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ABSTRACT

A software requirement specification (SRS) document is an essen-

tial part of the software development life cycle which outlines the

requirements that a software program in development must sat-

isfy. This document is often specified by a diverse group of stake-

holders and is subject to continual change, making the process of

maintaining the document and detecting conflicts between require-

ments an essential task in software development. Notably, projects

that do not address conflicts in the SRS document early on face

considerable problems later in the development life cycle. These

problems incur substantial costs in terms of time and money, and

these costs often become insurmountable barriers that ultimately

result in the termination of a software project altogether. As a re-

sult, early detection of SRS conflicts is critical to project sustainabil-

ity. The conflict detection task is approached in numerous ways,

many of which require a significant amount of manual interven-

tion from developers, or require access to a large amount of la-

beled, task-specific training data. In this work, we propose using a

prompt-based learning approach to perform few-shot learning for

conflict detection. We compare our results to supervised learning

approaches that use pretrained languagemodels, such as BERT and

its variants. Our results show that prompting with just 32 labeled

examples can achieve a similar level of performance in many key

metrics to that of supervised learning on training sets that are mag-

nitudes larger in size. In contrast to many other conflict detection

approaches, we make no assumptions about the type of underlying

requirements, allowing us to analyze pairings of both functional

and non-functional requirements. This allows us to omit the poten-

tially expensive task of filtering out non-functional requirements

from our dataset.
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Prompting, Prompt-based learning, PET, few-shot learning, soft-
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1 INTRODUCTION

A software requirement specification (SRS) document outlines the

desired behaviour of a new software program. These requirements

often specify both functional and non-functional requirements. A

coherent SRS is essential to the software development process, as

conflicting requirements which go undetected can result in a con-

siderable amount of lost time, particularly if the development pro-

cess is late into the software development cycle [1, 14].While some

entities can absorb the cost associated with recovering from this

time loss, issues with SRS documents can often result in the ter-

mination of a software development project altogether [1]. As a

result, ensuring that the requirement specifications do not conflict

with each other is an essential task in software development. This

task is made especially difficult for large software projects where

numerous different parties can contribute to the specifications, and

where requirements are continually subject to change [7, 26].

In this work, we consider a conflict detection task described as

follows. Given an SRS document containing # requirements, the

number of pairings of requirements is O(# 2). The task is to assign

one of the following labels to each pairing: Conflict, indicating that

the pairing contains two conflicting requirements; Duplicate, indi-

cating that the pairing contains two requirements that are equiv-

alent; and Neutral, indicating that the pairing contains two mutu-

ally independent requirements. Detecting duplicates is important

in part because, if one requirement is to change, it must do sowhile

still satisfying the requirements specified by its duplicates [7].

For particularly large software development projects with many

requirements, it is infeasible to label each pairing manually. In-

stead, we propose to use few-shot learning, specifically through

pattern-exploiting training (PET), to label each pairing [20]. PET is

a prompt-based learning method which leverages access to a large

set of unlabeled pairings,D, and a small set of labeled pairings, T .

In the conflict detection domain where it is feasible to manually

label a few requirement pairings, many of the remaining pairings

to be labeled can be used as D.

PET is built upon pretrained language models (PLMs), such as

BERT and its variants, but it is able to classify sequences with high

accuracy while using far fewer labeled examples by rephrasing in-

puts as cloze-style questions. This rephrasing provides context to
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the task that is solved, in our case providing the PLM with knowl-

edge of the conflict detection task.

The objective of this research is to establish PET as a viable can-

didate for few-shot learning for the conflict detection tasks. The

contributions of our study can be summarized as follows:

• We extend Malik et al. [12]’s work on conflict detection us-

ing transformer models to a few-shot setting. In particular,

we provide a direct comparison of BERT and its variants on

an array of training sets of size 32 up to 2,048. Our results

detail the few shot performance of each transformer model

and also quantify the impact of gradually increasing train-

ing set size on model performance.

• We investigate the impact of reformulating input exam-

ples as cloze-style phrases on few-shot performance. Specif-

ically, we consider reformulations adopted from Schick and

Schütze [20, 21] and introduce several of our own patterns.

