
Preprint. Under review.

A LANGUAGE-AGENT APPROACH TO
FORMAL THEOREM-PROVING

Amitayush Thakur, Yeming Wen & Swarat Chaudhuri
The University of Texas at Austin
{amitayush, ywen}@utexas.edu, swarat@cs.utexas.edu

ABSTRACT

Language agents, which use a large language model (LLM) capable of in-context
learning to interact with an external environment, have recently emerged as a
promising approach to control tasks. We present the first language-agent approach
to formal theorem-proving. Our method, COPRA, uses a high-capacity, black-box
LLM (GPT-4) as part of a policy for a stateful backtracking search. During the
search, the policy can select proof tactics and retrieve lemmas and definitions from
an external database. Each selected tactic is executed in the underlying proof
framework, and the execution feedback is used to build the prompt for the next
policy invocation. The search also tracks selected information from its history
and uses it to reduce hallucinations and unnecessary LLM queries.
We evaluate COPRA on the miniF2F benchmark for Lean and a set of Coq tasks
from the Compcert project. On these benchmarks, COPRA is significantly better
than one-shot invocations of GPT-4, as well as state-of-the-art models fine-tuned
on proof data, at finding correct proofs quickly.

1 INTRODUCTION

Automatically proving formal theorems (Newell et al., 1957) is a longstanding challenge in com-
puter science. Autoregressive language models (Polu & Sutskever, 2020; Han et al., 2021; Yang
et al., 2023) have recently emerged as an effective approach to this problem. Such models are
trained on proofs written in frameworks like Coq (Huet et al., 1997) or Lean (de Moura et al., 2015),
which allows proof goals to be iteratively simplified using a set of tactics. Theorem-proving then
amounts to generating a sequence of tactics that iteratively “discharges” a given proof goal.

A weakness of this method is that it does not model the interaction between the model and the un-
derlying proof framework. The application of a tactic is an action that changes the state of the proof
and the interpretation of future tactics. By ignoring these game-like dynamics, autoregressive mod-
els miss out on a valuable source of feedback and end up being more susceptible to hallucinations.

In this paper, we show that the nascent paradigm of large-language-model (LLM) agents (Yao et al.,
2022; Wang et al., 2023; Shinn et al., 2023) can help address this weakness. Here, one uses an LLM
as a agent that interacts with an external environment. Information gathered through interaction is
used to update the LLM’s prompt, eliciting new agent behavior because of in-context learning.

Our approach, called COPRA1 (Figure 1), uses an off-the-shelf, high-capacity LLM (GPT-4 (Ope-
nAI, 2023)) as part of a policy in that interacts with a proof environment like Coq or Lean. At each
time step, the policy consumes a textual prompt and chooses to use an available tactic, or backtrack,
or retrieve relevant lemmas and definitions from an external corpus. When the policy selects a tac-
tic, we “execute” it using the underlying proof assistant. The feedback from the execution is used to
construct a new prompt for the policy, and the process repeats.

COPRA goes beyond prior language-agent methods in using domain knowledge and information
from the search history to use LLM queries frugally. When tactics fail, the policy records this
information and uses it to avoid future failures. The policy also has access to a symbolic procedure

1COPRA is an acronym for “In-context Prover Agent”.

1

ar
X

iv
:2

31
0.

04
35

3v
1

 [
cs

.L
G

]
 6

 O
ct

 2
02

3

Preprint. Under review.

Figure 1: An overview of COPRA. The system implements a policy that interacts with a proof
environment (Coq or Lean). Internally, a COPRA policy consists of an LLM (GPT-4), a stack-
based backtracking search, a retrieval mechanism, a dictionary tracking past failures, and a prompt
serialization protocol that constructs LLM prompts using the stack and environment feedback and
parse LLM outputs into actions.

that checks if one goal is “simpler” than another. A tactic is only used when it simplifies the agent’s
proof obligations (ruling out, among other things, cyclic tactic sequences).

We have integrated COPRA with both the Coq and the Lean environments. We evaluate the system
using the miniF2F (Zheng et al., 2021) benchmark for competition-level mathematical reasoning
in Lean and a set of Coq proof tasks (Sanchez-Stern et al., 2020) from the Compcert (Leroy, 2009)
project on verified compilation. Using a new metric called prove-at-k-inferences, we show that
COPRA can converge to correct proofs faster than competing approaches, including the state-of-the-
art models (Yang et al., 2023; Sanchez-Stern et al., 2020) trained on formal proof data. We also
show that when COPRA fails, it fails quicker than the baseline methods.

To summarize our contributions, we offer: (i) The first approach to formal theorem-proving that
leverages LLMs while also modeling interactions between the model and the underlying proof
framework; (ii) the first language agent, from any domain, to integrate LLM policies with a search
that minimizes LLM queries and hallucinations by tracking domain-specific information from the
past; and (iii) an implementation of COPRA that interacts with the Coq and Lean proof environments,
and an evaluation on two domains — mathematics competition problems and formal verification —
that shows COPRA to find proofs faster than competing approaches.

2 THEOREM-PROVING AS A CONTROL PROBLEM

2.1 BACKGROUND ON THEOREM-PROVING

A formal proof starts with a set of unmet obligations stated in a formal language and applies a
sequence of proof tactics to progressively eliminate these obligations. Each obligation o consists of
a goal g and a hypothesis h. The goal g consists of the propositions that need to be proved in order

2

Preprint. Under review.

to meet o; the hypothesis h captures assumptions that can be made in the proof of g. The prover’s
long-term objective is to reduce the obligations to the empty set.

