The O Bacteroidetes B-taxonomy_domain are O dominant O bacteria B-taxonomy_domain in O the O human B-species gut O that O are O responsible O for O the O digestion O of O the O complex B-chemical polysaccharides I-chemical that O constitute O “ O dietary O fiber O .” O Although O this O symbiotic O relationship O has O been O appreciated O for O decades O , O little O is O currently O known O about O how O Bacteroidetes B-taxonomy_domain seek O out O and O bind O plant B-taxonomy_domain cell O wall O polysaccharides B-chemical as O a O necessary O first O step O in O their O metabolism O . O Here O , O we O provide O the O first O biochemical B-experimental_method , I-experimental_method crystallographic I-experimental_method , I-experimental_method and I-experimental_method genetic I-experimental_method insight I-experimental_method into O how O two O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type from O the O complex O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O enable O recognition O and O uptake O of O this O ubiquitous O vegetable B-taxonomy_domain polysaccharide B-chemical . O More O importantly O , O this O makes O diet O a O tractable O way O to O manipulate O the O abundance O and O metabolic O output O of O the O microbiota B-taxonomy_domain toward O improved O human B-species health O . O The O archetypal O PUL B-gene - O encoded O system O is O the O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly ( O Sus B-complex_assembly ) O ( O Fig O . O 1B O ) O of O Bacteroides B-species thetaiotaomicron I-species . O The O location O of O SGBP B-protein - I-protein A I-protein / O B B-protein is O presented O in O this O work O ; O the O location O of O GH5 B-protein has O been O empirically O determined O , O and O the O enzymes O have O been O placed O based O upon O their O predicted O cellular O location O . O We O recently O reported O the O detailed O molecular O characterization O of O a O PUL B-gene that O confers O the O ability O of O the O human B-species gut O commensal O B B-species . I-species ovatus I-species ATCC I-species 8483 I-species to O grow O on O a O prominent O family O of O plant B-taxonomy_domain cell O wall O glycans B-chemical , O the O xyloglucans B-chemical ( O XyG B-chemical ). O As O the O Sus B-complex_assembly SGBPs B-protein_type remain O the O only O structurally O characterized O cohort O to O date O , O we O therefore O wondered O whether O such O glycan B-chemical binding O and O function O are O extended O to O other O PUL B-gene that O target O more O complex O and O heterogeneous O polysaccharides B-chemical , O such O as O XyG B-chemical . O These O data O extend O our O current O understanding O of O the O Sus O - O like O glycan B-chemical uptake O paradigm O within O the O Bacteroidetes B-taxonomy_domain and O reveals O how O the O complex O dietary O polysaccharide B-chemical xyloglucan B-chemical is O recognized O at O the O cell O surface O . O Similarly O , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyG B-chemical and O XyGO2 B-chemical with O approximately O equal O affinities B-evidence , O although O in O both O cases O , O Ka B-evidence values O were O nearly O 10 O - O fold O lower O than O those O for O SGBP B-protein - I-protein A I-protein . O Also O in O contrast O to O SGBP B-protein - I-protein A I-protein , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyGO1 B-chemical , O yet O the O affinity B-evidence for O this O minimal B-structure_element repeating I-structure_element unit I-structure_element was O poor O , O with O a O Ka B-evidence value O of O ca O . O 1 O order O of O magnitude O lower O than O for O XyG B-chemical and O XyGO2 B-chemical . O As O anticipated O by O sequence O similarity O , O the O high O - O resolution O tertiary O structure B-evidence of O apo B-protein_state - O SGBP B-protein - I-protein A I-protein ( O 1 O . O 36 O Å O , O Rwork B-evidence = O 14 O . O 7 O %, O Rfree B-evidence = O 17 O . O 4 O %, O residues O 28 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Table O 2 O ) O displays O the O canonical O “ B-structure_element SusD I-structure_element - I-structure_element like I-structure_element ” I-structure_element protein I-structure_element fold I-structure_element dominated O by O four O tetratrico B-structure_element - I-structure_element peptide I-structure_element repeat I-structure_element ( O TPR B-structure_element ) O motifs O that O cradle O the O rest O of O the O structure B-evidence ( O Fig O . O 4A O ). O Cocrystallization B-experimental_method of O SGBP B-protein - I-protein A I-protein with O XyGO2 B-chemical generated O a O substrate B-complex_assembly complex I-complex_assembly structure B-evidence ( O 2 O . O 3 O Å O , O Rwork B-evidence = O 21 O . O 8 O %, O Rfree B-evidence = O 24 O . O 8 O %, O residues O 36 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Fig O . O 4A O and O B O ; O Table O 2 O ) O that O revealed O the O distinct O binding B-site - I-site site I-site architecture O of O the O XyG B-protein_type binding I-protein_type protein I-protein_type . O Seven O of O the O eight O backbone O glucosyl B-chemical residues O of O XyGO2 B-chemical could O be O convincingly O modeled O in O the O ligand B-evidence electron I-evidence density I-evidence , O and O only O two O α B-chemical ( I-chemical 1 I-chemical → I-chemical 6 I-chemical )- I-chemical linked I-chemical xylosyl I-chemical residues O were O observed O ( O Fig O . O 4B O ; O cf O . O The O functional O importance O of O this O platform B-site is O underscored O by O the O observation O that O the O W82A B-mutant W283A B-mutant W306A B-mutant mutant B-protein_state of O SGBP B-protein - I-protein A I-protein , O designated O SGBP B-mutant - I-mutant A I-mutant *, I-mutant is O completely B-protein_state devoid I-protein_state of I-protein_state XyG I-protein_state affinity I-protein_state ( O Table O 3 O ; O see O Fig O . O S4 O in O the O supplemental O material O ). O