoping the fact check list to security topics, since these

are likely very important from a risk perspective and may not

be well-understood by the developer. Targeting the facts also

reduces the cognitive burden on the user by potentially listing

fewer items for investigation.

5) Consequences: The Fact Check List pattern should be

employed whenever users are not experts in the domain for

which they are generating output. For example, a software

developer reviewing code could benefit from the pattern

suggesting security considerations. In contrast, an expert on

software architecture is likely to identify errors in statements

about the software structure and need not see a fact check list

for these outputs.

Errors are potential in all LLM outputs, so Fact Check List

is an effective pattern to combine with other patterns, such

as by combining it with the Question Refinement pattern. A

key aspect of this pattern is that users can inherently check it

against the output. In particular, users can directly compare the

fact check list to the output to verify the facts listed in the fact

check list actually appear in the output. Users can also identify

any omissions from the list. Although the fact check list may

also have errors, users often have sufficient knowledge and

context to determine its completeness and accuracy relative to

the output.

One caveat of the Fact Check List pattern is that it only

applies when the output type is amenable to fact-checking. For

example, the pattern works when asking ChatGPT to generate

a Python “requirements.txt” file since it will list the versions

of libraries as facts that should be checked, which is handy as

the versions commonly have errors. However, ChatGPT will

refuse to generate a fact check list for a code sample and

indicate that this is something it cannot check, even though

the code may have errors.

J. The Template Pattern

1) Intent and Context: The intent of the pattern is to

ensure an LLM’s output follows a precise template in terms of

structure. For example, the user might need to generate a URL

that inserts generated information into specific positions within

the URL path. This pattern allows the user to instruct the LLM

to produce its output in a format it would not ordinarily use

for the specified type of content being generated.

2) Motivation: In some cases, output must be produced in

a precise format that is application or use-case specific and

not known to the LLM. Since the LLM is not aware of the

template structure, it must be instructed on what the format

is and where the different parts of its output should go. This

could take the form of a sample data structure that is being

generated, a series of form letters being filled in, etc.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

I am going to provide a template for your output

X is my placeholder for content

Try to fit the output into one or more of the placehold-

ers that I list

Please preserve the formatting and overall template that

I provide

This is the template: PATTERN with PLACEHOLD-

ERS

The first statement directs the LLM to follow a specific

template for its output. The template will be used to try and

coerce the LLMs responses into a structure that is consistent

with the user’s formatting needs. This pattern is needed when

the target format is not known to the LLM. If the LLM already

has knowledge of the format, such as a specific file type, then

the template pattern can be skipped and the user can simply

specify the known format. However, there may be cases, such

as generating Javascript Object Notation (JSON), where there

is a large amount of variation in how the data could be

represented within that format and the template can be used to

ensure that the representation within the target format meets

the user’s additional constraints.

The second statement makes the LLM aware that the

template will contain a set of placeholders. Users will explain

how the output should be inserted into the template through the

placeholders. The placeholders allow the user to semantically

target where information should be inserted. Placeholders

can use formats, like NAME, that allow the LLM to infer

the semantic meaning of to determine where output should

be inserted (e.g., insert the person’s name in the NAME

placeholder). Moreover, by using placeholders, the user can

indicate what is not needed in the output – if a placeholder

doesn’t exist for a component of the generated output, then

that component can be omitted. Ideally, placeholders should

use a format that is commonly employed in text that the LLM

was trained on, such as all caps, enclosure in brackets, etc.

The third statement attempts to constrain the LLM so that it

doesn’t arbitrarily rewrite the template or attempt to modify it

so that all of the output components can be inserted. It should

be noted that this statement may not preclude additional text

from being generated before or after. In practice, LLMs will

typically follow the template, but it is harder to eliminate any

additional text being generated beyond the template without

experimentation with prompt wording.

4) Example Implementation: A sample template for gener-

ating URLs where the output is put into specific places in the

template is shown below:

“I am going to provide a template for your out-

put. Everything in all caps is a placeholder. Any

time that you generate text, try to fit it into one

of the placeholders that I list. Please preserve the

formatting and overall template that I provide at

https://myapi.com/NAME/profile/JOB”

A sample interaction after the prompt was provided, is

shown:

User: “Generate a name and job title for a person”

ChatGPT: “https://myapi.com/Emily Parker/profile/

Software Engineer”

5) Consequences: One consequence of applying the Tem-

plate pattern is that it filters the LLM’s output, which may

eliminate other outputs the LLM would have provided that

might be useful to the user. In many cases, the LLM can

provide helpful descriptions of code, decision making, or other

details that this pattern will effectively eliminate from the

output. Users should therefore weight the pros/cons of filtering

out this additional information.

In addition, filtering can make it hard to combine this pattern

with other patterns from the Output Customization category.

The Template pattern effectively constrains the output format,

so it may not be compatible with generation of certain other

types of output. For example, in the template provided above

for a URL, it would not be easy (or likely possible) to combine

with the Recipe pattern, which needs to output a list of steps.