(a)

theorem mod_arith_2
(x : N) : x % 2 = 0

→ (x * x) % 2 = 0
:=
begin

intro h,
rw nat.mul_mod,
rw h,
rw nat.zero_mul,
refl,

end

(b)

x: N
h: x % 2 = 0
⊢ x * x % 2 = 0

(c)

begin
intro h,
have h1 : x = 2 * (x

/ 2)
:= (nat.
mul_div_cancel' h)
.symm,

rw h1,
rw nat.mul_div_assoc

_
(show 2 | 2, from
dvd_refl _),

rw [mul_assoc, nat.
mul_mod_right],

end

Figure 2: (a) A Lean theorem and a correct proof found
by COPRA. (b) Proof state after the first tactic. (c) An
incorrect proof generated by GPT-4.

We illustrate this process with the ex-
ample in Figure 2-(a). This example
shows a Lean (de Moura et al., 2015)
proof, automatically generated using
COPRA, of a basic theorem about mod-
ular arithmetic. The proof first applies
the intro tactic, which changes a goal
P → Q to a hypothesis P and a goal
Q. Next, it applies the rw (rewrite) tac-
tic, which gives a way to apply sub-
stitutions to goals and hypotheses, sev-
eral times. It ends with the application
of the refl (reflexivity) tactic, which
eliminates goals that say that a value is
equal to itself.

Existing LLM-based approaches to au-
tomatic theorem-proving view such
proofs as purely syntactic artifacts.
However, the rigorous semantics of
proofs can be difficult to learn using
such an approach, leading to the gener-
ation of incorrect proofs. Figure 2-(c)
shows a GPT-4-generated incorrect proof of our theorem.

2.2 A MARKOV DECISION PROCESS FORMULATION

By contrast, COPRA is based on a view of automatic theorem-proving as a control problem. Like
prior work on reinforcement learning (RL) for proof synthesis (Wu et al., 2021), we view a theorem-
prover as a policy that interacts with a stateful proof environment (e.g., Lean) and model the interac-
tion between the policy and the environment as a deterministic Markov Decision Process (MDP). We
depart from prior RL-based work for theorem-proving by imposing a partial order on MDP states,
allowing rewards to have a textual component, and allowing history-dependent policies.

Now we describe the different components of our proof MDP.

States. As before, let an obligation be a pair (g, h), where g is a goal and h a hypothesis. A state
of the MDP is either a special symbol called error or a set O = {o1, . . . , ok} of obligations oi.

The MDP has a unique initial state oin with a single obligation (gin , hin), where the goal gin and
the hypothesis hin are extracted from the user-provided theorem that we are trying to prove. Its
unique final state QED is the empty obligation set.

Following Sanchez-Stern et al. (2020), we define a partial order ⊑ over states that defines when a
state is “at least as hard” than another and use it to avoid actions that do not lead to progress in the
proof. Formally, for states O1 and O2 with O1 ̸= error and O2 ̸= error , O1 ⊑ O2 iff

∀ oi = (gi, hi) ∈ O1. ∃ok = (gk, hk) ∈ O2. gk = gi ∧ (hk → hi).

Intuitively, O1 ⊑ O2 if for every obligation in O1, there is a stronger obligation in O2. We assume
we have an efficient symbolic procedure that can check this relationship for any pair of states. The
procedure is sound, meaning that if it reports O1 ⊑ O2, the relationship actually holds. However, it
is incomplete, i.e., it may not detect all relationships of the form O1 ⊑ O2.

Actions and Transitions. The actions in our MDP are the proof environment’s tactics.

The transition function T (O, a) determines the result of applying an action a to a state O. When a is
a tactic, we assume the underlying proof environment to return a state O′ that results from applying
a to O. If a is a “bad” tactic, then O′ equals error ; otherwise, O′ is a new set of obligations. We
assume that our agent can evaluate T (O, a) for any state O and action a. While this assumption is
unacceptable in many MDP problems, it is reasonable in the theorem-proving setting.

3

Preprint. Under review.

Rewards. As usual, we assume a reward function R(O, a) that evaluates an action a at a state O.
Historically, such functions are scalar-valued; however, because we use LLMs as policies, we allow
rewards to also include rich textual feedback from the proof environment. Concretely, we consider
rewards of the form R(O, a) = (r̃, w), where:

(1) r̃ is a very high positive value if T (O, a) = QED, a negative value if T (O, a) = error , and 0
otherwise, and (2) w is the feedback from the proof environment when a is executed from O.

Histories and Policies. A history of length N is a sequence
h = ⟨(O0, a0, O

′
0, r0), (O1, a1, O

′
1, r1), . . . , (ON−1, aN−1, O

′
N , rN)⟩

such that O0 = Oin and for all i, ri = R(Oi, ai) and O′
i = T (Oi, ai). Intuitively, a history records

the interactions between the prover agent and the proof environment up to a point of time. We denote
by hi the i-th prefix of h. For example, h0 = ⟨⟩, h1 = ⟨(O0, a0, O

′
0, r0)⟩, and so on.