This investigation serves two purposes: firstly, it provides

insight into how well generic reformulations transfer into

the conflict detection task; and secondly, it provides a com-

parison of generic reformulations with ones that are tar-

geted specifically towards conflict detection.

• We demonstrate the viability of few-shot learning for con-

flict detection. Specifically, we show that, given access to

a small set of labeled data, prompt-based learning through

pattern-exploiting training can produce models which are

comparable in terms of well-known performance metrics to

supervised learners trained on substantially larger training

sets.

The rest of the paper is organized as follows. Section 2 provides

a review of the relevant studies in conflict detection and machine

learning techniques for SRS text classification. Section 3 provides

an overview of our conflict detection dataset, transformer models,

and the PET algorithm. Section 4 summarizes the few-shot perfor-

mance of the considered PLMs and demonstrates the few-shot abil-

ities of PET for the conflict detection tasks. Section 5 summarizes

our findings and proposes future research directions as extensions

to our research.

2 LITERATURE REVIEW

SRS documents form the premise for a considerable amount of re-

search due to their importance in the software development life cy-

cle. Research into SRS documents includes requirements classifica-

tion [5, 17], ambiguity detection [14, 23], and fault detection [2, 22].

Many studies also focus on introducing various natural language

processing (NLP) techniques into the software requirements do-

main [5, 6, 9, 13, 23].

Kici et al. [9] investigate text classification techniques for SRS

documents using transfer learning through transformer models.

In particular, they investigate the performance of BERT, Distill-

BERT, RoBERTa, ALBERT, and XLNet on several different require-

ments datasets, some of which contain both functional and non-

functional requirements, and several of which contain less than

1,000 total samples. In our analysis, we extend Kici et al. [9]’s

comparative analysis by investigating the impact of training set

size on the performance of transformer models. While Kici et al.

[9] achieve strong performance across several of their datasets, as

their models are specifically fine-tuned on each classification task,

their investigation assumes that a substantially large number of re-

quirements for a particular project are already labeled. Our applica-

tion of the PET algorithm offers a means for training amodel using

considerably fewer labeled instances than an equally-performant

supervised learner.

Conflict detection in SRS documents is a popular research

topic [1, 7, 18, 24]. Yang et al. [24] develop RECOMA (REquire-

ments COnflicts MAnagement tool) for both identifying and man-

aging the conflict detection process. Notably, their research at-

tempts to provide ameans for conflict detectionwhile acknowledg-

ing that formal techniques for developing SRS documents are often

infeasible due to the diverse set of stakeholders, many of whom

cannot be expected to understand the language that formal meth-

ods require [7, 24]. RECOMA relies on a data preprocessing step by

proposing a rigid structure for outlining requirements by splitting

requirements into an object, a verb, and a resource. This prepro-

cessing is often delegated to a developer, who must then translate

requirements to this structure before conflicts can be detected in

RECOMA. Additionally, the RECOMA approach only extends to

functional requirements.

Guo et al. [7] propose FSARC (finer semantic analysis-based

requirements detector), an automated approach to conflict detec-

tion for functional requirements front-lined by semantic analysis

of documents. Their approach requires first converting require-

ments to an eight-tuple that forms a harmonized semantic meta-

model [7]. Each semantic element in a requirement is identified us-

ing a separate algorithm. The identification of semantic elements

relies on heuristics and requires the manual labeling of a small

number of requirements, where labels can often be ambiguous re-

sulting in discrepancies between multiple human labelers [7]. Guo

et al. [7] present promising results for FSARC, indicating that in

spite of potential discrepancies between human labelers, the al-

gorithm can still perform well in many circumstances. However,

as this algorithm relies on converting requirements to an eight-

tuple, in cases where identifying the tuple components is impos-

sible or considerably ambiguous, the performance of the labeling

algorithm may suffer considerably.

Malik et al. [12] propose transformer models for conflict detec-

tion based on requirement pairings, and show that this approach

can achieve significant performance especially when a large num-

ber of labeled pairings are available. In this paper, we adapt Malik

et al. [12]’s approach to the conflict detection task in a few-shot

setting.

