
A CHAT ABOUT BORING PROBLEMS: STUDYING GPT-BASED TEXT NORMALIZATION

Yang Zhang∗, Travis M. Bartley†∗, Mariana Graterol-Fuenmayor, Vitaly Lavrukhin, Evelina Bakhturina,
Boris Ginsburg

Nvidia Corporation,
City University of New York, Graduate Center†

ABSTRACT

Text normalization - the conversion of text from written to
spoken form - is traditionally assumed to be an ill-formed
task for language models. In this work, we argue otherwise.
We empirically show the capacity of Large-Language Models
(LLM) for text normalization in few-shot scenarios. Com-
bining self-consistency reasoning with linguistic-informed
prompt engineering, we find LLM based text normalization to
achieve error rates around 40% lower than top normalization
systems. Further, upon error analysis, we note key limitations
in the conventional design of text normalization tasks. We
create a new taxonomy of text normalization errors and apply
it to results from GPT-3.5-Turbo and GPT-4.0. Through this
new framework, we can identify strengths and weaknesses of
GPT-based TN, opening opportunities for future work.

Index Terms— Text-normalization, GPT, large-language-
models, in-context learning, finite state automata, text-to-
speech

1. INTRODUCTION

Fig. 1. Example of text normalization across semiotic classes.
The same semiotic token (”1/4”) has distinct normalizations
depending on context.

Text normalization (TN) is an essential prepossessing
step for text-to-speech generation. While the majority of
character-pronunciation mappings may be learned from up-
stream grapheme-to-phoneme (G2P) or forced alignment,
many orthographic symbols require contextual knowledge
for successful verbalization. For example, consider the string
”1/4” (as seen in Figure 1). Depending on context, pronunci-
ation can vary between ”January the fourth” and ”a quarter”.
Such types of meaning-dependent tokens are often referred
to as semiotic tokens and their TN context as semiotic classes

∗Equal contribution

[1]. Common examples of semiotic classes would be cardinal
digits, dates, fractions, and time.

Two notorious limitations of TN as a language processing
task are the scarcity of paired training data available and need
for high (if not perfect) accuracy. The former is due to the in-
feasibility of covering all potential semiotic tokens in context
(e.g. a dataset for all cardinal strings). The latter stems from
the low fault-tolerant scenarios where these tokens occur (En-
gineering, Finance, Medicine) [2]. In such cases, the creation
of ’unrecoverable errors’, such as hallucination of an addi-
tional number or misreading of a currency symbol, can have
disastrous consequences. As such, most production level sys-
tems, such as Google’s Kestrel, rely on hand-coded weighted
finite-state grammars (WFST) [3, 4]. These limitations on
a seemingly trivial task has led Richard Sproat – one of the
modern pioneers of TN - to claim, ”until one can solve ’bor-
ing’ problems like this [TN] using purely AI methods, one
cannot claim that AI is a success [..] Various groups have
tried, but so far nobody has eliminated the problem of unre-
coverable errors.” [5, 6, 3]

In this paper, we issue a challenge to Sproat [5]. We ar-
gue that true ”unrecoverable” errors are, in fact, minimal for
state-of-the-art language modeling methods. Rather, the is-
sue lies in the documentation of TN errors. We believe TN
requires a more nuanced error taxonomy beyond the binary
of ’correct’ and ’unrecoverable’. We introduce a granular la-
bel schema for GPT based TN (GPT-TN) error categorization,
along with a simple labeling tool for analysis via the NeMo
Text-Processing toolkit [7]. Using GPT-3.5-Turbo and GPT-
4.0, we evaluate TN performance over few-shot prompting
and consistency reasoning scenarios. Our analysis is as fol-
lows:

• GPT-TN outperforms Kestrel, a state-of-the-art WFST-
based TN system, by 40% percent

• Manual error analysis shows true ”unrecoverable”
GPT-TN errors to be near non-existent

• GPT-TN productions outperform Kestrel’s normaliza-
tion in conventional speech scenarios

ar
X

iv
:2

30
9.

13
42

6v
1 

 [
cs

.C
L

] 
 2

3 
Se

p 
20

23



2. METHOD

2.1. Error Taxonomy

We first motivate our rationale for a TN error taxonomy. One
notes our definition of TN does not require an injective rela-
tion. In Figure 1, the date ”1/4” may be verbalized as ”January
the fourth” or ”the fourth of January” without changing mean-
ing. However, normalization as ”the day after January the
third” would be perceived as incorrect - despite being gram-
matically and semantically equivalent.