Protein O name O Ka B-evidence ΔG B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O ΔH B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O TΔS B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O Fold O changeb O M O − O 1 O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant ) O c O 4 O . O 9 O 9 O . O 1 O × O 104 O − O 6 O . O 8 O − O 6 O . O 3 O 0 O . O 5 O SGBP B-protein - I-protein A I-protein ( O W306 B-residue_name_number ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein B I-protein ( O 230 B-residue_range – I-residue_range 489 I-residue_range ) O 0 O . O 7 O ( O 8 O . O 6 O ± O 0 O . O 20 O ) O × O 104 O − O 6 O . O 7 O − O 14 O . O 9 O ± O 0 O . O 1 O − O 8 O . O 2 O SGBP B-protein - I-protein B I-protein ( O Y363A B-mutant ) O 19 O . O 7 O ( O 2 O . O 9 O ± O 0 O . O 10 O ) O × O 103 O − O 4 O . O 7 O − O 18 O . O 1 O ± O 0 O . O 1 O − O 13 O . O 3 O SGBP B-protein - I-protein B I-protein ( O W364A B-mutant ) O ND O Weak O Weak O Weak O Weak O SGBP B-protein - I-protein B I-protein ( O F414A B-mutant ) O 3 O . O 2 O ( O 1 O . O 80 O ± O 0 O . O 03 O ) O × O 104 O − O 5 O . O 8 O − O 11 O . O 4 O ± O 0 O . O 1 O − O 5 O . O 6 O Binding O thermodynamics O are O based O on O the O concentration O of O the O binding O unit O , O XyGO2 B-chemical . O Domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element display O similar O β B-structure_element - I-structure_element sandwich I-structure_element folds I-structure_element ; O domains O B B-structure_element ( O residues O 134 B-residue_range to I-residue_range 230 I-residue_range ) O and O C B-structure_element ( O residues O 231 B-residue_range to I-residue_range 313 I-residue_range ) O can O be O superimposed B-experimental_method onto O domain O A B-structure_element ( O residues O 34 B-residue_range to I-residue_range 133 I-residue_range ) O with O RMSDs B-evidence of O 1 O . O 1 O and O 1 O . O 2 O Å O , O respectively O , O for O 47 O atom O pairs O ( O 23 O % O and O 16 O % O sequence O identity O , O respectively O ). O While O there O is O no O substrate O - O complexed O structure O of O Bacova_04391 B-protein available O , O the O binding B-site site I-site is O predicted O to O include O W241 B-residue_name_number and O Y404 B-residue_name_number , O which O are O proximal O to O the O XyGO B-site binding I-site site I-site in O SGBP B-protein - I-protein B I-protein . O However O , O the O opposing B-protein_state , I-protein_state clamp I-protein_state - I-protein_state like I-protein_state arrangement I-protein_state of O these B-structure_element residues I-structure_element in O Bacova_04391 B-protein is O clearly O distinct O from O the O planar B-site surface I-site arrangement I-site of O the O residues B-structure_element that O interact O with O XyG B-chemical in O SGBP B-protein - I-protein B I-protein ( O described O below O ). O Inspection O of O the O tertiary O structure B-evidence indicates O that O domains O C B-structure_element and O D B-structure_element are O effectively O inseparable O , O with O a O contact O interface O of O 396 O Å2 O . O Despite O the O lack O of O sequence O and O structural O conservation O , O a O similarly O positioned O proline B-residue_name joins O the O Ig B-structure_element - I-structure_element like I-structure_element domains I-structure_element of O the O xylan O - O binding O Bacova_04391 B-protein and O the O starch B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type SusE B-protein and O SusF B-protein . O We O speculate O that O this O is O a O biologically O important O adaptation O that O serves O to O project O the O glycan B-site binding I-site site I-site of O these O proteins O far O from O the O membrane O surface O . O In O these O growth B-experimental_method experiments I-experimental_method , O overnight O cultures O of O strains O grown O on O minimal O medium O plus O glucose B-chemical were O back O - O diluted O 1 O : O 100 O - O fold O into O minimal O medium O containing O 5 O mg O / O ml O of O the O reported O carbohydrate B-chemical . O Complementation B-experimental_method of O the O ΔSGBP B-mutant - I-mutant A I-mutant strain O ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-protein - I-protein A I-protein ) O restores O growth O to O wild B-protein_state - I-protein_state type I-protein_state rates O on O xyloglucan B-chemical and O XyGO1 B-chemical , O yet O the O calculated O rate O of O the O complemented O strain O is O ~ O 72 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O on O XyGO2 B-chemical ; O similar O results O were O obtained O for O the O SGBP B-protein - I-protein B I-protein complemented O strain O despite O the O fact O that O the O growth O curves O do O not O appear O much O different O ( O see O Fig O . O S8C O and O F O ). O Growth O was O measured O over O time O in O minimal O medium O containing O ( O A O ) O XyG B-chemical , O ( O B O ) O XyGO2 B-chemical , O ( O C O ) O XyGO1 B-chemical , O ( O D O ) O glucose B-chemical , O and O ( O E O ) O xylose B-chemical . O In O panel O F O , O the O growth O rate O of O each O strain O on O the O five O carbon O sources O is O displayed O , O and O in O panel O G O , O the O normalized O lag B-evidence time I-evidence of O each O culture O , O relative O to O its O growth O on O glucose B-chemical , O is O displayed O . O Intriguingly O , O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O ( O ΔBacova_02650 B-mutant ) O ( O cf O . O Fig O . O 1B O ) O exhibited O a O minor O growth O defect O on O both O XyG B-chemical and O XyGO2 B-chemical , O with O rates O 84 O . O 6 O % O and O 93 O . O 9 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O . O However O , O growth O of O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O on O XyGO1 B-chemical was O 54 O . O 2 O % O the O rate O of O the O parental O strain O , O despite O the O fact O that O SGBP B-protein - I-protein B I-protein binds O this O substrate O ca O . O Taken O together O , O the O data O indicate O that O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein functionally O complement O each O other O in O the O capture O of O XyG B-chemical polysaccharide B-chemical , O while O SGBP B-protein - I-protein B I-protein may O allow O B B-species . I-species ovatus I-species to O scavenge O smaller O XyGOs B-chemical liberated O by O other O gut O commensals O . O It O may O then O be O that O only O after O a O sufficient O amount O of O glycan B-chemical is O processed O and O imported O by O the O cell O is O XyGUL B-gene upregulated O and O exponential O growth O on O the O glycan B-chemical can O begin O . O Likewise O , O such O cognate O interactions O between O homologous O protein O pairs O such O as O SGBP B-protein - I-protein A I-protein and O its O TBDT B-protein_type may O underlie O our O observation O that O a O ΔSGBP B-mutant - I-mutant A I-mutant mutant B-protein_state cannot O grow O on O xyloglucan B-chemical . O Thus O , O understanding O glycan B-chemical capture O at O the O cell O surface O is O fundamental O to O explaining O , O and O eventually O predicting O , O how O the O carbohydrate O content O of O the O diet O shapes O the O gut O community O structure O as O well O as O its O causative O health O effects O . O PUL B-gene - O encoded O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain are O larger O than O the O well O - O characterized O iron B-protein_type - I-protein_type targeting I-protein_type TBDTs I-protein_type from O many O Proteobacteria B-taxonomy_domain and O are O further O distinguished O as O the O only O known O glycan B-protein_type - I-protein_type importing I-protein_type TBDTs I-protein_type coexpressed O with O an O SGBP B-protein_type . O Our O observation O here O that O the O physical O presence O of O the O SusD B-protein homolog O SGBP B-protein - I-protein A I-protein , O independent O of O XyG B-chemical - O binding O ability O , O is O both O necessary O and O sufficient O for O XyG B-chemical utilization O further O supports O a O model O of O glycan B-chemical import O whereby O the O SusC B-protein_type - I-protein_type like I-protein_type TBDTs I-protein_type and O the O SusD B-protein_type - I-protein_type like I-protein_type SGBPs I-protein_type must O be O intimately O associated O to O support O glycan B-chemical uptake O ( O Fig O . O 1C O ). O A O molecular O understanding O of O glycan B-chemical uptake O by O human B-species gut O bacteria B-taxonomy_domain is O therefore O central O to O the O development O of O strategies O to O improve O human B-species health O through O manipulation O of O the O microbiota B-taxonomy_domain . O A O high B-chemical affinity I-chemical IL I-chemical - I-chemical 17A I-chemical peptide I-chemical antagonist I-chemical ( O HAP B-chemical ) O of O 15 B-residue_range residues I-residue_range was O identified O through O phage B-experimental_method - I-experimental_method display I-experimental_method screening I-experimental_method followed O by O saturation B-experimental_method mutagenesis I-experimental_method optimization I-experimental_method and O amino B-experimental_method acid I-experimental_method substitutions I-experimental_method . O The O family O of O IL B-protein_type - I-protein_type 17 I-protein_type cytokines I-protein_type and O receptors O consists O of O six O polypeptides O , O IL B-protein - I-protein 17A I-protein - I-protein F I-protein , O and O five O receptors O , O IL B-protein - I-protein 17RA I-protein - I-protein E I-protein . O IL B-protein - I-protein 17A I-protein is O secreted O from O activated O Th17 O cells O , O and O several O innate O immune O T O cell O types O including O macrophages O , O neutrophils O , O natural O killer O cells O , O and O dendritic O cells O . O There O has O been O active O research O in O identifying O orally O available O chemical O entities O that O would O functionally O antagonize O IL B-protein - I-protein 17A I-protein - O mediated O signaling O . O Since O IL B-protein - I-protein 17RA I-protein is O a O shared O receptor B-protein_type for O at O least O IL B-protein - I-protein 17A I-protein , O IL B-protein - I-protein 17F I-protein , O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17F I-complex_assembly and O IL B-protein - I-protein 17E I-protein , O we O chose O to O seek O IL B-protein - I-protein 17A I-protein - O specific O inhibitors O that O may O have O more O defined O pharmacological O responses O than O IL B-protein - I-protein 17RA I-protein inhibitors O . O Positive B-experimental_method phage I-experimental_method pools I-experimental_method were O then O sub B-experimental_method - I-experimental_method cloned I-experimental_method into O a O maltose B-experimental_method - I-experimental_method binding I-experimental_method protein I-experimental_method ( I-experimental_method MBP I-experimental_method ) I-experimental_method fusion I-experimental_method system I-experimental_method . O Sequences O identified O from O phage B-experimental_method clones I-experimental_method were O chemically B-experimental_method synthesized I-experimental_method ( O Supplementary O Table O 1 O ) O and O tested O for O inhibition O of O IL B-protein - I-protein 17A I-protein binding O to O IL B-protein - I-protein 17RA I-protein ( O Table O 1 O ). O In O particular O , O at O position O 5 B-residue_number ( O 13 B-chemical ), O substitution B-experimental_method of O methionine B-residue_name with O alanine B-residue_name resulted O in O a O seven O fold O improvement O in O potency O ( O 80 O nM O versus O 11 O nM O respectively O ). O Since O the O replacement B-experimental_method of O methionine B-residue_name at O position O 5 B-residue_number with O alanine B-residue_name was O beneficial O , O the O additional O hydrophobic O amino O acids O isoleucine B-residue_name ( O 24 B-chemical ), O leucine B-residue_name ( O 25 B-chemical ) O and O valine B-residue_name ( O 26 B-chemical ) O were O evaluated O and O an O additional O two O - O three O fold O improvement O in O binding O was O observed O for O the O valine B-residue_name and O isoleucine B-residue_name replacements B-experimental_method in O comparison O with O alanine B-residue_name . O Dimerization O of O HAP B-chemical can O further O increase O its O potency O Orthogonal O assays O to O confirm O HAP B-chemical antagonism O The O relatively O high O IC50 B-evidence values O in O this O assay O ( O Table O 3 O ) O are O probably O due O to O the O high O IL B-protein - I-protein 17A I-protein concentration O ( O 100 O ng O / O ml O ) O needed O for O detection O of O IL B-protein_type - I-protein_type 6 I-protein_type . O Crystallization B-experimental_method and I-experimental_method structure I-experimental_method determination I-experimental_method Crystals B-evidence of O the O Fab B-complex_assembly / I-complex_assembly truncated I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly complex O diffracted O to O 2 O . O 2 O Å O , O and O the O Fab B-complex_assembly / I-complex_assembly full I-complex_assembly length I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly complex O diffracted O to O 3 O . O 0 O Å O ( O Supplementary O Table O S3 O ). O Two O copies O of O HAP B-chemical bind O to O the O N O - O terminal O of O the O cytokine B-protein_type dimer B-oligomeric_state , O also O symmetrically O , O and O each O HAP B-chemical molecule O also O interacts O with O both O IL B-protein - I-protein 17A I-protein monomers B-oligomeric_state ( O Fig O . O 2 O ). O Inhibition O mechanism O of O IL B-protein - I-protein 17A I-protein signaling O by O HAP B-chemical Structure O basis O for O the O observed O SAR B-experimental_method of O peptides O The O C O - O terminal O Asn14 B-residue_name_number and O Lys15 B-residue_name_number of O HAP B-chemical are O not O directly O involved O in O interactions O with O IL B-protein - I-protein 17A I-protein , O and O this O is O reflected O in O the O gradual O reduction O in O activity O caused O by O C O - O terminal O truncations B-experimental_method ( O 35 B-chemical and O 36 B-chemical , O Table O 2 O ). O For O example O , O inspection O of O the O published O IL B-protein - I-protein 17F I-protein crystal B-evidence structure I-evidence ( O PDB O code O 1JPY O ) O revealed O a O pocket B-site of O IL B-protein - I-protein 17F I-protein similar O to O that O of O IL B-protein - I-protein 17A I-protein for O W12 B-residue_name_number of O HAP B-chemical binding O , O but O it O is O occupied O by O a O Phe B-structure_element - I-structure_element Phe I-structure_element motif I-structure_element at O the O N O - O terminal O peptide O of O IL B-protein - I-protein 17F I-protein . O We O have O also O determined B-experimental_method the O complex B-evidence structure I-evidence of O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly , O which O provides O the O structural O basis O for O HAP B-chemical ’ O s O antagonism O to O IL B-protein - I-protein 17A I-protein signaling O . O Since O apo B-protein_state IL B-protein - I-protein 17A I-protein is O a O homodimer B-oligomeric_state with O 2 O fold O symmetry O , O IL B-protein - I-protein 17RA I-protein potentially O can O bind O to O either O face O of O the O IL B-protein - I-protein 17A I-protein dimer B-oligomeric_state . O The O interaction O of O IL B-protein - I-protein 17A I-protein with O IL B-protein - I-protein 17RA I-protein has O an O extensive O interface B-site , O covering O ~ O 2 O , O 200 O Å2 O surface O area O of O IL B-protein - I-protein 17A I-protein . O One O way O of O further O improving O HAP B-chemical ’ O s O potency O is O by O dimerization O . O KD B-evidence determined O by O the O standard O equation O , O KD B-evidence = O kd B-evidence / O ka B-evidence . O ( O B O ) O HAP B-chemical inhibits O SPR B-experimental_method signaling O of O IL B-protein - I-protein 17A I-protein binding O to O immobilized B-protein_state IL B-protein - I-protein 17RA I-protein . O Overall O structure B-evidence of O the O Fab B-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly complex O in O ribbon O presentation O . O ( O C O ) O As O a O comparison O , O the O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17RA I-complex_assembly complex O was O shown O with O IL B-protein - I-protein 17A I-protein in O the O same O orientation O . O ELISA B-experimental_method competition I-experimental_method activity I-experimental_method of O peptide O analogues O of O 1 O . O The O amount O of O NadA B-protein on O the O bacterial B-taxonomy_domain surface O is O of O direct O relevance O in O the O constant O battle O of O host O - O pathogen O interactions O : O it O influences O the O ability O of O the O pathogen O to O engage O human B-species cell O surface O - O exposed O receptors O and O , O conversely O , O the O bacterial B-taxonomy_domain susceptibility O to O the O antibody O - O mediated O immune O response O . O NadR B-protein also O mediates O ligand O - O dependent O regulation O of O many O other O meningococcal B-taxonomy_domain genes O , O for O example O the O highly O - O conserved O multiple O adhesin O family O ( O maf O ) O genes O , O which O encode O proteins O emerging O with O important O roles O in O host O - O pathogen O interactions O , O immune O evasion O and O niche O adaptation O . O The O abundance O of O surface O - O exposed O NadA B-protein is O regulated O by O the O ligand B-protein_type - I-protein_type responsive I-protein_type transcriptional I-protein_type repressor I-protein_type NadR B-protein . O Here O , O we O present O functional B-evidence , I-evidence biochemical I-evidence and I-evidence high I-evidence - I-evidence resolution I-evidence structural I-evidence data I-evidence on O NadR B-protein . O Our O studies O provide O detailed O insights O into O how O small O molecule O ligands O , O such O as O hydroxyphenylacetate B-chemical