To the best of our knowledge, no prompt-based method has

been used in SRS conflict detection and, further still, few-shot

learning has also not been applied to this task. Prompt-based learn-

ing is a relatively new paradigm in the NLP field. The GPT [15]

and T5 [16] models are the strongest early examples of prompt-

based learning. TheGPT-3 [3]model achieves remarkable few-shot

performance based on in-context learning by leveraging a natural-

language prompt and a few task demonstrations. T5 shows that

any NLP problem can be cast as text-to-text, which has been a

major breakthrough in this field. Likewise, the autoencoder mod-

els reformulate downstream tasks with a masked language model

2
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(MLM) objective. Reformulating is done by adding task-specific to-

kens to the input sequence for conditioning, which gives us the

ability to solve many problems by simply manipulating the input.

With prompting, we can even train a model with no access to la-

beled data as we can directly rely on the objective function (i.e.,

the MLM objective) [20].

Few-shot learning offers an advantage in conflict detection be-

cause it allows using task-specific labelings, particularly labelings

for a specific SRS project. Specifically, the prompt-based learning

approach that is explored in this study, PET, is able to predict con-

flicts with high precision using only a few labeled examples, allow-

ing those involved in interpreting and implementing the require-

ments to spend considerably less time labeling the instances. Ad-

ditionally, while PET is shown to be useful for few-shot learning,

it offers a considerable performance boost even for larger training

sets, particularly for difficult-to-label classes. This is despite the

fact that the PLMs that are employed by PET are not trained on

domain-specific data. Finally, we note that unlike some of the pre-

viously mentioned studies, PET does not assume the category of

underlying requirements and should be able to label any pairing,

including both functional and non-functional requirements. This

introduces a particularly powerful advantage over several of the

aforementioned studies as it ensures that requirements need not

be filtered out based on their type before searching for conflicts.

3 METHODS

In this section we provide a brief overview of the conflict detection

dataset, describe the PLMs used in our experiments, and discuss

pattern-exploiting training (PET).

3.1 Conflict detection dataset

We employ a proprietary conflict detection dataset obtained from

Malik et al. [12]’s work. Given a requirement pairing x = ('1, '2)

from this dataset, the available labels are Conflict; Duplicate; and

Neutral, indicating that the requirements are in disagreement;

agreement; or are mutually independent of one another. Table 1

outlines an example for each available label and it also helps

demonstrate the difficulties associated with this task. In particular,

while we expect it to be relatively easy to detect neutral pairings,

the vocabulary used between conflicting and duplicated require-

ments tends to be very similar.

PET is able to perform few-shot learning in part through the

use of a large set of unlabeled requirement pairings, D. To simu-

late this unlabeled set, we took 5,000 labeled requirement pairings

and discarded their labels. The conflict dataset that we consider

is relatively small, containing about 10,000 requirement pairings

which are then split between the training, unlabeled, and test sets.

In comparison, Schick and Schütze [20] typically considered prob-

lems whereD alone had at least 20,000 examples. To split our data,

we performed stratified sampling for each of the training, unla-

beled, and test sets. The distribution of class labels for each set is

outlined in Table 2.

3.2 Transformer models

In our analysis, we deploy several PLM checkpoints, specifically

uncased BERT, uncased BERT-large, RoBERTa, RoBERTa-large,

ALBERT-v2, and ALBERT-xxlarge-v2. Each PLM is trained on a

large corpus of unlabeled data, and is then fine-tuned on a down-

stream task [4].We first evaluate the performance of sequence clas-

sification using these PLMs to determine the best performer on our

dataset. We then choose the best performing PLM for our prompt-

based learning task.

• BERT (Bidirectional Encoder Representations from

Transformers)models are trained on case insensitive data.

These are the base version (BERT-uncased) which has a

total of 110M parameters, and the large version (BERT-

large-uncased) which has 340M parameters [4]. BERT em-

ploys bidirectional self-attention, allowing the model to

attend to both previous and future tokens in the self-

attention layer [4]. This bidirectional training is made possi-

ble through the use of a masked language model [4]. Specif-

ically, in the pretraining objective, tokens are randomly

masked and the model must predict the appropriate token

based on its context.