A policy is a probabilistic function π that maps histories to distributions over pairs (O, a), where O
is a state and a is an action. Intuitively, at each point, the policy determines the next query to make
to the proof environment.

A policy can have an internal state as well as access to external knowledge (specifically, a lemma
database). A trajectory of a policy π is a history h as above such that for each i,

Pr[π(hi) = (Oi, ai)] > 0.

Letting each ri = (r̃i, wi), the scalar reward from a trajectory is simply the average 1
N

∑
i r̃i. We

define the aggregate (scalar) reward of π as the expected scalar reward from trajectories sampled
from π.

Language Agents. Given our setup, one can naturally pose the problem of reinforcement-learning
a policy with optimal aggregate reward. In this paper, we do not take on this problem. Instead, we
consider a fixed policy — a wrapper around a pretrained LLM (GPT-4) that can learn in-context
— and show that this policy can achieve a high reward. It is this policy that defines our language
agent.

3 THE COPRA AGENT

COPRA(O)

1 PUSH(st , O)
2 ρ← RETRIEVE(O)
3 for j ← 1 to k
4 do p← PROMPTIFY(st ,Bad(O), ρ, r)
5 a ∼ PARSEACTION(LLM(p))
6 O′ ← T (O, a), r ← R(O, a)
7 if O′ = QED
8 then terminate successfully
9 else if O′ = error or

∃O′′ ∈ st . O′′ ⊑ O′

10 then add a to Bad(O)
11 else COPRA(O′)
12 POP(st)

Figure 3: The search procedure in COPRA. T is the en-
vironment’s transition function and R is the reward func-
tion. st is a stack, initialized to be empty. Bad(O) is a
set of actions, initialized to ∅, that are known to be bad
at O. LLM is an LLM, PROMPTIFY generates a prompt,
PARSEACTION parses the output of the LLM into an ac-
tion (repeatedly querying the LLM in case there are for-
matting errors in its output), and RETRIEVE gathers rele-
vant lemmas and definitions from an external source. The
procedure is initially called with argument Oin .

A COPRA policy has access to an LLM
(in practice, GPT-4) and performs a
depth-first search. During the search,
it records information about failed ac-
tions. It also uses the ⊑ relation
over states to checks that it is making
progress on the proof.

Figure 3 shows pseudocode for such a
policy. The policy maintains a stack of
MDP states and a “failure dictionary”
Bad that maps a state to a set of actions
that are known to be “unproductive” at
the state. At each search step, the al-
gorithm pushes the current state on the
stack and retrieves external lemmas and
definitions relevant to the state. After
this, it repeatedly serializes the stack
and Bad(O) into a prompt and feeds
it to the LLM. The LLM’s output is
parsed into an action, and the agent ex-
ecutes it in the environment.

One outcome of the action could be that
the agent arrives at QED. Alternatively,
the new state could be an error or repre-
sent obligations that are at least as hard

4

Preprint. Under review.

Figure 4: The prompt serialization protocol. We highlight the different parts of the prompts to show
how we use the state stack and the textual reward from the environment.

as what is currently on the stack (for
example, this could be because of a cycle in a tactic). In this case, the agent rejects the new state.
Otherwise, it recursively continues the proof from the new state. After issuing a few queries to the
LLM, the agent backtracks.

Prompt Serialization Protocol. The routines PROMPTIFY and PARSEACTION together constitute
the prompt serialization protocol and are critical to the success of the policy. Now we elaborate on
these procedures.

PROMPTIFY carefully places the different pieces of information relevant to the proof in the prompt.
It also includes logic for trimming this information to fit the most relevant parts in the LLM’s context
window. Every prompt has two parts: the “system prompt” and the “agent prompt”.

The agent prompts are synthetically generated using a context-free grammar and contain information
about the state stack (including the current proof state), the textual reward for the previous action,
and the set of actions we know to avoid at the current proof state.

The system prompt describes the rules of engagement for the LLM. It contains a grammar (distinct
from the one for agent prompts) that we expect the LLMs to follow when it proposes a course of
action. The grammar carefully incorporates cases when the response is incomplete because of the
LLM’s token limits. We parse partial responses to extract the next action using the PARSEACTION
routine. PARSEACTION also identifies formatting errors (if any) in the LLM’s responses, possibly
communicating with the LLM multiple times until these errors are resolved.

Example. Figure 4 illustrates the prompt serialization protocol at work during the generation of
the proof in Figure 2-(b). Seq #1-#4 represent distinct invocations of the LLM. In each invocation,
PROMPTIFY first generates the “agent prompt,” which consists of three parts. The first part (“state”)
is simply a serialization of the current proof state. The second (“stack”) incorporates information
about previous actions as well as the bad actions for the current proof state. The third (“reward”)
encodes the feedback from the environment regarding the success or failure of the last action. The
response of the LLM to this prompt is then translated into an action using PARSEACTION. This
action is then executed on the theorem prover.

5

Preprint. Under review.

4 EVALUATION

Our findings about COPRA are that: (i) the approach can find proofs significantly quicker than the
state-of-the-art finetuning-based baselines, both in terms of number of LLM queries and wall-clock
time; (ii) in problems where all current methods fail, COPRA fails faster; (iii) the use of GPT-4, as
opposed to GPT-3.5, within the agent is essential for success; and (iv) backtracking significantly
improves the system’s performance on harder problems. Now we elaborate on our experimental
methodology and these results.