derivatives O , O found O in O relevant O host O niches O , O modulate O the O structure O and O activity O of O NadR B-protein , O by O ‘ O conformational O selection O ’ O of O inactive B-protein_state forms O . O The O DNA O - O binding O activity O of O NadR B-protein is O attenuated O in O vitro O upon O addition O of O various O hydroxyphenylacetate B-chemical ( O HPA B-chemical ) O derivatives O , O including O 4 B-chemical - I-chemical HPA I-chemical . O Moreover O , O these O findings O are O important O because O the O activity O of O NadR B-protein impacts O the O potential O coverage O provided O by O anti O - O NadA B-protein antibodies O elicited O by O the O Bexsero O vaccine O and O influences O host O - O bacteria B-taxonomy_domain interactions O that O contribute O to O meningococcal B-taxonomy_domain pathogenesis O . O In O analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method high I-experimental_method - I-experimental_method performance I-experimental_method liquid I-experimental_method chromatography I-experimental_method ( O SE B-experimental_method - I-experimental_method HPLC I-experimental_method ) O experiments O coupled O with O multi B-experimental_method - I-experimental_method angle I-experimental_method laser I-experimental_method light I-experimental_method scattering I-experimental_method ( O MALLS B-experimental_method ), O NadR B-protein presented O a O single O species O with O an O absolute O molecular O mass O of O 35 O kDa O ( O S1 O Fig O ). O ( O A O ) O Molecular O structures O of O 3 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 4 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O MW O 186 O . O 6 O ) O and O salicylic B-chemical acid I-chemical ( O MW O 160 O . O 1 O ). O ( O B O ) O DSC B-experimental_method profiles B-evidence , O colored O as O follows O : O apo B-protein_state - O NadR B-protein ( O violet O ), O NadR B-complex_assembly + I-complex_assembly salicylate I-complex_assembly ( O red O ), O NadR B-complex_assembly + I-complex_assembly 3 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ), O NadR B-complex_assembly + I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O blue O ), O NadR B-complex_assembly + I-complex_assembly 3Cl I-complex_assembly , I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O pink O ). O All O DSC B-experimental_method profiles B-evidence are O representative O of O triplicate O experiments O . O However O , O steady B-experimental_method - I-experimental_method state I-experimental_method SPR I-experimental_method analyses O of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O allowed O determination O of O the O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O ( O Table O 1 O and O S2 O Fig O ). O The O interactions O of O 4 B-chemical - I-chemical HPA I-chemical and O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical with O NadR B-protein exhibited O KD B-evidence values O of O 1 O . O 5 O mM O and O 1 O . O 1 O mM O , O respectively O . O To O fully O characterize O the O NadR B-protein / O HPA B-chemical interactions O , O we O sought O to O determine O crystal B-evidence structures I-evidence of O NadR B-protein in O ligand B-protein_state - I-protein_state bound I-protein_state ( O holo B-protein_state ) O and O ligand B-protein_state - I-protein_state free I-protein_state ( O apo B-protein_state ) O forms O . O The O map B-evidence is O contoured O at O 1σ O and O the O figure O was O prepared O with O a O density B-evidence mesh I-evidence carve O factor O of O 1 O . O 7 O , O using O Pymol O ( O www O . O pymol O . O org O ). O Only O the O mutation O L130K B-mutant has O a O noteworthy O effect O on O the O oligomeric O state O , O inducing O a O second O peak O with O a O longer O retention O time O and O a O second O peak O maximum O at O 18 O . O 6 O min O . O To O a O much O lesser O extent O , O the O L133K B-mutant mutation O also O appears O to O induce O a O ‘ O shoulder O ’ O to O the O main O peak O , O suggesting O very O weak O ability O to O disrupt O the O dimer B-oligomeric_state . O ( O D O ) O SE B-experimental_method - I-experimental_method HPLC I-experimental_method / I-experimental_method MALLS I-experimental_method analyses O of O the O L130K B-mutant mutant B-protein_state , O shows O 20 O % O dimer B-oligomeric_state and O 80 O % O monomer B-oligomeric_state . O The O ligand O showed O a O different O position O and O orientation O compared O to O salicylate B-chemical complexed B-protein_state with I-protein_state MTH313 B-protein and O ST1710 B-protein ( O see O Discussion O ). O At O the O other O ‘ O end O ’ O of O the O ligand O , O the O 4 O - O hydroxyl O group O was O proximal O to O AspB36 B-residue_name_number , O with O which O it O may O establish O an O H B-bond_interaction - I-bond_interaction bond I-bond_interaction ( O see O bond O distances O in O Table O 3 O ). O The O water B-chemical molecule O observed O in O the O pocket O was O bound O by O the O carboxylate O group O and O the O side O chains O of O SerA9 B-residue_name_number and O AsnA11 B-residue_name_number . O In O addition O to O the O H B-bond_interaction - I-bond_interaction bonds I-bond_interaction involving O the O carboxylate O and O hydroxyl O groups O of O 4 B-chemical - I-chemical HPA I-chemical , O binding O of O the O phenyl O moiety O appeared O to O be O stabilized O by O several O van B-bond_interaction der I-bond_interaction Waals I-bond_interaction ’ I-bond_interaction contacts I-bond_interaction , O particularly O those O involving O the O hydrophobic O side O chain O atoms O of O LeuB21 B-residue_name_number , O MetB22 B-residue_name_number , O PheB25 B-residue_name_number , O LeuB29 B-residue_name_number and O ValB111 B-residue_name_number ( O Fig O 4A O ). O The O presence O of O a O single O hydroxyl O group O at O position O 2 O , O as O in O 2 B-chemical - I-chemical HPA I-chemical , O rather O than O at O position O 4 O , O would O eliminate O