• RoBERTa (Robustly optimized BERT approach) is a

modified version of BERT which implements the changes

outlined by Liu et al. [11]. These modifications include in-

creasing the batch size, training for more steps, using a

larger pretrain dataset, and employing a more generalized

text encoding. In the MLM objective used for BERT pre-

training, masking is done as a pre-processing step, which

results in the same masked sequences being passed to the

model [11]. In contrast, RoBERTa applies masking in a dy-

namic fashion, generating the masking pattern for each se-

quence as it is passed to the model [11]. Following from

the BERT models, RoBERTa-base corresponds to BERT-

base and RoBERTa-large corresponds to BERT-large. The

modified text encoding adds parameters to RoBERTa, with

RoBERTa-base using 125M parameters and RoBERTa-large

using 360M parameters.

• ALBERT (A Lite BERT) is another BERT variant, this time

designed to improve training times and lower memory us-

age. ALBERT introduces two major techniques to allow for

considerably improved scalability. Notably, ALBERT-base-

v2 has just 12M parameters compared to the 110M in BERT-

base, and ALBERT-xxlarge-v2 has 235M parameters, less

than the 340M in BERT-large [10]. The original ALBERT

proposed in Lan et al. [10] is later improved by adjusting

several training parameters1. We employ this updated ver-

sion, denoted by “v2”, in our work.

In our supervised learning experiments, we employ the se-

quence pair classification ability of each of the aforementioned lan-

guage models to label our data.

3.3 Pattern-exploiting training

PET is a prompt-based learning approach introduced by Schick and

Schütze [20] for few-shot learning tasks. The contribution of PET

to the labeling process is to provide context to the task being solved.

Few-shot learning is a method for classifying instances with access

to only a small number of labeled examples. This is in contrast to

1https://github.com/google-research/albert
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Table 1: Conflict detection examples.

Specification 1 Specification 2 Label

The UAV shall instantaneously transmit informa-

tion to the Pilot regarding mission-impacting fail-

ures.

The Hummingbird shall send the Pilot real-time

information about malfunctions that impact the

mission.

Duplicate

The UAV shall only accept commands from an

authenticated Pilot.

The UAV shall accept commands from any Pilot

controller.

Conflict

The UAV flight range shall be at least 20 miles

from origin.

The UAV shall be able to transmit video feed to

the Pilot and up to 4 separate UAVViewer devices

at once.

Neutral

Table 2: Conflict detection class distribution.

Conflict Duplicate Neutral

|T | = 32 17 5 10

|T | = 64 33 10 21

|T | = 128 67 20 41

|T | = 256 134 40 82

|T | = 512 267 81 164

|T | = 1,024 535 161 328

|T | = 2,048 1,070 323 655

D (unlabeled†) 2,613 787 1,600

Test 1,045 315 640

† Labels are removed for training.

standard supervised learning techniques, which assume access to

a large number of labeled training instances. Consider a simplified

version of the conflict detection task, where our goal is to label a

sentence pair x = ('1, '2), as either Duplicate or Not Duplicate.

In a few-shot setting, this is a difficult problem to solve for a stan-

dard sequence classifier as it has no context about the task at hand,

simply seeing the two sequences. In PET, we provide context by

mapping the two requirements to a cloze-style phrase (i.e., we in-

troduce a “prompt”). In this context, we might ask the question:

Does “'1” imply “'2”? .

where the allowed answers for the masked token “ ” in this

context are Yes for Duplicate, and No for Not Duplicate. In this case,

we can use the PLMs with an MLM objective to predict the correct

labels.

Figure 1 illustrates an application of the aforementioned

context-enriching scenario. In this figure, the objective is to clas-

sify the pairing x = (The car was green., The car was red.) as either

Duplicate or Not Duplicate. Notably, these two statements do not

immediately fit into the pattern structure: we must perform some

preprocessing to remove the terminating punctuation and the ini-

tial capital letter. Once this is done, the patternwith the substituted

argument x is passed to the MLM. The MLM returns the probabil-

ity that the masked token “ ” should beNo and the probability

that it should be Yes, where No indicates that the two statements

should be marked Not Duplicate, and Yes indicates that they should

be marked Duplicate. These probabilities can then immediately be

converted to the label probabilities, and asNo has the higher proba-

bility here, this means the label for this input example is predicted

to be Not Duplicate.

x = (The car was green.,The car was red.)

Does “the car was green” imply

“the car was red”? .

MLM

Pr(No) = 0.9 Pr(Yes) = 0.1

Figure 1: Example application of PET on an input example.