Figure 5: COPRA vs. REPROVER on the
miniF2F benchmark

Implementing COPRA. Our implementation of COPRA
has GPT-4 as the underlying LLM and can interact with
both the Lean and the Coq proof environments. Because
of the substantial cost of GPT-4 queries, we cap the num-
ber of LLM queries that COPRA can make by 60. To fur-
ther reduce costs, COPRA first tries to prove its theorems
via a single LLM query (one-shot prompting). It only
invokes its agent behavior when the one-shot prompting
fails to find a proof.

The “system prompt” in the one-shot approach is slightly
different than that for COPRA, containing instructions to
generate a proof in one go rather than step by step. For
both COPRA and the one-shot baselines, the prompt con-
tains a single proof example that clarifies how proofs need
to be formatted. This proof example remains the same for
all test cases.

Benchmarks. We evaluate our approach on two do-
mains: (i) miniF2F (Zheng et al., 2021), a collection of

244 Lean formalizations of mathematics competition problems, solved using a range of techniques
such as induction, algebraic manipulation, and contradiction; and (ii) a set of Coq problems from
the CompCert compiler verification project (Leroy, 2009) that was previously used to evaluate the
PROVERBOT9001 system Sanchez-Stern et al. (2020).

Figure 6: COPRA vs. PROVER-
BOT9001 on the Compcert benchmark

Baselines. We compare with one-shot invocations of
GPT-3.5 and GPT-4 in both the miniF2F and the Com-
pcert domains. We also consider an ablation of COPRA
that uses GPT-3.5 as its LLM and another that does not
use backtracking. As for fine-tuned baselines, a challenge
is that all existing open-source theorem-proving systems
only target a single proof environment. As a result, we
had to choose different baselines for the Lean (miniF2F)
and Coq (Compcert) domains.

Our fine-tuned baseline for the miniF2F domain is RE-
PROVER, a state-of-the-art open-source prover that is part
of the Leandojo project (Yang et al., 2023). A challenge
with this baseline is that like COPRA, it uses a retrieval
mechanism. However, building a comparable retriever
for COPRA would require an indexed training corpus on
problems relevant to miniF2F. However, miniF2F is
only an evaluation set and does not come with a training
corpus. As a result, for an apples-to-apples comparison,

our evaluation on miniF2F turns off COPRA’s and REPROVER’s retrievers.

In the Compcert domain, we compare with PROVERBOT9001 (Sanchez-Stern et al., 2020), which,
while not LLM-based, is the best publicly available model for Coq. Unlike miniF2F, this benchmark
comes with a large training set as well as a test set, and we use the training set for retrieving relevant
lemmas and definitions. Our retrieval mechanism, in this case, is a simple BM25 search.

6

Preprint. Under review.

Approach
Theorems

proved
/# Theorems

%
proved

Avg.
Inferences

in Total

Avg.
Inferences
on Failure

Avg.
Inferences

on Pass

Max.
Inferences
Allowed

miniF2F Test Dataset
GPT 3.5
One-Shot 7/244 2.8% 1 1 1 1

GPT 4
One-Shot 26/244 10.6% 1 1 1 1

COPRA
(GPT-3.5) 29/244 11.89% 12.83 14.23 2.45 60

ReProver 54/244 22.13% 350.7 427.24 81.6 1076
COPRA
(GPT-4) 57/244 23.36% 20.94 26.79 1.75 60

CompCert Test Dataset
GPT 3.5
One-Shot 10/118 8.47% 1 1 1 1

GPT 4
One-Shot 36/118 30.51% 1 1 1 1

Proverbot 98/118 83.05% 184.7 256.8 170.0 2344
COPRA 76/118 64.41% 12.9 10.9 16.57 60

Table 1: Aggregate statistics for COPRA and the baselines on miniF2F and Compcert

Approach Avg. Time In Seconds
Per Proof Per Inference

On Pass On Fail All On Pass On Fail All
ReProver (on CPU) 279.19 618.97 543.78 3.42 1.45 1.55
ReProver (on GPU) 267.94 601.35 520.74 2.06 0.44 0.48
COPRA (GPT-3.5) 39.13 134.26 122.21 15.97 9.43 9.53
COPRA (GPT-4) 30.21 191.73 140.86 17.26 7.16 6.73

Table 2: Average time taken by our approach (COPRA) and ReProver on miniF2F dataset.

For cost reasons, our evaluation for Compcert uses 118 out the 501 theorems used in the original
evaluation of PROVERBOT9001 Sanchez-Stern et al. (2020). For fairness, we include all the 98 the-
orems proved by PROVERBOT9001 in our subset. The remaining theorems are randomly sampled.

Metric: pass@k-inferences. The standard metric for evaluating theorem-provers is pass@k (Lam-
ple et al., 2022; Yang et al., 2023). In this metric, a prover is given a budget of k proof attempts; the
method is considered successful if one of these attempts leads to success. However, a key objective
of our research is to discover proofs quickly, with fewer LLM queries and lower wall-clock time.
The pass@k metric does not evaluate this characteristic as it does not quantify the number of LLM
queries or amount of time needed by a proof attempt.