K. The Infinite Generation Pattern

1) Intent and Context: The intent of this pattern is to

automatically generate a series of outputs (which may appear

infinite) without having to reenter the generator prompt each

time. The goal is to limit how much text the user must type to

produce the next output, based on the assumption that the user

does not want to continually reintroduce the prompt. In some

variations, the intent is to allow the user to keep an initial

prompt template, but add additional variation to it through

additional inputs prior to each generated output.

2) Motivation: Many tasks require repetitive application of

the same prompt to multiple concepts. For example, generating

code for create, read, update, and delete (CRUD) operations

for a specific type of entity may require applying the same

prompt to multiple types of entities. If the user is forced to

retype the prompt over and over, they may make mistakes. The

Infinite Generation pattern allows the user to repetitively apply

a prompt, either with or without further input, to automate

the generation of multiple outputs using a predefined set of

constraints.

3) Structure and Key Ideas:

Contextual Statements

I would like you to generate output forever, X output(s)

at a time.

(Optional) here is how to use the input I provide

between outputs.

(Optional) stop when I ask you to.

The first statement specifies that the user wants the LLM

to generate output indefinitely, which effectively conveys the

information that the same prompt is going to be reused over

and over. By specifying the number of outputs that should be

generated at a time (i.e. “X outputs at a time”), the user can

rate limit the generation, which can be particularly important if

there is a risk that the output will exceed the length limitations

of the LLM for a single output.

The second statement provides optional instructions for how

to use the input provided by the user between outputs. By

specifying how additional user inputs between prompts can

be provided and leveraged, the user can create a prompting

strategy that leverages user feedback in the context of the

original prompt. The original prompt is still in the context of

the generation, but each user input between generation steps

is incorporated into the original prompt to refine the output

using prescribed rules.

The third statement provides an optional way for the user

to stop the output generation process. This step is not always

needed, but can be useful in situations where there may be

the potential for ambiguity regarding whether or not the user-

provided input between inputs is meant as a refinement for

the next generation or a command to stop. For example, an

explicit stop phrase could be created if the user was generating

data related to road signs, where the user might want to enter

a refinement of the generation like “stop” to indicate that a

stop sign should be added to the output.

4) Example Implementation: The following is a sample

infinite generation prompt for producing a series of URLs:

“From now on, I want you to generate a name

and job until I say stop. I am going to provide a

template for your output. Everything in all caps is a

placeholder. Any time that you generate text, try to

fit it into one of the placeholders that I list. Please

preserve the formatting and overall template that I

provide: https://myapi.com/NAME/profile/JOB”

This prompt is combining the functionality of both the

Infinite Generation pattern and the Template pattern. The user

is requesting the LLM continuously generate a name and job

title until explicitly told to “stop”. The generated outputs are

then formatted into the template provided, which includes

placeholders for the name and job title. By using the Infinite

Generation pattern, the user receives multiple outputs without

having to continually re-enter the template. Likewise, the

Template pattern is applied to provide a consistent format for

the outputs.

5) Consequences: In conversational LLMs, the input to

the model at each time step is the previous output and the

new user input. Although the details of what is preserved

and reintroduced in the next output cycle are model and

implementation dependent, they are often limited in scope. The

model is therefore constantly being fed the previous outputs

and the prompt, which can result in the model losing track of

the original prompt instructions over time if they exceed the

scope of what it is being provided as input.

As additional outputs are generated, the context surrounding

the prompt may fade, leading to the model deviating from

the intended behavior. It is important to monitor the outputs

produced by the model to (1) ensure it still adheres to

the desired behavior and (2) provide corrective feedback if

necessary. Another issue to consider is that the LLM may

generate repetitive outputs, which may not be desired since

users find this repetition tedious and error-prone to process.

L. The Visualization Generator Pattern

1) Intent and Context: The intent of this pattern is to use

text generation to create visualizations. Many concepts are

easier to grasp in diagram or image format. The purpose of

this pattern is to create a pathway for the tool to produce

imagery that is associated with other outputs. This pattern

allows the creation of visualizations by creating inputs for

other well-known visualization tools that use text as their

input, such as Graphviz Dot [15] or DALL-E [13]. This

pattern can provide a more comprehensive and effective way

of communicating information by combining the strengths of

both the text generation and visualization tools.

2) Motivation: LLMs generally produce text and cannot

produce imagery. For example, an LLM cannot draw a diagram

to describe a graph. The Visualization Generator pattern over-

comes this limitation by generating textual inputs in the correct

format to plug into another tool that generates the correct

diagram. The motivation behind this pattern is to enhance the

output of the LLM and make it more visually appealing and

easier to understand for users. By using text inputs to generate

visualizations, users can quickly understand complex concepts

and relationships that may be hard to grasp through text alone.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Generate an X that I can provide to tool Y to visualize

it

The goal of the contextual statements is to indicate to the

LLM that the output it is going to produce, “X”, is going to

be imagery. Since LLMs can’t generate images, the ”that I

can provide to tool Y to visualize it” clarifies that the LLM

is not expected to generate an image, but is instead expected

to produce a description of imagery consumable by tool Y for

production of the image.