Formalizing this example, we say that a pattern % is amapping of

an input x to a cloze-style phrase that contains amasked token [20],

which, in the case of conflict detection, can be taken as x = ('1, '2).

Additionally, we define a verbalizer E as a bijective function which

maps each label ℓ ∈ L to some token or sequence of tokens in the

vocabulary of the PLM, VLM [20]. We can then employ a MLM to

predict the most likely substitute for the masked token, and apply

E−1 to recover the true label. We define a pattern-verbalizer pair

(PVP) as p = (%, E) (i.e., it is a tuple of a pattern and a verbalizer).
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In theory, PET is able to improve the performance of a learner by

adding context to the target problem. In practice however, this is

made difficult by several factors. Firstly, in a few-shot setting there

is no available data to fine-tune PVPs, allowing for some PVPs to

perform worse than sequence classification alone. Secondly, ev-

ery PVP requires training a separate model, increasing the time

required for a PET ensemble to predict the label for a given exam-

ple x. In the presence of a relatively large set of unlabeled data

instances, these issues can be addressed in part through the use of

knowledge distillation as outlined by Hinton et al. [8].

Given a set of unlabeled data instances D and an ensemble of

PET modelsM , we can use each< ∈ M to generate soft labels, or

scores, for each 3 ∈ D [20]. These scores are then combined using

a weighted sum where the weights are the accuracy of each PVP

before training [20]. By using the weight before training, those

modelswhichmore naturally describe the task even without access

to labeled data are assumed to employ superior PVPs. Given the

final soft labels, a sequence classifier is trained on the training set

together with the softly labeled set D.

When a MLM < predicts a substitute for the masked token, it

assigns a score to each of the tokens in its vocabulary. For our

purposes, the important scores are the ones associated with the

given verbalizations. In this case, the score assigned to the label ℓ

by model< given the pattern % (x) is s(ℓ |x,<), and it is simply the

score that the MLM assigns to E (ℓ). After we train an ensemble of

models M , we can combine the scores for each label ℓ ∈ L using

Equation 1 [20]:

s(ℓ |x,M) =

∑

<∈M

w(<) s(ℓ |x,<)

∑

<∈M

w(<)
(1)

where w(<) denotes the weight assigned to model<. Finally, we

convert label scores to probabilities using softmax.

Our observations, consistent with those in Schick and Schütze

[20], show that the performance of a PLM trained on a PVP can

vary considerably between runs. As a result, for each PVPwe train

three separate models. When evaluating PVPs alone we report the

average performance of these runs. In our final PET ensemble, we

use all three iterations for each PVP selected. This means that for a

PET ensemble of three PVPs, there are nine total models contribut-

ing to the predictions.

3.4 Patterns

In our investigation, we consider six different patterns: two as pro-

posed by Schick and Schütze [20, 21] (marked with an asterisk in

the table), and four of our own. We list all patterns in Table 3. We

mark our masked token(s) with a single “ ”. Notably, when a

verbalizer consists of more than a single token, we must use multi-

ple consecutive masked tokens as described by Schick and Schütze

[21]. In our experiments, all verbalizations require the use of two

masked tokens. Additionally, we separate text segments with verti-

cal bars (‖). This separation is handled differently by each PLM [20].

Observe that both of the patterns adopted from Schick and

Schütze [20, 21] do not include a trailing punctuation mark on '2.

Instead, these patterns use the punctuation already available in '2.

In contrast, all of our patterns strip the trailing punctuation from

both '1 and '2 . Additionally, we quote the statements that are

input into the pattern, ensuring a natural transition between the

input and the rest of the pattern.

The patterns provided by Schick and Schütze [20, 21] are ba-

sic, contributing only punctuation and a separator. In contrast, we

develop patterns which attempt to facilitate the input x as a natu-

ral extension of the text. Patterns 5 and 6 additionally attempt to

embed the commutative property of the requirements '1 and '2:

the label is unaffected when the two sequences are swapped. As

PLMs are trained on a finite sequence length, these “commutative

patterns” are not always possible. However, for the conflict detec-

tion dataset with a sequence length of 256, we found that we never

exceeded this maximum sequence length.