Approach
Theorems

proved
/# Theorems

%
proved

miniF2F Test Dataset
COPRA (GPT-4)
w/o backtracking 56/244 22.95%

COPRA (GPT-4) 57/244 23.36%
CompCert Test Dataset

COPRA (GPT-4)
w/o backtracking 52/118 44.06%

COPRA (GPT-4) 76/118 64.41%

Table 3: The effectiveness of backtracking

Figure 6 shows a comparison between CO-
PRA and PROVERBOT9001.

To address this concern, we introduce a
new metric, pass@k-inferences, and eval-
uate COPRA and its competitors using this
metric. Here, we measure the number of
correct proofs that a prover can generate
with a budget of k or fewer LLM infer-
ence queries. One challenge here is that we
want this metric to be correlated number
of correct proofs that the prover produces
within a wall-clock time budget; however,
the cost of an inference query is propor-

7

Preprint. Under review.

tional to the number of responses generated per query. To maintain the correlation between the
number of inference queries and wall-clock time, we restrict each inference on LLM to a single
response.

Results. Figure 5 shows our comparison results for the miniF2F domain. As we see, COPRA
outperforms REPROVER, completing, within just 60 inferences, problems that REPROVER could
not solve even after a thousand inferences. This is remarkable given that COPRA is based on a
black-box foundation model and REPROVER was fine-tuned for at least a week on a dataset derived
from Lean’s Mathlib library. For fairness, we ran REPROVER multiple times with 16, 32, and 64
(default) as the maximum number of inferences per proof step. We obtained success rates of 15.9%,
20.1%, and 22.13% in the respective cases and took the best for comparison.

We find that COPRA is significantly faster than PROVERBOT9001. Since we put a cap of 60 infer-
ences on COPRA, it cannot prove all the theorems that PROVERBOT9001 eventually proves. How-
ever, as shown in the figure, COPRA proves many more theorems than PROVERBOT9001 if only
60 inferences as allowed. Specifically, we prove 77.5% of all proofs found by PROVERBOT9001 in
less than 60 steps.

Aggregate statistics for the two approaches, as well as a comparison with the one-shot GPT-3.5 and
GPT-4 baselines, appear in Table 1. It is clear from this data that the language-agent approach offers
a significant advantage over the one-shot approach. For example, COPRA solves more than twice as
many problems as the one-shot GPT-4 baseline, which indicates that it does not just rely on GPT-4
recalling the proof from its memory. Also, the use of GPT-4 as opposed to GPT-3.5 seems essential.

We establish the correlation between the number of inferences needed for a proof and wall-clock
time in Table 2. Although the average time per inference is higher for COPRA, COPRA still finds
proofs almost 9x faster than REPROVER. This can explained by the fact that our search is more
effective as it uses 46x fewer inferences than REPROVER. These inference steps not only contain
the average time spent on generating responses from LLM but at times have some contribution
corresponding to the execution of the tactic on the Lean environment itself.

theorem algebra_sqineq_at2malt1
(a : R) :
a * (2 - a) ≤ 1 :=
begin

have h : ∀ (x : R), 0 ≤ (1 - x) ˆ 2,
from λ x, pow_two_nonneg (1 - x),
calc a * (2 - a)

= 1 - (1 - a) ˆ 2 : by ring
... ≤ 1 : sub_le_self _ (h a),

end

Figure 7: A theorem in the “algebra” category that CO-
PRA could prove but REPROVER could not.

Table 2 also offers data on when the differ-
ent approaches report failures. Since RE-
PROVER uses a timeout for all theorems,
we also use a timeout of 11 minutes while
considering failures in Table 2. The data
indicates that COPRA is comparatively bet-
ter at giving up when the problem is too
hard to solve. We also note that less time
is spent per inference in case of failure for
all approaches.

We show the impact of ablating the back-
tracking feature of COPRA in Table 3. We
note that backtracking has a greater posi-
tive impact in the Compcert domain. We
believe this is because the Compcert prob-
lems are more complex and backtracking
helps more when the proofs are longer.

Finally, we offer an analysis of the different categories of miniF2F problems solved by COPRA
and REPROVER in Figure 8. We see that certain kinds of problems, for example, International
Mathematics Olympiad (IMO) problems and theorems that require induction, are difficult for all
approaches. However, Figure 8b shows that COPRA takes fewer steps consistently across various
categories of problems in miniF2F.

From our qualitative analysis, there are certain kinds of problems where the language-agent approach
seems especially helpful. For instance, Figure 7 shows a problem

in the ‘algebra’ category that REPROVER could not solve. More examples of interesting Coq and
Lean proofs that COPRA found appear in the appendix.

8

Preprint. Under review.

(a) Problems solved in different categories (b) Number of inferences in different categories

Figure 8: Breakdown of theorems proved in various categories

5 RELATED WORK

Supervised Learning for Theorem-Proving. There is a sizeable literature on search-based
theorem-proving techniques based on supervised learning. These methods train a model to pre-
dict the next proof step at each point in a proof. This model is then used to guide a search technique,
e.g., best-first or depth-limited search, that synthesizes a proof. Earlier methods of this sort used
small-scale neural networks (Yang & Deng, 2019; Sanchez-Stern et al., 2020; Huang et al., 2019)
as predictors. More recent methods, such as GPT-f (Polu & Sutskever, 2020), PACT (Han et al.,
2021), HyperTree Proof Search (Lample et al., 2022), and REPROVER (Yang et al., 2023), have
used LLMs. COPRA has some resemblance with the latter approaches. However, it departs from
these prior methods in using execution feedback and a more sophisticated search algorithm.