the O possibility O of O favorable O interactions O with O AspB36 B-residue_name_number , O resulting O in O the O lack O of O NadR B-protein regulation O by O 2 B-chemical - I-chemical HPA I-chemical described O previously O . O Firstly O , O NadR B-protein is O expected O to O be O covalently O immobilized O on O the O sensor O chip O as O a O dimer B-oligomeric_state in O random O orientations O , O since O it O is O a O stable B-protein_state dimer B-oligomeric_state in O solution O and O has O sixteen O lysines B-residue_name well O - O distributed O around O its O surface O , O all O able O to O act O as O potential O sites O for O amine O coupling O to O the O chip O , O and O none O of O which O are O close O to O the O ligand B-site - I-site binding I-site pocket I-site . O Secondly O , O the O HPA B-chemical analytes O are O all O very O small O ( O MW O 150 O – O 170 O , O Fig O 1A O ) O and O therefore O are O expected O to O be O able O to O diffuse O readily O into O all O potential O binding B-site sites I-site , O irrespective O of O the O random O orientations O of O the O immobilized O NadR B-protein dimers B-oligomeric_state on O the O chip O . O The O crystallographic B-evidence data I-evidence , O supported O by O the O SPR B-experimental_method studies O of O binding B-evidence stoichiometry I-evidence , O revealed O the O lack O of O a O second O 4 B-chemical - I-chemical HPA I-chemical molecule O in O the O homodimer B-oligomeric_state , O suggesting O negative O co O - O operativity O , O a O phenomenon O previously O described O for O the O MTH313 B-protein / O salicylate B-chemical interaction O and O for O other O MarR B-protein_type family O proteins O . O However O , O since O residues O of O helix B-structure_element α6 B-structure_element were O not O directly O involved O in O ligand O binding O , O an O explanation O for O the O lack O of O 4 B-chemical - I-chemical HPA I-chemical in O monomer B-oligomeric_state A B-structure_element did O not O emerge O by O analyzing O only O these O backbone O atom O positions O , O suggesting O that O a O more O complex O series O of O allosteric O events O may O occur O . O Specifically O , O upon O analysis O with O the O CASTp B-experimental_method software O , O the O pocket B-site in O chain B-structure_element B I-structure_element containing O the O 4 B-chemical - I-chemical HPA I-chemical exhibited O a O total O volume O of O approximately O 370 O Å3 O , O while O the O pocket B-site in O chain B-structure_element A I-structure_element was O occupied O by O these O three O side O chains O that O adopted O ‘ O inward B-protein_state ’ O positions O and O thereby O divided O the O space O into O a O few O much O smaller O pockets O , O each O with O volume O < O 50 O Å3 O , O evidently O rendering O chain B-structure_element A I-structure_element unfavorable O for O ligand O binding O . O Although O more O comprehensive O NMR B-experimental_method experiments O and O full O chemical O shift O assignment O of O the O spectra B-evidence would O be O required O to O precisely O define O this O multi O - O state O behavior O , O the O NMR B-experimental_method data O clearly O demonstrate O that O NadR B-protein exhibits O conformational O flexibility O which O is O modulated O by O 4 B-chemical - I-chemical HPA I-chemical in O solution O . O ( O A O ) O The O holo B-protein_state - O homodimer B-oligomeric_state structure B-evidence is O shown O as O green O and O blue O cartoons O , O for O chain B-structure_element A I-structure_element and I-structure_element B I-structure_element , O respectively O , O while O the O two O homodimers B-oligomeric_state of O apo B-protein_state - O NadR B-protein are O both O cyan O and O pale O blue O for O chains O A B-structure_element / I-structure_element C I-structure_element and O B B-structure_element / I-structure_element D I-structure_element , O respectively O . O The O three O homodimers B-oligomeric_state ( O chains O AB B-structure_element holo B-protein_state , O AB B-structure_element apo B-protein_state , O and O CD B-structure_element apo B-protein_state ) O were O overlaid B-experimental_method by O structural B-experimental_method alignment I-experimental_method exclusively O of O all O heavy O atoms O in O residues O R64 B-residue_range - I-residue_range A77 I-residue_range ( O shown O in O red O , O with O side O chain O sticks O ) O of O chains O A B-structure_element holo B-protein_state , O A B-structure_element apo B-protein_state , O and O C B-structure_element apo B-protein_state , O belonging O to O helix B-structure_element α4 B-structure_element ( O left O ). O Thus O , O the O apo B-protein_state - O homodimer B-oligomeric_state AB B-structure_element presented O the O DNA B-structure_element - I-structure_element binding I-structure_element helices I-structure_element in O a O conformation O similar O to O that O observed O in O the O protein O : O DNA O complex O of O OhrR B-complex_assembly : I-complex_assembly ohrA I-complex_assembly from O Bacillus B-species subtilis I-species ( O Fig O 8C O ). O This O mutagenesis B-experimental_method data O revealed O that O NadR B-protein residues O His7 B-residue_name_number , O Ser9 B-residue_name_number , O Asn11 B-residue_name_number and O Phe25 B-residue_name_number play O key O roles O in O the O ligand O - O mediated O regulation O of O NadR B-protein ; O they O are O each O involved O in O the O controlled O de O - O repression O of O the O nadA B-gene promoter O and O synthesis O of O NadA B-protein in O response O to O 4 B-chemical - I-chemical HPA I-chemical in O vivo O . O Given O the O importance O of O NadR B-protein - O mediated O regulation O of O NadA B-protein levels O in O the O contexts O of O meningococcal B-taxonomy_domain pathogenesis O , O we O sought O to O characterize O NadR B-protein , O and O its O interaction O with O ligands O , O at O atomic O resolution O . O While O some O flexibility O of O