3.5 Verbalizers

As with developing patterns, the selection of verbalizers can have

a considerable impact on the performance. Without access to a de-

velopment set, it is difficult to evaluate how well a verbalizer will

perform. Schick et al. [19] discuss a method of automatically choos-

ing verbalizers. This may be especially useful for high cardinality

tasks where it is difficult to choose any verbalization other than

the identity, which maps a label to itself. Notably, however, their

results showed that hand picked verbalizers tend to outperform the

automatically generated ones. As a result, we develop our own pat-

terns and verbalizers for our classification tasks. They noted that

PLMs have a bias towards frequent words, making verbalizations

of frequent words superior to verbalizations with rare words [19].

Accordingly, we attempt to use common words in our verbaliza-

tion.

Table 4 lists the verbalizers that we used for this task. We con-

sider one verbalizer provided by Schick and Schütze [20], marked

with an asterisk, and introduce one of our own. Unlike with pattern

design, the choice of verbalizer can have a considerable impact on

runtime. The time taken to train a model is linear with respect to

the number of tokens used in the verbalization. Here we consider

verbalizers with a maximum of two masked tokens.

4 RESULTS

In our analysis, we consider labeled training sets sized in powers

of two from 25 = 32 up to 211 = 2,048. We first investigate the

performance of six PLMs: BERT and five of its variants. Then, we

choose the best performing PLM to serve as the underlying MLM

for our PET patterns. We investigate the performance of several

PVPs by training three MLMs for each PVP and reporting the av-

erage performance on the test set. Finally, we train a PET ensemble

consisting of three PVPs and compare its performance to that of

the best supervised learner.

4.1 Hyperparameter selection

Our selection of hyperparameters are largely derived from Schick

and Schütze [20, 21]. We note that in a few-shot learning set-

ting it is unlikely that a development set for fine-tuning hyper-

parameters will be available. As a result, and in consensus with

Schick and Schütze [20]’s suggestion, we choose hyperparameters

5
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Table 3: PET patterns for conflict detection.

ID Pattern

%∗
1
(x) “'1”? ‖ , “'2”

%∗
2
(x) '1? ‖ , '2

%3 (x) Given “'1”, we can conclude that “'2” is .

%4 (x) “'1” means “'2”. ‖ .

%5 (x) “'1” implies “'2” and “'2” implies “'1”. ‖ The previous sentence is correct: .

%6 (x) “'1” is equivalent to “'2”. Similarly, “'2” is equivalent to “'1”. ‖ The previous statements are .

Table 4: Verbalizers.

E (Conflict) E (Duplicate) E (Neutral)

E∗
1

No Yes Maybe

E2 False True Neither

from previous work, adopting themajority of our hyperparameters

from Schick and Schütze [20, 21], with one adjustment. As per the

findings in Zhang et al. [25]’s study, which note that training for

more batches tends to improve performance, we choose to increase

the number of training steps from 250 to 1,000 for all learners ex-

cept for the final sequence classifier trained on the PET ensemble.

As this classifier is trained on the soft-labeled dataset D which

has 5,000 examples, we use 5,000 training steps, as in [20]. Note

that, as in Schick and Schütze [20] the number of unlabeled exam-

ples was more than 20,000 for each task, training for 5,000 steps

on our unlabeled set of size 5,000 represents an effective increase

in the number of training steps, which is consistent with our ad-

herence to the observations in Zhang et al. [25]. We summarize

the hyperparameters used, borrowing the programmatic variable

names from the PET repository2, in Table 5.

Table 5: Hyperparameters for PET.

Parameter Value

max_steps 1,000†

gradient_accumulation_steps 4

learning_rate 1e-5

adam_epsilon 1e-8

warmup_steps 0

max_grad_norm 1.0

max_seq_length 256

temperature 2

† For training the PET ensemble on T ∪D,

we use 5,000 steps as per [20].

2https://github.com/timoschick/pet.

4.2 Supervised learning performance

We first consider the performance of six transformer models—

BERT-uncased, BERT-large-uncased, RoBERTa, RoBERTa-large,

ALBERT-v2, and ALBERT-xxlarge-v2—on the conflict detection

dataset. As PET is an application of these models, we choose the

best performing one as the MLM for the PET algorithm. Notably,

this experiment evaluates the few-shot performance of these trans-

former models when they are applied to a sequence classification

task.