The recent Draft-Sketch-Proof (Jiang et al., 2022) method relies on informal proofs to generate
formal proofs.

Other methods like Baldur (First et al., 2023) generate the whole proof in one shot using an LLM
and then repair it. The main ideas in these efforts — the use of informal proofs and repair models
— are orthogonal to our approach.

Reinforcement Learning for Theorem-Proving. Kaliszyk et al. (2018) pioneered the use of RL
in theorem-proving; subsequently, Wu et al. (2021) gave TacticZero, a deep RL approach to the
problem. TacticZero does not use LLMs, thus missing out on a key source of generic mathematical
knowledge. Also, COPRA has retrieval capabilities that TacticZero lacks.

Advanced Prompting Strategies. Several prompting strategies like Chain-of-Thought (CoT) (Wei
et al., 2022), Tree-of-Thought (ToT) (Yao et al., 2023), and Graph-of-Thought (GoT) (Besta et al.,
2023) have recently emerged for modeling reasoning using LLMs. However, thought generation is
not sufficient to emulate the rigorous verification that a formal proof environment can perform. This
is why we use an approach based on language agents.

Language Agents. Several distinct LLM agent architectures have been proposed over the last year
(Significant-Gravitas, 2023; Yao et al., 2022; Shinn et al., 2023; Wang et al., 2023). These models
combine an LLM’s capability to use tools Schick et al. (2023), decompose tasks into subtasks (Wei
et al., 2022; Yao et al., 2023), and self-reflect (Shinn et al., 2023). However, we are the first to offer
an LLM agent for theorem-proving. We also distinguish ourselves from prior work along these lines
by introducing a more efficient stateful search in the policy.

9

Preprint. Under review.

6 CONCLUSION

We have presented COPRA, the first LLM-agent approach to formal theorem-proving. The approach
departs from prior LLM-based theorem-proving techniques by explicitly modeling the interaction
between the prover and the proof environment. It also goes beyond prior language-agent approaches
for any domain in using a stateful backtracking search within the policy.

Many questions remain open. First, we gave our GPT-4 a budget of a maximum of 60 inferences
per problem for cost reasons. Whether the learning dynamics would drastically change with a much
larger inference budget remains to be seen. A related question is whether a GPT-4-scale model is
truly essential for our task. We have shown that the cheaper GPT-3.5 agent is not competitive against
our GPT-4 agent; however, it is possible that a different, more affordable foundation model would
have done better. Finally, our proof MDP also enables approaches where an LLM policy is fine-
tuned using RL. It remains to be seen how such an approach, done by necessity with smaller-scale
models, would compare with our in-context-learning approach.

Funding Acknowledgements. This work was partially supported by NSF awards CCF-1918651
and CCF-2212559.

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al.
Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687, 2023.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In Automated Deduction-CADE-25: 25th Interna-
tional Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25,
pp. 378–388. Springer, 2015.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: whole-proof generation and
repair with large language models. arXiv preprint arXiv:2303.04910, 2023.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2021.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environ-
ment for theorem proving. In ICLR, 2019.

Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant a tutorial. Rapport
Technique, 178, 1997.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák. Reinforcement learning
of theorem proving. Advances in Neural Information Processing Systems, 31, 2018.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. Advances in Neural Information Processing Systems, 35:26337–26349, 2022.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):
107–115, 2009.

Allen Newell, John Clifford Shaw, and Herbert A Simon. Empirical explorations of the logic theory
machine: a case study in heuristic. In Papers presented at the February 26-28, 1957, western
joint computer conference: Techniques for reliability, pp. 218–230, 1957.

OpenAI. Gpt-4 technical report, 2023.

10

Preprint. Under review.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. Generating correctness
proofs with neural networks. In Proceedings of the 4th ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, pp. 1–10, 2020.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

Significant-Gravitas. Autogpt. https://github.com/Significant-Gravitas/Auto-GPT, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. Tacticzero: Learning to
prove theorems from scratch with deep reinforcement learning. Advances in Neural Information
Processing Systems, 34:9330–9342, 2021.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
International Conference on Machine Learning, pp. 6984–6994. PMLR, 2019.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. arXiv preprint arXiv:2306.15626, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

A APPENDIX

A.1 EXAMPLE PROOFS GENERATED FOR MINIF2F

Fig. 9 shows some other interesting proofs generated by our approach on miniF2F dataset.

A.2 SYSTEM PROMPTS FOR MINIF2F

Parts of the ‘system prompt’ used by COPRA for theorem proving in Lean are shown in Fig. 10.

A.3 SYSTEM PROMPTS FOR COMPCERT

Parts of the ‘system prompt’ used by COPRA for theorem proving in Coq are shown in Fig. 11.

11

Preprint. Under review.