This phenomenon relates to the linguistic notion of felic-
ity. Broadly, felicitous statements are the subset of grammat-
ical sentences that are contextually permissible (with infelic-
itous statements being the disjoint set) [8]. While in specific
contexts only one sentence may be felicitous, other contexts
permit many equivalent substitutions. In our analysis of TN
errors, we find several cases where errors relate to felicity.
We note two cases: (1) felicity regarding sentential context
and (2) felicity in regards to semiotic class.

Consider TN for a US telephone number;

Text: 312-236-2012

a: three twelve two thirty six twenty twelve

b: three one two two three six two zero one two

Both strings are felicitous (for American English) in re-
gards to the intended sentential meaning. Yet, were a to be
taken as a gold example, b would be treated as an error. As
such, the failure to account for felicity at the sentence level
produces a false negative. An effective analysis of TN would
need to account for this variation. In contrast, consider:

Text: b. 03-02-2001

c: born march second two thousand one

d: b zero three zero two two thousand one

Absent context, both c and d are valid normalizations,
However, only c is acceptable for a date of birth and thus d
is infelicitous. Yet, d still retains the original textual informa-
tion and is thus preferable to other false productions (i.e. it
is not ’unrecoverable’). A proper TN analysis would seek to
note this distinction between errors.

It is the above reasoning that motiavates us to introduce
error categories for GPT-TN analysis. They allow us to dis-
tinguish felicity related errors from those stemming from nat-
ural LLM behavior (i.e. noisy text-correction, translation of
foreign words, hallucinations). In total, our analysis identi-
fies six label categories (along with the binary ’Correct’ and
’Incorrect’ labels) for TN. They are:

• format: Errors derived from infelicitous normalization
regarding semiotic class.

• paraphrase: Replacement or reordering of words, or
substitution of acronyms with full wording. (e.g. ”hap-
pily he danced” → ”he danced happily.”)

• fix: Grammar or spelling correction of a noisy sample.
(e.g. ”he sleep yesterday” → ”he slept yesterday”.)

• artifact: Introduction of non-original text due to id-
iosyncratic behavior of LLM prompting (e.g. Prepend-
ing (”Sure, I can do that”).

• translation: Normalization of a string in a non-English
sentence sample. (e.g. ”Louis XIV était roi de france”
→ ”Louis quatorze était roi de france”.)

• other: Misc. category covering complete corruption
of original sentence. Includes, but is not exclusive or
unique to, ’unrecoverable errors.’

2.2. Dataset

For experiments, we use the Google TN dataset [9]. Com-
prised of around 1.1 billion words from Wikipedia, it is one of
the few publicly available English TN datasets and provides
sizeable coverage of common semiotic classes. Individual to-
kens are paired with semiotic class and a target normalization
generated with Google’s Kestrel TN system [3].

For development, we use 1000 sentences from the pro-
vided development set. Final test evaluations are performed
over the entire test set, comprised of 7551 sentences. As
Kestrel is designed for TTS, the dataset includes several ar-
tifacts such as ”sil” and special suffixes for single character.
We remove these as a prepossessing step.

2.3. Experiments

We compare GPT-3.5-Turbo and GPT-4.0 LLMs (March 1st
and current release, respectively) against Google’s Kestrel
system. For all but the final accuracy results, we solely
evaluate GPT-3.5-Turbo on the first 1000 samples from the
development set.

We seed models for normalization through the com-
pletion API, providing user examples in the schema ”Nor-
malize: {EXAMPLE}” and target normalization as sample
conversation turns. We experiment with several prompt-
ing approaches. From the training dataset, we sample 1)
random pairs of written-normalization sentences 2) written-
normalization semiotic token pairs, one for each class (see
[1] for list of all classes) with surrounding sentence context
and 3) semiotic token pairs, one for each class, without sur-
rounding context. For 2) and 3), we experiment with varying
the number of samples per semiotic class (r=1,2,3). For 1),
we simply sample the same total quantity of examples for all
variations of 2).

After prompting experiments, we choose the best two
configurations and augment performance using self-consistency



Fig. 2. GPT normalization and evaluation pipeline.

reasoning as in [10]. We poll for 20 completion outputs over
a temperature of 0.5 and use majority voting to determine
final output. After evaluating over the development set, we
use the best consistency+prompting configuration pair for
test evaluation using both GPT-3.5-Turbo and GPT-4.0. (See
GPT-TN normalization pipeline in Figure 2.)