helix B-structure_element α4 B-structure_element was O also O observed O in O the O two O apo B-protein_state - O structures B-evidence , O concomitant O changes O in O the O dimer B-site interfaces I-site were O not O observed O , O possibly O due O to O the O absence B-protein_state of I-protein_state ligand I-protein_state . O The O latter O may O influence O the O surface O abundance O or O secretion O of O maf O proteins O , O an O emerging O class O of O highly B-protein_state conserved I-protein_state meningococcal B-taxonomy_domain putative O adhesins O and O toxins O with O many O important O roles O . O Further O work O is O required O to O investigate O how O the O two O different O promoter O types O influence O the O ligand O - O responsiveness O of O NadR B-protein during O bacterial B-taxonomy_domain infection O and O may O provide O insights O into O the O regulatory O mechanisms O occurring O during O these O host O - O pathogen O interactions O . O Structure O of O an O OhrR O - O ohrA B-gene operator O complex O reveals O the O DNA O binding O mechanism O of O the O MarR O family O Structural O determinant O for O inducing O RORgamma B-protein specific O inverse O agonism O triggered O by O a O synthetic O benzoxazinone B-chemical ligand O Our O goal O was O to O develop O a O RORγ B-protein specific O inverse B-protein_state agonist I-protein_state that O would O help O down O regulate O pro O - O inflammatory O gene O transcription O by O disrupting O the O protein O protein O interaction O with O coactivator O proteins O as O a O therapeutic O agent O . O Using O an O in B-experimental_method vivo I-experimental_method reporter I-experimental_method assay I-experimental_method , O we O show O that O the O inverse B-protein_state agonist I-protein_state BIO399 B-chemical displayed O specificity O for O RORγ B-protein over O ROR B-protein_type sub O - O family O members O α B-protein and O β B-protein . O The O synthetic O benzoxazinone B-chemical ligands O identified O in O our O FRET B-experimental_method assay I-experimental_method have O an O agonist B-protein_state ( O BIO592 B-chemical ) O or O inverse B-protein_state agonist I-protein_state ( O BIO399 B-chemical ) O effect O by O stabilizing O or O destabilizing O the O agonist B-protein_state conformation O of O RORγ B-protein . O Our O structural B-experimental_method investigation I-experimental_method of O the O BIO592 B-chemical agonist B-protein_state and O BIO399 B-chemical inverse B-protein_state agonist I-protein_state structures B-evidence identified O residue O Met358 B-residue_name_number on O RORγ B-protein as O the O trigger O for O RORγ B-protein specific O inverse O agonism O . O Retinoid B-protein - I-protein related I-protein orphan I-protein receptor I-protein gamma I-protein ( O RORγ B-protein ) O is O a O transcription B-protein_type factor I-protein_type belonging O to O a O sub O - O family O of O nuclear B-protein_type receptors I-protein_type that O includes O two O closely O related O members O RORα B-protein and O RORβ B-protein . O Here O we O present O the O identification O of O two O synthetic O benzoxazinone B-chemical RORγ B-protein ligands O , O a O weak O agonist B-protein_state BIO592 B-chemical ( O Fig O . O 1a O ) O and O an O inverse B-protein_state agonist I-protein_state BIO399 B-chemical ( O Fig O . O 1b O ) O which O were O identified O using O a O Fluorescence B-experimental_method Resonance I-experimental_method Energy I-experimental_method transfer I-experimental_method ( I-experimental_method FRET I-experimental_method ) I-experimental_method based I-experimental_method assay I-experimental_method that O monitored O coactivator O peptide O recruitment O . O Using O partial B-experimental_method proteolysis I-experimental_method in O combination O with O mass B-experimental_method spectrometry I-experimental_method analysis O we O demonstrate O that O the O AF2 B-structure_element helix I-structure_element of O RORγ B-protein destabilizes O upon O BIO399 B-chemical ( O inverse B-protein_state agonist I-protein_state ) O binding O . O Using O a O FRET B-experimental_method based I-experimental_method assay I-experimental_method we O discovered O agonist B-protein_state BIO592 B-chemical ( O Fig O . O 1a O ) O which O increased O the O coactivator O peptide O TRAP220 B-chemical recruitment O to O RORγ B-protein ( O EC50 B-evidence 0f O 58nM O and O Emax B-evidence of O 130 O %) O and O a O potent O inverse B-protein_state agonist I-protein_state BIO399 B-chemical ( O Fig O . O 1b O ) O which O inhibited O coactivator O recruitment O ( O IC50 B-evidence : O 4 O . O 7nM O ). O c O EBI96 B-chemical coactivator O peptide O bound B-protein_state in I-protein_state the O coactivator B-site pocket I-site of O RORγ B-protein Specific O proteolytic O positions O on O RORγ518 B-protein when O treated B-experimental_method with I-experimental_method Actinase B-protein E I-protein alone O ( O Green O ) O or O in O the O presence B-protein_state of I-protein_state BIO399 B-chemical ( O Red O ) O and O shared O proteolytic B-site sites I-site ( O Yellow O ) O Several O rounds O of O cocrystallization B-experimental_method attempts O with O RORγ518 B-protein or O other O RORγ B-protein AF2 B-structure_element helix I-structure_element containing O constructs O complexed B-protein_state with I-protein_state BIO399 B-chemical had O not O produced O crystals B-evidence . O We O reasoned O that O if O we O could O remove O the O unfolded B-protein_state AF2 B-structure_element helix I-structure_element using O proteolysis B-experimental_method we O could O produce O a O binary O complex O more O amenable O to O crystallization B-experimental_method . O The O aeRORγ493 B-complex_assembly / I-complex_assembly 4 I-complex_assembly BIO399 I-complex_assembly structure B-evidence diverged O at O the O c O - O terminal O end O of O Helix B-structure_element 11 I-structure_element from O the O RORγ518 B-complex_assembly