(a)

theorem
mathd_algebra_246

(a b : R)
(f : R → R)
(h0 : ∀ x, f x = a * x

ˆ4 - b * xˆ2 + x +
5)

(h2 : f (-3) = 2) :
f 3 = 8 :=
begin

rw h0,
rw h0 at h2,
ring_nf,
linarith,

end

(b)

theorem
mathd_algebra_270

(f : R → R)
(h0 : ∀ x ̸= -2, f x =

1 / (x + 2)) :
f (f 1) = 3/7 :=
begin

have h1 : f 1 = 1
/ (1 + 2),
apply h0,
linarith,
rw h1,
rw h0,
field_simp,
ring,
norm_num,

end

(c)

theorem
mathd_algebra_44

(s t : R)
(h0 : s = 9 - 2 * t)
(h1 : t = 3 * s + 1) :
s = 1 ∧ t = 4 :=
begin

split,
{

rw h0 at h1,
linarith

},
rw h0 at h1,
rw h1 at h0,
linarith,

end

(d)

theorem amc12b_2002_p2
(x : Z)
(h0 : x = 4) :
(3 * x - 2) * (4 * x +

1) - (3 * x - 2)
* (4 * x) + 1 = 11
:=

begin
ring_nf,
rw h0,
ring,

end

(e)

theorem
mathd_algebra_107

(x y : R)
(h0 : xˆ2 + 8 * x + y

ˆ2 - 6 * y = 0) :
(x + 4)ˆ2 + (y-3)ˆ2 =

5ˆ2 :=
begin

rw pow_two at h0,
rw add_assoc at h0
,
rw add_comm (x * x
) (8 * x + y ˆ 2)
at h0,
rw add_comm (8 * x
) (y ˆ 2) at h0,
rw add_assoc at h0
,
rw add_comm (y ˆ
2) (8 * x + x * x)
at h0,

rw add_assoc at h0
,
ring_nf at h0,
rw pow_two,
rw pow_two,
ring_nf,
rw ←add_assoc,
rw h0,
linarith,

end

Figure 9: Some other interesting proofs generated for miniF2F by COPRA. The length of the proofs
generated shows that interaction with the environment helps in fixing the errors encountered while
writing long proofs. These long sequences of rewrites are not easy to synthesize without knowing
the exact verbal reward from the environment which often contains the hint to fix the rewrites.

12

Preprint. Under review.

You are a proficient formal theorem-proving agent in Lean 3. You can predict
the next proof step given the current proof state. The proof state is
described in the following format:

↪→

↪→

1. All the goals are described under `[GOALS]` keyword. Each goal within
the `[GOALS]` is described under the keyword `[GOAL] i`, where `i` is a
positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a human-readable
serialized version of the proof state as shown while running `lean`
command. Each goal, might also accompany some hypotheses, which are
described under the keyword `[HYPOTHESES] i`. Each hypothesis within
`[HYPOTHESES]`, starts with the prefix `[HYPOTHESIS]`.

↪→

↪→

↪→

↪→

3. Sometimes `[GOALS]` can have description about the proof state like
`Proof finished`, `There are unfocused goals`, `Not in proof mode`,
etc. The description is described under the keyword `[DESCRIPTION]`.

↪→

↪→

4. Finally, `[STEPS]` keyword is used to describe proof-steps used so far.
Each proof step starts with the prefix `[STEP]`, and is a valid Lean
tactic. For example, `[STEPS][STEP]rw h1 at h2,[STEP]{linarith},`.

↪→

↪→

5. Sometimes, `[INCORRECT STEPS]` keyword optionally used to describe
proof-steps which should NOT be generated. Use this as a hint for not
generating these proof-steps again as they failed previously. For
example, `[INCORRECT STEPS][STEP]apply h1,[STEP]rw ←h1`.

↪→

↪→

↪→

6. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by error message from Coq environment. For example,
`[LAST STEP]linarith,\n[ERROR MESSAGE]linarith failed to find a
contradiction\nstate:\nx y : R,\nh1 : x = 3 - 2 * y,\nh2 : 2 * x - y =
1\n⊢ false`. If the proof-step was correct then it is followed by the
keyword `[SUCCESS]`. For example, `[LAST STEP]linarith,[SUCCESS]`.
Don't generate the last proof-step again if it was NOT successful.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format. Please follow the specified format
strictly.

↪→

↪→

↪→

↪→

↪→

↪→

If you think you know the next proof step, then start your response with
`[RUN TACTIC]` followed by the next proof-step which will help in
simplifying the current proof state. For example, `[RUN
TACTIC]induction c,[END]`. Generate exactly ONE proof-step. Multiple
proof steps are more error prone, because you will not get a chance to
see intermediate proof state descriptions. Make sure that the proof
step is valid and compiles correctly in Lean 3.

↪→

↪→

↪→

↪→

↪→

↪→

You can refer to the example conversation to understand the response format
better. It might also contain some similar proof states and their
corresponding proof-steps.

↪→

↪→

Please take a note of the following:
1. Make sure to end all your responses with the keyword `[END]`. Follow the

specified format strictly.↪→

2. While generating `[RUN TACTIC]` keyword, do NOT generate the tactics
mentioned under `[INCORRECT STEPS]`......↪→

..............

Figure 10: Parts of ‘system prompt’ used by COPRA for Lean

13

Preprint. Under review.