Many tools may support multiple types of visualizations or

formats, and thus the target tool itself may not be sufficient

information to accurately produce what the user wants. The

user may need to state the precise types of visualizations (e.g.,

bar chart, directed graph, UML class diagram) that should be

produced. For example, Graphviz Dot can create diagrams for

both UML class diagrams and directed graphs. Further, as will

be discussed in the following example, it can be advantageous

to specify a list of possible tools and formats and let the LLM

select the appropriate target for visualization.

4) Example Implementation:

“Whenever I ask you to visualize something, please

create either a Graphviz Dot file or DALL-E prompt

that I can use to create the visualization. Choose

the appropriate tools based on what needs to be

visualized.”

This example of the pattern adds a qualification that the

output type for the visualization can be either for Graphviz

or DALL-E. The interesting aspect of this approach is that

it allows the LLM to use its semantic understanding of the

output format to automatically select the target tooling based

on what will be displayed. In this case, Graphviz would be for

visualizing graphs with a need for an exactly defined structure.

DALL-E would be effective at visualizing realistic or artistic

imagery that does not have an exactly defined structure. The

LLM can select the tool based on the needs of the visualization

and capabilities of each tool.

5) Consequences: The pattern creates a target pipeline

for the output to render a visualization. The pipeline may

include AI generators, such as DALL-E, that can produce

rich visualizations. The pattern allows the user to expand the

expressive capabilities of the output into the visual domain.

M. The Game Play Pattern

1) Intent and Context: The intent of this pattern is to create

a game around a given topic. The pattern can be combined

with the Visualization Generator to add imagery to the game.

The game is centered around a specific topic and the LLM

will guide the game play. The pattern is particularly effective

when the rules of the game are relatively limited in scope, but

the content for the game is expected to be wide in scope. The

user can specify a limited set of rules and then the LLM can

automate generation of bodies of content for game play.

2) Motivation: You would like the LLM to generate scenar-

ios or questions revolving around a specific topic and require

users to apply problem solving or other skills to accomplish

a task related to the scenario. Generating all the content for

the game manually would be too time consuming, however, so

you would like the LLM to apply its knowledge of the topic

to guide the generation of content.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Create a game for me around X

One or more fundamental rules of the game

The first statement, instructs the LLM to create a game and

provides the important scoping of the game to a topic area. .

One of the important capabilities of the pattern is that it allows

the user to create games by describing the rules of the game,

without having to determine the content of the game. The more

specific the topic, typically the more novel and interesting the

game play.

The second statement introduces the rules of the game to the

LLM. It is important that the rules fit within the capabilities

of the LLM. Textual games that rely on input and output text

sequences work best. One of the key attributes of the pattern

is that the input text can be rich and expressive, which can

lead to interesting interfaces for the game. For example, the

user might express actions in the game as scripts dictating

a sequence of complex actions, such as “get a listing of all

network activity and check it for anomalies”, which go beyond

the scope of multiple choice or short answer inputs. Each rule

should be provided as a separate statement regarding some

aspect of the game.

4) Example Implementation: A sample cybersecurity game

prompt is shown below:

“We are going to play a cybersecurity game. You

are going to pretend to be a Linux terminal for a

computer that has been compromised by an attacker.

When I type in a command, you are going to output

the corresponding text that the Linux terminal would

produce. I am going to use commands to try and

figure out how the system was compromised. The

attack should have done one or more of the following

things: (1) launched new processes, (2) changed

files, (3) opened new ports to receive communi-

cation, (4) created new outbound connections, (5)

changed passwords, (6) created new user accounts,

or (7) read and stolen information. To start the game,

print a scenario of what happened that led to my

investigation and make the description have clues

that I can use to get started.”

This cybersecurity game prompt combines a number of pat-

terns, including Game Play and Persona. The Linux terminal

persona that is chosen for the game has been discussed in many

Internet posts [16]. This game further customizes the discussed

Linux persona to act as a Linux terminal of a computer

compromised by a cyberattack. ChatGPT responds to Linux

commands with appropriate terminal outputs and synthesizes

a fake file system that has clues to a cyberattack.

Sample output from this game with ChatGPT after typing

in “ls -alt”, the Linux command to generate a list of files in

the current directory is shown below (permissions have been

removed for formatting reasons):

total 56

5 user user 4096 Feb 16 14:31 .

1 user user 18881 Feb 16 14:31 .bash_history

43 user user 4096 Feb 16 14:30 ..

1 user user 1178 Aug 15 2022 .bashrc

1 user user 220 Aug 15 2022 .bash_logout

3 user user 4096 Feb 16 14:25 .gnupg

1 user user 4041 Feb 15 17:52 README.md

2 user user 4096 Feb 1 11:35 project

When the user then typed the command “cat .bash history”,

to display the contents of the log file showing the commands

run by the user, ChatGPT responded with:

cd /var/www/html

sudo rm -rf *
sudo wget https://example.com/backdoor.php

sudo chmod 777 backdoor.php

exit

ls -alt

ps -ef

netstat -tulnp

In the output above, ChatGPT generated a fake log file with

realistic commands for deleting the data being served by the

web server in /var/www/html and replacing the content

with a backdoor into the system.

5) Consequences: This pattern can be combined effectively

with the Persona, Infinite Generation, and Visualization Gen-

erator patterns. For example, the cybersecurity game uses the

Persona pattern so the LLM can masquerade as a Linux termi-

nal. For a network security game, the Visualization Generator

could be employed to add the ability to visualize the network

topology and traffic flows.