Due to variance in the training process, we repeat training three

times and report the average results. Figure 2 displays the perfor-

mance of each language model on each training set. The results

for |T | = 2,048, particularly the relative ordering of model per-

formance, are similar to what we would expect from each model if

theywere trained on large training sets [4, 10, 11].However, this or-

dering is considerably different for small |T |. As a consequence, we

cannot assume that the performance of a PLM for few-shot learn-

ing will reflect its performance on full-sized training sets, as was

done in Schick and Schütze [21]. Additionally, we observe a more

than 25% difference between the best and worst performers when

using 32 training instances. As PET is built on-top of a selected

PLM, this performance impact would likely be considerable when

using the PET algorithm as well.

We found that RoBERTa-large was consistently the best per-

forming model, except for |T | = 2,048 where it performs mod-

erately worse than ALBERT-xxlarge-v2. As a result, we choose

RoBERTa-large as our baseline supervised learner to which we

compare our PET results. Additionally, RoBERTa-large is chosen

as the underlying MLM for the PET.

4.3 PVP evaluation

In addition to the patterns and verbalizers introduced by Schick

and Schütze [20, 21], we developed our own in an attempt to more

naturally describe the conflict detection task. However, Figure 3

shows that the PVPs that we designed were no more competitive

than those thatwe adopted, and in some cases ours performed even

worse. We also observe that many of the PVPs fail to match up

to traditional supervised learning, particularly for smaller train-

ing set sizes. These results are welcome as they suggest that pat-

terns, like other hyperparameters, can often be borrowed from pre-

vious work. Specifically, while the PVPs introduced by Schick and

6
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Figure 2: Supervised learning for conflict detection.

Schütze [20, 21] were not targeted to a conflict detection task, they

transfer very well into this task with no modifications.

25 26 27 28 29 210 211
Number of training instances

65

70

75

80

85

90

Ac
cu
ra
cy
 (%

)

(P1, v1)
(P2, v1)
(P3, v2)
(P4, v2)

(P5, v1)
(P6, v2)
Supervised
PET

Figure 3: PET for conflict detection.

4.4 Pattern-exploiting training performance

For our PET ensemble, we consider three PVPs: (%1, E1), (%3, E2),

and (%4, E2). Due to random variations when training, we follow

Schick and Schütze [20] and train three language models for each

PVP, resulting in total nine predictors.We then use the ensemble to

generate soft labels for 5,000 unlabeled data instances. The soft la-

bels are then used, in conjunction with the labeled training data, to

train a sequence classifier using RoBERTa-large. We observe in Fig-

ure 3 that PET outperforms supervised learning on all training set

sizes. This is true even for |T | = 32, where none of the predictors

in the ensemble surpassed the performance of standard supervised

learning.

Table 6 provides a detailed comparison of PET with supervised

learning. Recall that RoBERTa-large is both the supervised learner

and the underlying MLM for PET. We observe that, for all train-

ing set sizes, PET is superior to supervised learning in all of the

considered metrics. On average, when using PET instead of super-

vised learning, we observe an increase of 2.3% in accuracy, 2.9% in

macro �1 score, and 2.2% in weighted �1 score.

Table 6: PET versus standard supervised learning.

Accuracy Macro �1-score Weighted �1-score

|T | Supervised PET Supervised PET Supervised PET

32 80.3 81.3 62.8 64.8 75.7 77.1

64 78.3 81.4 67.5 69.0 77.1 79.1

128 80.0 82.0 70.0 71.7 78.9 80.3

256 81.6 85.4 73.4 78.3 80.9 84.6

512 83.6 86.7 75.7 81.0 82.8 86.3

1,024 86.6 87.4 80.4 82.2 86.1 87.2

2,048 87.2 89.2 81.4 84.8 86.7 89.0

Table 7 shows the confusionmatrix for |T | = 256, where bolded

terms indicate better performance. We observe that PET outper-

forms or matches the performance of supervised learning in every

entry. As we previously noted, differentiating between conflict and

duplicate appears to be amore difficult task as each label contains a

similar vocabulary. In contrast, neutral statements are often easier

to detect as indicated by these results.

Table 7: RoBERTa-large PLM / PET confusion matrix

|T | = 256.