You are a proficient formal theorem-proving agent in Coq. You can predict
the next proof step given the current proof state, relevant
definitions, and some possible useful lemmas/theorems. The proof state
is described in the following format:

↪→

↪→

↪→

1. All the goals are described under `[GOALS]` keyword. Each goal within
the `[GOALS]` is described under the keyword `[GOAL] i`, where `i` is a
positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a human-readable
serialized version of the proof state as shown while running `coqtop`
command. Each goal, might also accompany some hypotheses, which are
described under the keyword `[HYPOTHESES] i`. Each hypothesis within
`[HYPOTHESES]`, starts with the prefix `[HYPOTHESIS]`. Apart from the
goal and hypothesis, some OPTIONAL keywords like `[DEFINITIONS] i` and
`[THEOREMS] i` are also present which describe the relevant definitions
of symbols used in that goal, and some possible useful theorems or
lemmas which might help in simplifying the goal. Each definition within
`[DEFINITIONS]` starts with the prefix `[DEFINITION]`. Similarly, each
theorem/lemma under `[THEOREMS]` keyword starts with the prefix
`[THEOREM]`. These definitions and theorems can be used to simplify the
goal using the tactics like rewrite, apply, etc. However, it is also
possible that these definitions and theorems are not used at all.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

3. Sometimes `[GOALS]` can have description about the proof state like
`Proof finished`, `There are unfocused goals`, `Not in proof mode`,
etc. The description is described under the keyword `[DESCRIPTION]`.

↪→

↪→

4. Finally, `[STEPS]` keyword is used to describe proof-steps used so far.
Each proof step starts with the prefix `[STEP]`, and is a valid Coq
tactic ending with a `.`. For example, `[STEPS][STEP]intros
a.[STEP]induction a.`.

↪→

↪→

↪→

5. Sometimes, `[INCORRECT STEPS]` keyword optionally used to describe
proof-steps which should NOT be generated. Use this as a hint for not
generating these proof-steps again as they failed previously. For
example, `[INCORRECT STEPS][STEP]apply mul_assoc.[STEP]rewrite <- H.`.

↪→

↪→

↪→

6. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by error message from Coq environment. For example,
`[LAST STEP]reflexivity.[ERROR MESSAGE]Error: In environment\nn :
nat\nUnable to unify "n" with "n + 0".`. If the proof-step was correct
then it is followed by the keyword `[SUCCESS]`. For example, `[LAST
STEP]reflexivity.[SUCCESS]`. Don't generate the last proof-step again
if it was NOT successful.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format. Please follow the specified format
strictly.

↪→

↪→

↪→

↪→

↪→

↪→

If you think you know the next proof step, then start your response with
`[RUN TACTIC]` followed by the next proof-step which will help in
simplifying the current proof state. For example, `[RUN TACTIC]destruct
c.[END]`. Generate exactly ONE proof-step. Multiple proof steps are
more error prone, because you will not get a chance to see intermediate
proof state descriptions. Make sure that the proof step is valid and
compiles correctly with Coq.

↪→

↪→

↪→

↪→

↪→

↪→

........................

Figure 11: Parts of ‘system prompt’ used by COPRA for Coq

14

Preprint. Under review.

(a)
gss :
forall l v m,
(set l v m) l = match l with R

r =>↪→

v | S sl ofs ty =>
Val.load_result

(chunk_of_type ty) v
end.

↪→

↪→

Proof.
intros l v m.
destruct l as [r | s o t].
- unfold set.
destruct (Loc.eq (R r) (R

r)); [reflexivity |
contradiction].

↪→

↪→

- unfold set.
destruct (Loc.eq (S s o t)

(S s o t));
[reflexivity |
contradiction].

↪→

↪→

↪→

Qed.

(b)
eq : forall (p q: loc), {p =

q} + {p <> q}.↪→

Proof.
decide equality.
- apply mreg_eq.
- decide equality.
- decide equality.
apply Pos.eq_dec.
decide equality.
- decide equality.

Qed.

(c)
disjoint_cons_right

:↪→

forall a l1 l2,
disjoint l1 (a ::

l2) -> disjoint
l1 l2.

↪→

↪→

Proof.
intros a l1 l2

H.↪→

unfold
disjoint.↪→

intros x1 x2 H1
H2.↪→

apply H.
assumption.
right.
assumption.

Qed.

(d)
eq_int_type :

forall (x y:
int_type),
{x=y} + {x<>y}.

↪→

↪→

↪→

Proof.
decide

equality.↪→

Qed.

(e)
set_locals_lessdef

: forall e1
e2,
env_lessdef e1
e2 -> forall
il,
env_lessdef
(set_locals il
e1)
(set_locals il
e2).

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Proof.
intros e1 e2 H.
induction il as

[| a il'].↪→

- apply H.
- intros.
apply

set_var_lessdef.↪→

apply IHil'.
apply

Val.lessdef_refl.↪→

Qed.

Figure 12: Some other interesting proofs generated for CompCert by COPRA. We can see that
these proofs are long, and often use ‘apply’ tactic which shows that COPRA can effectively use the
retrieved information to discharge the current proof state.

A.4 EXAMPLE PROOFS GENERATED FOR COMPCERT

Fig. 12 shows some interesting proofs generated by our approach on the CompCert dataset.

15

	Introduction
	Theorem-Proving as a Control Problem
	Background on Theorem-Proving
	A Markov Decision Process Formulation

	The Copra Agent
	Evaluation
	Related Work
	Conclusion
	Appendix
	Example Proofs generated For miniF2F
	System Prompts For miniF2F
	System Prompts For CompCert
	Example Proofs generated For CompCert