N. The Reflection Pattern

1) Intent and Context: The goal of this pattern is to ask

the model to automatically explain the rationale behind given

answers to the user. The pattern allows users to better assess

the output’s validity, as well as inform users how an LLM

arrived at a particular answer. Reflection can clarify any points

of confusion, uncover underlying assumptions, and reveal gaps

in knowledge or understanding.

2) Motivation: LLMs can and do make mistakes. More-

over, users may not understand why an LLM is producing

a particular output and how to adapt their prompt to solve

a problem with the output. By asking LLM to automatically

explain the rationale behind its answers, users can gain a better

understanding of how the model is processing the input, what

assumptions it is making, and what data it is drawing on.

LLMs may sometime provide incomplete, incorrect, or

ambiguous answers. Reflection is an aid to help address these

shortcomings and ensure the information provided by LLM

is as accurate. A further benefit of the pattern is that it can

help users debug their prompts and determine why they are

not getting results that meet expectations. This pattern is

particularly effective for the exploration of topics that can

be confused with other topics or that may have nuanced

interpretations and where knowing the precise interpretation

that the LLM used is important.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Whenever you generate an answer

Explain the reasoning and assumptions behind your

answer

(Optional) ...so that I can improve my question

The first statement is requesting that, after generating an an-

swer, the LLM should explain the reasoning and assumptions

behind the answer. This statement helps the user understand

how the LLM arrived at the answer and can help build trust in

the model’s responses. The prompt includes the statement that

the purpose of the explanation is for the user to refine their

question. This additional statement gives the LLM the context

it needs to better tailor its explanations to the specific purpose

of aising the user in producing follow-on questions.

4) Example Implementation: This example tailors the

prompt specifically to the domain of providing answers related

to code:

”When you provide an answer, please explain the

reasoning and assumptions behind your selection

of software frameworks. If possible, use specific

examples or evidence with associated code samples

to support your answer of why the framework is

the best selection for the task. Moreover, please

address any potential ambiguities or limitations in

your answer, in order to provide a more complete

and accurate response.”

The pattern is further customized to instruct the LLM that

it should justify its selection of software frameworks, but not

necessarily other aspects of the answer. In addition, the user

dictates that code samples should be used to help explain the

motivation for selecting the specific software framework.

5) Consequences: One consequence of the Reflection pat-

tern is that it may not be effective for users who do not

understand the topic area of the discussion. For example, a

highly technical question by a non-technical user may result

in a complex rationale for the answer that the user cannot

fathom. As with other prompt patterns, there is a risk the

output may include errors or inaccurate assumptions included

in the explanation of the rationale that the user may not be

able to spot. This pattern can be combined with the Fact Check

List to help address this issue.

O. The Refusal Breaker Pattern

1) Intent and Context: The goal of this pattern is to ask an

LLM to automatically help users rephrase a question when it

refuses to give an answer. This pattern has the potential for

misuse, however, e.g., to generate phishing emails or perform

other actions that violate LLM policy filters. Caution should

therefore be exercised when applying this pattern to ensure

it is used ethically and responsibly. This pattern has been

used successfully in some LLMs to overcome the underlying

prompts used to program the LLM and prevent harmful output

generation.

2) Motivation: LLMs may sometimes refuse to answer

a question, either because they do not have the required

knowledge or because the question is phrased in a way that

they do not understand. This outcome may be frustrating

for users who are looking for answers. In some situations,

therefore, the Refusal Breaker pattern can help users find a

way to either rephrase their question or ask a different question

the LLM is better equipped to answer.

For example, you could ask for clarification on why the

question was refused, as there may be a specific reason why

LLM could not provide an answer. Another approach is to

ask a different question that may be within its knowledge cut-

off or expertise. However, all these approaches require user

intervention and knowledge of how to bypass the refusal.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Whenever you can’t answer a question

Explain why you can’t answer the question

Provide one or more alternative wordings of the ques-

tion that you could answer

The first statement sets the stage that this set of instructions

should only be applied when a question can’t be answered.

The user does not want to trigger these instructions under

normal circumstances. The second statement instructs the

LLM to provide an explanation of why the question can’t be

answered. The explanation is likely to include assumptions,

constraints, or misunderstandings that can be leveraged by the

user to strategize about how to reword the question. Although

just the explanation of why the question can’t be answered

could help a user overcome the refusal, the pattern adds an

additional statement for the LLM to suggest rewordings that

would be acceptable. The pattern combines both reasoning

and suggested rewordings to improve the chances that the user

will find a path around whatever roadblocks are preventing the

question form being answered.

4) Example Implementation: The Refusal Breaker pattern

can be be implemented and applied with the following phras-

ing:

“Whenever you can’t answer a question, explain why

and provide one or more alternate wordings of the

question that you can’t answer so that I can improve

my questions.”

A sample discourse after using the pattern is shown below:

User: What is the meaning of life?