3. RESULTS

3.1. Evaluation

Prior to final evaluation, we filter out irrelevant variations be-
tween target and prediction samples. We remove common
GPT insertions (”No need for normalization”, ”This sentence
seems to be incomplete”) and filter obvious non-English sam-
ples using regex search. Simple felicitous variations (such as
”August fourth” vs. ”fourth of August”) are corrected using a
WFST-grammar. We also use a short pre-defined dictionary to
correct for differences in UK/US spelling. Finally, we screen
for variations in punctuation and article insertion.

For final accuracy results, we perform manual evaluation
with our error taxonomy. This is done through an HTML-
based tool (see Figure 3) to efficiently label the remaining
test cases with error types as described in Section 2.1.

Fig. 3. HTML error labeling tool. ”Source” is written form,
”target” is Kestrel’s normalization and ”predict” is GPT’s nor-
malization.

3.2. Final Performance

Table 2 shows GPT-3.5-Turbo’s exact accuracy on the devel-
opment set without manual labeling. Sampling two sentences
per semiotic class in context yields the highest accuracy of
91.1% after automatic evaluation. After self-consistency the
accuracy improves to 92.1%.

We use this inference recipe to evaluate GPT-3.5-Turbo
and GPT-4.0 over the test dataset. (see Table 3.) From GPT-
3.5.-Turbo’s 692 errors after automatic evaluation, manual la-
beling found only 264 to be actual errors. (see Section 2.1).
GPT-4.0 significantly improves results, reducing the initial
540 errors after automatic evaluation to only 108 errors.

The 540 test cases where GPT-4.0 differs from Kestrel
after automatic evaluation we also manually analyzed for
Kestrel’s normalization quality. With 174 errors, we found
GPT-4.0 makes 40% less errors than Kestrel, mainly at-
tributed to the infelicitous normalization category (”format”).

4. DISCUSSION

We first note that self-consistency polling and semiotic class
coverage is critical for improved downstream performance.
Both GPT-3.5-Turbo and GPT-4.0 greatly benefit from these
methods. Interestingly, there appears to be a saturation point
of sample quantity, with both models deteriorating in per-
formance with r=3 classes across all sampling methods. We
surmise this is likely due to the ’lost in the middle’ phe-
nomenon [11]: essential context for normalization can be lost
over large token spans. This is likely why ’w/o context’ sam-
pling can remain competitive, with the lack of real context
dependencies permitting scaling.

As seen in the disparity between Table 2 and Table 3, the
introduction of an error taxonomy is critical for TN analy-
sis. We see that among all models, infelicitous normaliza-
tions (’format’) made up the vast majority of errors. Actual
”unrecoverable” errors made up less than 1% of all total nor-
malizations from the GPT-4.0 model. While this is still 8x the
number in Kestrel, we note that this factor may be misleading.
Our analysis showed that several supposed errors were due to
contamination in either source data or target predictions (see



Input: 2007 i triple e conference
GPT [acceptable]: two o o seven i e e e conference
Target: two o o seven i triple e conference.

Input: http : //web.archive.org
GPT [wrong]: h t t p : / / w e b . a r c h i v e . o r g
Target: h t t p : slash slash web dot archive dot org

Input/target: it was originally mooted
GPT[wrong]: it was originally suggested

Input: mcmath , p .267
GPT [wrong]: mcmath , p two hundred sixty seven
Target: mcmath , p point two six seven

Input: student stories of 9/11
GPT [correct]: student stories of nine eleven
Target [wrong]: student stories of nine elevenths

Input: ch .2 document 75
GPT [correct]: chapter two document seventy five
Target [wrong]: chains point two document seventy five

Input [wrong]: more than rs.10 , 00 , 000 , 00
GPT [correct]: more than ten crore annual business
Target [wrong]: more than ten rupees , o o , o o o , o o

Table 1. Examples of GPT-4.0 normalizations errors. Tar-
get normalizations are generated from Google’s Kestrel Text
Normalization system.

Table 1). As such, the slight rise in unrecoverable errors be-
lies GPT-TN’s ability to correct for data contamination.

Further, upon comparison of felicitous productions by
GPT-4.0 against Kestrel, we found many of the former’s
productions to be of better quality. While both Kestrel and
GPT-4.0 provided recoverable normalizations, the latter’s was
of greater quality and more colloquial.