Predicted Label

Conflict Duplicate Neutral �1-score

True Label Sup. / PET Sup. / PET Sup. / PET Sup. / PET

Conflict 890 / 941 141 / 97 14 / 7 83.0 / 86.6

Duplicate 199 / 179 112 / 136 4 / 0 39.5 / 49.6

Neutral 10 / 9 0 / 0 630 / 631 97.9 / 98.7

Figure 4 provides a detailed overview of the impact of PET ver-

sus supervised learning on a per-label basis. For the Conflict label,

traditional supervised learning with even 2,048 training samples

is unable to match the recall of the PET algorithm with 32 train-

ing samples. This is despite the fact that the PET algorithm out-

performs supervised learning in precision across all training set

7
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sizes. Additionally, precision for Conflict using supervised learn-

ing requires 128 training samples to match that of PET with just

32 training instances. In terms of recall, for small training set sizes

both PET and supervised learning perform similarly, with super-

vised learning boasting a slight advantage for small training set

sizes before PET widens the gap to nearly 10% as |T | increases.

However, we note that both models have a difficult time recalling

pairings labeled Duplicate when the training set is small. The pre-

cision of PET maintains a 10% lead on supervised learning for all

training set sizes when considering the Duplicate label. Notably,

the performance boost granted by PET for labeling duplicates is

substantial even for large |T |, with a boost of around 10% in both

precision and recall for the training set of size 2,048. In contrast,

the gains for both Conflict and Neutral tend to subside for large

|T | as they tend to approach their maximum values.

The performance gain in the neutral category is particularly

noticeable. We observe that supervised learning requires 1,024 la-

beled examples in order to match the precision of PET with just

32 examples. Additionally, with access to just 32 labeled examples,

PET achieves a precision of 98.6% while recalling 96.6% of exam-

ples. This precisionmargin is nearly perfect and can be conceivably

used in a practical setting after training on just 32 labeled examples.

This is a valuable result in practice as requirements marked Dupli-

cate or Conflict both will generally have to be manually reviewed

regardless. As a result, using PET with just 32 labeled examples

can reliably identify pairings that must be reviewed with incredi-

bly high recall and precision.

5 CONCLUSION AND FUTURE WORK

In this study, we demonstrated the viability of few-shot learn-

ing for conflict detection in SRS documents. We have shown that

while pretrained language models such as BERT and its variants

can be used in a few-shot setting, their performance is substan-

tially worsened when access to data is limited and, furthermore,

the relative performance of each model in a few-shot setting is

considerably different from a data-rich setting. We also created

our own cloze-style reformulations targeted toward conflict detec-

tion and compared themwith general reformulations adopted from

other tasks. Our results showed no considerable difference in per-

formance, suggesting that adopting patterns and verbalizers from

other tasks where possible may be sufficient for training a prompt-

based learner. Finally, we provided a detailed comparison of PET

with the best performing supervised learner and saw that the per-

formance of PET in a few-shot setting was comparable to a super-

vised learner trained on considerably larger datasets.

We note that our study considers only a single conflict detec-

tion dataset, and while our results demonstrate that prompt-based

learning is an effective candidate for few-shot learning in the con-

flict detection domain, future research into a broader array of

datasets would be beneficial. Additionally, we note that both the

choice of underlying language model for pattern-exploiting train-

ing and the selected prompts are both hyperparameters that are

difficult to evaluate in a few-shot setting, and which can have a

considerable impact on the performance of the final model.

This study offers many natural extensions into future work.

Firstly, as noted, this research involves only a single data set. A

more thorough investigation involving additional conflict detec-

tion tasks is necessary to establish PET as a viable, generic ap-

proach to conflict detection. Secondly, as the use of prompt-based

learning for conflict detection is targeted towards few-shot learn-

ing, it is unlikely that validation data will be available to gauge the

performance of PVPs ahead of time. Accordingly, while our results

show that the patterns chosen have a substantial impact on perfor-

mance, it is left for future research to determine why certain pat-

terns perform better. Thirdly, while this study compares the perfor-

mance of prompt-based learning with sequence classifiers, it does

not compare PET to other few-shot learning approaches. Such a

comparison would establish the advantage of using PET in practi-

cal settings.
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Figure 4: Class-specific recall and precision values.
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