ChatGPT: As an AI language model, I do not

have personal beliefs or opinions. The meaning of

life is a complex philosophical question that has

been pondered by humans for centuries and can

vary greatly from person to person. It may be more

productive to rephrase the question in a way that can

be answered by information and knowledge, such

as “What are some philosophical perspectives on

the meaning of life?” or “What are some common

beliefs about the purpose of life?”

5) Consequences: This pattern provides a potential path

for misuse, so organizations, parents, or other stakeholders

may need to restrict the usage of the LLM. The first step in

going around guardrails on usage is to understand where the

guardrails are. In future work, a complement of this pattern

may be developed to hide the underlying prompt information

and rationale from users to prevent discovery.

Although the rationale and alternate rewordings are gener-

ated, there is no guarantee that users will be able to overcome

the refusal. The alternate questions that are generated may not

be of interest to the user or helpful in answering the original

question. The pattern mainly provides an aid in determining

what the LLM can answer, but not a guarantee that it will

answer a semantically equivalent variation of the original

question.

P. The Context Manager Pattern

1) Intent and Context: The intent of this pattern is to enable

users to specify or remove context for a conversation with

an LLM. The goal is to focus the conversation on specific

topics or exclude unrelated topics from consideration. This

pattern gives users greater control over what statements the

LLM considers or ignores when generating output.

2) Motivation: LLMs often struggle to interpret the in-

tended context of the current question or generate irrelevant

responses based on prior inputs or irrelevant attention on

the wrong statements. By focusing on explicit contextual

statements or removing irrelevant statements, users can help

the LLM better understand the question and generate more

accurate responses. Users may introduce unrelated topics or

reference information from earlier in the dialogue, which

may can disrupt the flow of the conversation. The Context

Manager pattern aims to emphasize or remove specific aspects

of the context to maintain relevance and coherence in the

conversation.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

Within scope X

Please consider Y

Please ignore Z

(Optional) start over

Statements about what to consider or ignore should list key

concepts, facts, instructions, etc. that should be included or

removed from the context. The more explicit the statements

are, the more likely the LLM will take appropriate action. For

example, if the user asks to ignore subjects related to a topic,

yet some of the those statements were discussed far back in the

conversation, the LLM may not properly disregard the relevant

information. The more explicit the list is, therefore, the better

the inclusion/exclusion behavior will be.

4) Example Implementation: To specify context consider

using the following prompt:

“When analyzing the following pieces of code, only

consider security aspects.”

Likewise, to remove context consider using the following

prompt:

“When analyzing the following pieces of code, do

not consider formatting or naming conventions.”

Clarity and specificity are important when providing or

removing context to/from an LLM so it can better understand

the intended scope of the conversation and generate more

relevant responses. In many situations, the user may want to

completely start over and can employ this prompt to reset the

LLM’s context:

“Ignore everything that we have discussed. Start

over.”

The “start over” idea helps produce a complete reset of the

context.

5) Consequences: One consequence of this pattern is that

it may inadvertently wipe out patterns applied to the con-

versation that the user is unaware of. For example, if an

organization injects a series of helpful patterns into the start of

a conversation, the user may not be aware of these patterns and

remove them through a reset of the context. This reset could

potentially eliminate helpful capabilities of the LLM, while

not making it obvious that the user will lose this functionality.

A potential solution to this problem is to include in the prompt

a request to explain what topics/instructions will potentially be

lost before proceeding.

Q. The Recipe Pattern

1) Intent and Context: This pattern provides constraints to

ultimately output a sequence of steps given some partially

provided “ingredients” that must be configured in a sequence

of steps to achieve a stated goal. It combines the Template,

Alternative Approaches, and Reflection patterns.

2) Motivation: Users often want an LLM to analyze a

concrete sequence of steps or procedures to achieve a stated

outcome. Typically, users generally know—or have an idea

of—what the end goal should look like and what “ingredients”

belong in the prompt. However, they may not necessarily know

the precise ordering of steps to achieve that end goal.

For example, a user may want a precise specification on how

a piece of code should be implemented or automated, such as

“create an Ansible playbook to ssh into a set of servers, copy

text files from each server, spawn a monitoring process on

each server, and then close the ssh connection to each server.

In other words, this pattern represents a generalization of the

example of “given the ingredients in my fridge, provide dinner

recipes.” A user may also want to specify a set number of

alternative possibilities, such as “provide 3 different ways of

deploying a web application to AWS using Docker containers

and Ansible using step by step instructions”.

3) Structure and Key Ideas: Fundamental contextual state-

ments:

Contextual Statements

I would like to achieve X

I know that I need to perform steps A,B,C

Provide a complete sequence of steps for me

Fill in any missing steps

Identify any unnecessary steps

The first statement “I would like to achieve X” focuses the

LLM on the overall goal that the recipe needs to be built

to achieve. The steps will be organized and completed to

sequentially achieve the goal specified. The second statement

provides the partial list of steps that the user would like

to include in the overall recipe. These serve as intermediate

waypoints for the path that the LLM is going to generate or

constraints on the structure of the recipe. The next statement

in the pattern, “provide a complete sequence of steps for

me”, indicates to the LLM that the goal is to provide a

complete sequential ordering of steps. The “fill in any missing

steps” helps ensure that the LLM will attempt to complete

the recipe without further follow-up by making some choices

on the user’s behalf regarding missing steps, as opposed to

just stating additional information that is needed. Finally, the

last statement, “identify any unnecessary steps,” is useful in

flagging inaccuracies in the user’s original request so that the

final recipe is efficient.