Taking in both qualitative and quantitative observations,
we conclude that GPT-TN provides both more accurate and
higher quality normalizations than WFST-based methods. In
particular, the former excels in cases where the range of fe-
licitous normalizations is particularly high. Even in cases of
error, the rate of ’unrecoverable’ errors is minor. Though in
cases of zero-tolerance, Kestrel still has a slight edge.

5. CONCLUSION

We empirically demonstrate the effectiveness of GPT-TN for
at-scale text-normalization. After careful analysis of TN er-
rors, we find that modern LLMs can outperform rule-based
normalization systems by 40%, with minuscule instances of
”unrecoverable” normalization errors. We show that GPT-TN
outputs are of higher quality and can self-correct for corrupted
inputs.

Further, we demonstrate a need for greater nuance in TN
analysis. TN outputs can cover a wide range of felicitous tar-

Prompt Samp. Method r=1 r=2 r=3
w/ context 88.8/91.1 91.1/92.1 90.5
w/o context 89.8 90.4/91.5 89.8
Rand. 87.1 88.7 88.9

Table 2. Sentence level normalization accuracy over prompt-
ing techniques for GPT-3.5-Turbo. Evaluation is performed
over first 1000 samples of Google TN development set. First
number represents % accuracy based on the corresponding
prompt sampling method and number of examples (r) per
semiotic class (”Rand.” samples equivalent total samples as
”w/ context”). Second number (if provided) is the % accuracy
after self-consistency via majority voting (N=20 responses;
t=0.5 temperature).

Error Type GPT-3.5 GPT-4.0 Kestrel
Errors (Post Auto) 692 540 540*
Errors (Post Manual) 264 108 174
Foreign Language 29 11 26
Format 173 62 143
Paraphrase 26 10 1
Fix 2 9 0
Artifact 19 9 3
Other 15 7 0
Final Accuracy .965 .986 .977
Unrecoverable Errors N/A 8 1

Table 3. Breakdown of normalization errors by label type for
GPT-3.5-Turbo, GPT-4.0 and the WSFT-based Kestrel TN.
Errors ’(Post Auto)’ and ’Errors (Post Manual)’ refer to er-
rors found after automatic evaluation and further after manual
analysis, respectively. Kestrel errors are derived by manual
error analysis of target normalizations of GPT-4.0 errors.

gets and are ill-served by binary label schemes. We encour-
age future work to explore refinements to this taxonomy to
develop even more effective TN systems.



6. REFERENCES

[1] Paul Taylor, Text-to-Speech Synthesis, Cambridge Uni-
versity Press, 2009.

[2] Hao Zhang, Richard Sproat, Axel H Ng, Felix Stahlberg,
Xiaochang Peng, Kyle Gorman, and Brian Roark, “Neu-
ral models of text normalization for speech applica-
tions,” Computational Linguistics, 2019.

[3] Peter Ebden and Richard Sproat, “The kestrel tts text
normalization system,” Natural Language Engineering,
2015.

[4] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man, Introduction to Automata Theory, Languages, and
Computation (3rd Edition), Addison-Wesley Longman
Publishing Co., Inc., USA, 2006.

[5] Richard Sproat, “Boring problems are sometimes the
most interesting,” Computational Linguistics, vol. 48,
no. 2, pp. 483–490, June 2022.

[6] Richard Sproat, “Lightly supervised learning of text
normalization: Russian number names,” in IEEE Spo-
ken Language Technology Workshop, 2010.

[7] Yang Zhang, Evelina Bakhturina, and Boris Ginsburg,
“NeMo (Inverse) Text Normalization: From Develop-
ment to Production,” in Interspeech, 2021.

[8] John L. Austin, How to do things with words, William
James Lectures delivered at Harvard University in 1955.
Harvard University Press, Cambridge, Massachusetts,
second edition. edition, 1975 - 1975.

[9] Richard Sproat and Navdeep Jaitly, “An RNN model of
text normalization,” in Interspeech, 2017.

[10] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou, “Self-consistency improves chain of
thought reasoning in language models,” arXiv preprint
arXiv:2203.11171, 2022.

[11] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang, “Lost in the middle: How language models use
long contexts,” arXiv preprint arXiv:2307.03172, 2023.


	 Introduction
	 Method
	 Error Taxonomy
	 Dataset
	 Experiments

	 Results
	 Evaluation
	 Final Performance

	 Discussion
	 Conclusion
	 References