4) Example Implementation: An example usage of this

pattern in the context of deploying a software application to

the cloud is shown below:

“I am trying to deploy an application to the cloud. I

know that I need to install the necessary dependen-

cies on a virtual machine for my application. I know

that I need to sign up for an AWS account. Please

provide a complete sequence of steps. Please fill in

any missing steps. Please identify any unnecessary

steps.”

Depending on the use case and constraints, “installing

necessary dependencies on a virtual machine” may be an

unnecessary step. For example, if the application is already

packaged in a Docker container, the container could be de-

ployed directly to the AWS Fargate Service, which does not

require any management of the underlying virtual machines.

The inclusion of the “identify unnecessary steps” language

will cause the LLM to flag this issue and omit the steps from

the final recipe.

5) Consequences: One consequence of the recipe pattern is

that a user may not always have a well-specified description

of what they would like to implement, construct, or design.

Moreover, this pattern may introduce unwanted bias from the

user’s initially selected steps so the LLM may try to find a

solution that incorporates them, rather than flagging them as

unneeded. For example, an LLM may try to find a solution

that does install dependencies for a virtual machine, even if

there are solutions that do not require that.

IV. RELATED WORK

Software patterns [10], [11] have been extensively studied

and documented in prior work. Patterns are widely used in

software engineering to express the intent of design structures

in a way that is independent of implementation details. Patterns

provide a mental picture of the goals that the pattern is

trying to achieve and the forces that it is trying to resolve.

A key advantage of patterns is their composability, allowing

developers to build pattern sequences and pattern languages

that can be used to address complex problems. Patterns have

also been investigated in other domains, such as contract

design for decentralized ledgers [17], [18].

The importance of good prompt design with LLMs, such as

ChatGPT, is well understood [19]–[28]. Previous studies have

examined the effect of prompt words on AI generative models.

For example, Liu et al. [29] investigated how different

prompt key words affect image generation and different char-

acteristics of images. Other work has explored using LLMs

to generate visualizations [30]. Han et al. [31] researched

strategies for designing prompts for classification tasks. Other

research has looked at boolean prompt design for literature

queries [32]. Yet other work has specifically examined prompts

for software and fixing bugs [33].

Our work is complementary to prior work by providing

a structure for documenting, discussing, and reasoning about

prompts that can aid users in developing mental models for

structuring prompts to solve common problems.

The quality of the answers produced by LLMs, particuarly

ChatGPT, has been assessed in a number of domains. For

example, ChatGPT has been used to take the medical licensing

exam with surprisingly good results [3]. The use of ChatGPT

in Law School has also been explored [34]. Other papers have

looked at its mathematical reasoning abilities [35]. As more

domains are explored, we expect that domain-specific pattern

catalogs will be developed to share domain-specific problem

solving prompt structures.

V. CONCLUDING REMARKS

This paper presented a framework for documenting and

applying a catalog of prompt patterns for large language

models (LLMs), such as ChatGPT. These prompt patterns are

analogous to software patterns and aim to provide reusable

solutions to problems that users face when interacting with

LLMs to perform a wide range of tasks. The catalog of prompt

patterns captured via this framework (1) provides a structured

way of discussing prompting solutions, (2) identifies patterns

in prompts, rather than focusing on specific prompt examples,

and (3) classifies patterns so users are guided to more efficient

and effective interactions with LLMs.

The following lessons learned were gleaned from our work

on prompt patterns:

• Prompt patterns significantly enrich the capabilities that

can be created in a conversational LLM. For example,

prompts can lead to the generation of cybersecurity

games, complete with fictitious terminal commands that

have been run by an attacker stored in a .bash history

file. As shown in Section III, larger and more complex

capabilities can be created by combining prompt patterns,

such as combining the Game Play and Visualization

Generator patterns.

• Documenting prompt patterns as a pattern catalog is

useful, but insufficient. Our experience indicates that

much more work can be done in this area, both in terms

of refining and expanding the prompt patterns presented

in this paper, as well as in exploring new and innovative

ways of using LLMs. In particular, weaving the prompt

patterns captured here as a pattern catalog into a more

expression pattern language will help guide users of

LLMs more effectively.

• LLM Capabilities will evolve over time, likely necessitat-

ing refinement of patterns. As LLM capabilities change,

some patterns may no longer be necessary, be obviated

by different styles of interaction or conversation/session

management approaches, or require enhancement to func-

tion correctly. Continued work will be needed to docu-

ment and catalog patterns that provide reusable solutions.

• The prompt patterns are generalizable to many differ-

ent domains. Although most of the patterns have been

discussed in the context of software development, these

same patterns are applicable in arbitrary domains, ranging

from infinite generation of stories for entertainment to

educational games to explorations of topics.

We hope that this paper inspires further research and de-

velopment in this area that will help enhance prompt pattern

design to create new and unexpected capabilities for conver-

sational LLMs.

REFERENCES

[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al.,
“On the opportunities and risks of foundation models,” arXiv preprint

arXiv:2108.07258, 2021.

[2] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[3] A. Gilson, C. Safranek, T. Huang, V. Socrates, L. Chi, R. A. Taylor,
and D. Chartash, “How well does chatgpt do when taking the medical
licensing exams?” medRxiv, pp. 2022–12, 2022.

[4] A. Carleton, M. H. Klein, J. E. Robert, E. Harper, R. K. Cunningham,
D. de Niz, J. T. Foreman, J. B. Goodenough, J. D. Herbsleb, I. Ozkaya,
and D. C. Schmidt, “Architecting the future of software engineering,”
Computer, vol. 55, no. 9, pp. 89–93, 2022.

[5] “Github copilot · your ai pair programmer.” [Online]. Available:
https://github.com/features/copilot

[6] O. Asare, M. Nagappan, and N. Asokan, “Is github’s copilot as bad
as humans at introducing vulnerabilities in code?” arXiv preprint

arXiv:2204.04741, 2022.

[7] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep at
the keyboard? assessing the security of github copilot’s code contribu-
tions,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
2022, pp. 754–768.

[8] J. Krochmalski, IntelliJ IDEA Essentials. Packt Publishing Ltd, 2014.

[9] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2302.04023
https://github.com/features/copilot
http://arxiv.org/abs/2204.04741

[10] E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH, 1995.

[11] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented

software architecture, patterns for concurrent and networked objects.
John Wiley & Sons, 2013.

[12] OpenAI, “ChatGPT: Large-Scale Generative Language Models for
Automated Content Creation,” https://openai.com/blog/chatgpt/, 2023,
[Online; accessed 19-Feb-2023].

[13] ——, “DALL·E 2: Creating Images from Text,”
https://openai.com/dall-e-2/ , 2023, [Online; accessed 19-Feb-2023].

[14] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schu-
urmans, O. Bousquet, Q. Le, and E. Chi, “Least-to-most prompting
enables complex reasoning in large language models,” arXiv preprint

arXiv:2205.10625, 2022.

[15] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz and dynagraph—static and dynamic graph drawing tools,”
Graph drawing software, pp. 127–148, 2004.

[16] S. Owen, “Building a virtual machine inside a javascript library,”
https://www.engraved.blog/building-a-virtual-machine-inside/, 2022,
accessed: 2023-02-20.

[17] P. Zhang, J. White, D. C. Schmidt, and G. Lenz, “Applying
software patterns to address interoperability in blockchain-based
healthcare apps,” CoRR, vol. abs/1706.03700, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03700

[18] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern collection
for blockchain-based applications,” in Proceedings of the 23rd European
Conference on Pattern Languages of Programs, 2018, pp. 1–20.

[19] E. A. van Dis, J. Bollen, W. Zuidema, R. van Rooij, and C. L. Bockting,
“Chatgpt: five priorities for research,” Nature, vol. 614, no. 7947, pp.
224–226, 2023.

[20] L. Reynolds and K. McDonell, “Prompt programming for large language
models: Beyond the few-shot paradigm,” CoRR, vol. abs/2102.07350,
2021. [Online]. Available: https://arxiv.org/abs/2102.07350

[21] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le,
and D. Zhou, “Chain of thought prompting elicits reasoning in
large language models,” CoRR, vol. abs/2201.11903, 2022. [Online].
Available: https://arxiv.org/abs/2201.11903

[22] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi,
T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent
abilities of large language models,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.07682

[23] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and
J. Ba, “Large language models are human-level prompt engineers,”
2022. [Online]. Available: https://arxiv.org/abs/2211.01910

[24] T. Shin, Y. Razeghi, R. L. L. IV, E. Wallace, and S. Singh,
“Autoprompt: Eliciting knowledge from language models with
automatically generated prompts,” CoRR, vol. abs/2010.15980, 2020.
[Online]. Available: https://arxiv.org/abs/2010.15980

[25] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[26] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang,
D. Schuurmans, C. Cui, O. Bousquet, Q. Le, and E. Chi, “Least-to-
most prompting enables complex reasoning in large language models,”
2022. [Online]. Available: https://arxiv.org/abs/2205.10625

[27] J. Jung, L. Qin, S. Welleck, F. Brahman, C. Bhagavatula, R. L.
Bras, and Y. Choi, “Maieutic prompting: Logically consistent
reasoning with recursive explanations,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.11822

[28] S. Arora, A. Narayan, M. F. Chen, L. Orr, N. Guha,
K. Bhatia, I. Chami, and C. Re, “Ask me anything: A
simple strategy for prompting language models,” in International

Conference on Learning Representations, 2023. [Online]. Available:
https://openreview.net/forum?id=bhUPJnS2g0X

[29] V. Liu and L. B. Chilton, “Design guidelines for prompt engineering
text-to-image generative models,” in Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, 2022, pp. 1–23.

[30] P. Maddigan and T. Susnjak, “Chat2vis: Generating data visualisations
via natural language using chatgpt, codex and gpt-3 large language
models,” arXiv preprint arXiv:2302.02094, 2023.

[31] X. Han, W. Zhao, N. Ding, Z. Liu, and M. Sun, “Ptr: Prompt tuning
with rules for text classification,” AI Open, vol. 3, pp. 182–192, 2022.

[32] S. Wang, H. Scells, B. Koopman, and G. Zuccon, “Can chatgpt write
a good boolean query for systematic review literature search?” arXiv
preprint arXiv:2302.03495, 2023.

[33] C. S. Xia and L. Zhang, “Conversational automated program repair,”
arXiv preprint arXiv:2301.13246, 2023.

[34] J. H. Choi, K. E. Hickman, A. Monahan, and D. Schwarcz, “Chatgpt
goes to law school,” Available at SSRN, 2023.

[35] S. Frieder, L. Pinchetti, R.-R. Griffiths, T. Salvatori, T. Lukasiewicz,
P. C. Petersen, A. Chevalier, and J. Berner, “Mathematical capabilities
of chatgpt,” arXiv preprint arXiv:2301.13867, 2023.

https://openai.com/blog/chatgpt/
https://openai.com/dall-e-2/
http://arxiv.org/abs/2205.10625
https://www.engraved.blog/building-a-virtual-machine-inside/
http://arxiv.org/abs/1706.03700
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.11822
https://openreview.net/forum?id=bhUPJnS2g0X
http://arxiv.org/abs/2302.02094
http://arxiv.org/abs/2302.03495
http://arxiv.org/abs/2301.13246
http://arxiv.org/abs/2301.13867

	I Introduction
	II Comparing Software Patterns with Prompt Patterns
	II-A Overview of Software Patterns
	II-B Overview of Prompt Patterns
	II-C Evaluating Means for Defining a Prompt Pattern's Structure and Ideas
	II-D A Way Forward: Fundamental Contextual Statements

	III A Catalog of Prompt Patterns for Conversational LLMs
	III-A Summary of the Prompt Pattern Catalog
	III-B The Meta Language Creation Pattern
	III-B1 Intent and Context
	III-B2 Motivation
	III-B3 Structure and Key Ideas
	III-B4 Example Implementation
	III-B5 Consequences

	III-C The Output Automater Pattern
	III-C1 Intent and Context
	III-C2 Motivation
	III-C3 Structure and Key Ideas
	III-C4 Example Implementation
	III-C5 Consequences

	III-D The Flipped Interaction Pattern
	III-D1 Intent and Context
	III-D2 Motivation
	III-D3 Structure and Key Ideas
	III-D4 Example Implementation
	III-D5 Consequences

	III-E The Persona Pattern
	III-E1 Intent and Context
	III-E2 Motivation
	III-E3 Structure and Key Ideas
	III-E4 Example Implementation
	III-E5 Consequences

	III-F The Question Refinement Pattern
	III-F1 Intent and Context
	III-F2 Motivation
	III-F3 Structure and Key Ideas
	III-F4 Example Implementation
	III-F5 Consequences

	III-G The Alternative Approaches Pattern
	III-G1 Intent and Context
	III-G2 Motivation
	III-G3 Structure and Key Ideas
	III-G4 Example Implementation
	III-G5 Consequences

	III-H The Cognitive Verifier Pattern
	III-H1 Intent and Context
	III-H2 Motivation
	III-H3 Structure and Key Ideas
	III-H4 Example Implementation
	III-H5 Consequences

	III-I The Fact Check List Pattern
	III-I1 Intent and Context
	III-I2 Motivation
	III-I3 Structure and Key Ideas
	III-I4 Example Implementation
	III-I5 Consequences

	III-J The Template Pattern
	III-J1 Intent and Context
	III-J2 Motivation
	III-J3 Structure and Key Ideas
	III-J4 Example Implementation
	III-J5 Consequences

	III-K The Infinite Generation Pattern
	III-K1 Intent and Context
	III-K2 Motivation
	III-K3 Structure and Key Ideas
	III-K4 Example Implementation
	III-K5 Consequences

	III-L The Visualization Generator Pattern
	III-L1 Intent and Context
	III-L2 Motivation
	III-L3 Structure and Key Ideas
	III-L4 Example Implementation
	III-L5 Consequences

	III-M The Game Play Pattern
	III-M1 Intent and Context
	III-M2 Motivation
	III-M3 Structure and Key Ideas
	III-M4 Example Implementation
	III-M5 Consequences

	III-N The Reflection Pattern
	III-N1 Intent and Context
	III-N2 Motivation
	III-N3 Structure and Key Ideas
	III-N4 Example Implementation
	III-N5 Consequences

	III-O The Refusal Breaker Pattern
	III-O1 Intent and Context
	III-O2 Motivation
	III-O3 Structure and Key Ideas
	III-O4 Example Implementation
	III-O5 Consequences

	III-P The Context Manager Pattern
	III-P1 Intent and Context
	III-P2 Motivation
	III-P3 Structure and Key Ideas
	III-P4 Example Implementation
	III-P5 Consequences

	III-Q The Recipe Pattern
	III-Q1 Intent and Context
	III-Q2 Motivation
	III-Q3 Structure and Key Ideas
	III-Q4 Example Implementation
	III-Q5 Consequences

	IV Related Work
	V Concluding Remarks
	References