BIO592 I-complex_assembly EBI96 I-complex_assembly structure B-evidence , O where O helix B-structure_element 11 I-structure_element unwinds O into O a O random O coil O after O residue O L475 B-residue_name_number . O BIO399 B-chemical and O Inverse B-protein_state agonist I-protein_state T0901317 B-chemical bind O in O a O collapsed B-protein_state conformation O distinct O from O other O RORγ B-protein Inverse O Agonists O Cocrystal B-evidence structures I-evidence However O , O the O inverse O agonism O trigger O of O BIO399 B-chemical , O residue O Met358 B-residue_name_number , O is O a O leucine B-residue_name in O both O RORα B-protein and O β B-protein . O The O Structural O Basis O of O Coenzyme B-chemical A I-chemical Recycling O in O a O Bacterial B-taxonomy_domain Organelle O The O majority O of O catabolic B-protein_state BMCs B-complex_assembly ( O metabolosomes B-complex_assembly ) O compartmentalize O a O common O core O of O enzymes O to O metabolize O compounds O via O a O toxic O and O / O or O volatile O aldehyde B-chemical intermediate O . O Accordingly O , O PduL B-protein_type and O Pta B-protein_type exemplify O functional O , O but O not O structural O , O convergent O evolution O . O This O enzyme O , O PduL B-protein_type , O is O exclusively B-protein_state associated O with O organelles O called O bacterial B-taxonomy_domain microcompartments B-complex_assembly , O which O are O used O to O catabolize O various O compounds O . O The O aldehyde B-chemical is O subsequently O converted O into O an O acyl B-chemical - I-chemical CoA I-chemical by O aldehyde B-protein_type dehydrogenase I-protein_type , O which O uses O NAD B-chemical + I-chemical and O CoA B-chemical as O cofactors O . O NAD B-chemical + I-chemical is O recycled O via O alcohol B-protein_type dehydrogenase I-protein_type , O and O CoA B-chemical is O recycled O via O phosphotransacetylase B-protein_type ( O PTAC B-protein_type ) O ( O Fig O 1 O ). O They O can O also O work O in O the O reverse O direction O to O activate O acetate B-chemical to O the O CoA B-chemical - I-chemical thioester I-chemical . O The O canonical O PTAC B-protein_type , O Pta B-protein_type , O is O an O ancient O enzyme O found O in O some O eukaryotes B-taxonomy_domain and O archaea B-taxonomy_domain , O and O widespread O among O the O bacteria B-taxonomy_domain ; O 90 O % O of O the O bacterial B-taxonomy_domain genomes O in O the O Integrated O Microbial O Genomes O database O contain O a O gene O encoding O the O PTA_PTB B-protein_type phosphotransacylase I-protein_type ( O Pfam O domain O PF01515 B-structure_element ). O The O primary O structure O of O PduL B-protein_type homologs O is O subdivided O into O two O PF06130 B-structure_element domains O , O each O roughly O 80 B-residue_range residues I-residue_range in I-residue_range length I-residue_range . O Structure B-experimental_method Determination I-experimental_method of O PduL B-protein_type Remarkably O , O after O removing B-experimental_method the O N O - O terminal O putative O EP B-structure_element ( O 27 B-residue_range amino I-residue_range acids I-residue_range ), O most O of O the O sPduLΔEP B-mutant protein O was O in O the O soluble O fraction O upon O cell O lysis O . O A O CoA B-chemical cofactor O as O well O as O two O metal O ions O are O clearly O resolved O in O the O density B-evidence ( O for O omit B-evidence maps I-evidence of O CoA B-chemical see O S2 O Fig O ). O Distances O between O atom O centers O are O indicated O in O Å O . O ( O a O ) O Coenzyme B-chemical A I-chemical containing O , O ( O b O ) O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence . O ( O d O )–( O f O ): O Chromatograms B-evidence of O sPduL B-protein ( O d O ), O rPduL B-protein ( O e O ), O and O pPduL B-protein ( O f O ) O post O - O preparative O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method with O different O size O fractions O separated O , O applied O over O an O analytical O size O exclusion O column O ( O see O Materials O and O Methods O ). O The O phosphate B-chemical contacts O both O zinc B-chemical atoms O ( O Fig O 4b O ) O and O replaces O the O coordination O by O CoA B-chemical at O Zn1 B-chemical ; O the O coordination O for O Zn2 B-chemical changes O from O octahedral O with O three O bound O waters B-chemical to O tetrahedral O with O a O phosphate B-chemical ion O as O one O of O the O ligands O ( O Fig O 4b O ). O The O two O zinc B-chemical atoms O are O slightly O closer O together O in O the O phosphate B-protein_state - I-protein_state bound I-protein_state form O ( O 5 O . O 8 O Å O vs O 6 O . O 3 O Å O ), O possibly O due O to O the O bridging O effect O of O the O phosphate B-chemical . O rPduL B-protein full B-protein_state length I-protein_state runs O as O Mw B-evidence = O 140 O . O 3 O kDa O +/− O 1 O . O 2 O % O and O Mn B-evidence = O 140 O . O 5 O kDa O +/− O 1 O . O 2 O %. O Moreover O , O the O PduL B-protein_type crystal B-evidence structures I-evidence offer O a O clue O as O to O how O required O cofactors O enter O the O BMC B-complex_assembly lumen O during O assembly O . O The O native O substrate O for O the O forward O reaction O of O rPduL B-protein and O pPduL B-protein , O propionyl B-chemical - I-chemical CoA I-chemical , O most O likely O binds O to O the O enzyme O in O the O same O way O at O the O observed O nucleotide B-chemical and O pantothenic B-chemical acid I-chemical moiety O , O but O the O propionyl O group O in O the O CoA B-chemical - I-chemical thioester I-chemical might O point O in O a O different O direction O . O Indeed O , O in O the O majority O of O PduLs B-protein_type encoded O in O pvm B-gene loci I-gene , O Gln77 B-residue_name_number is O substituted O by O either O a O Tyr B-residue_name or O Phe B-residue_name , O whereas O it O is O typically O a O Gln B-residue_name or O Glu B-residue_name in O PduLs B-protein_type in O all O other O BMC B-complex_assembly types O that O degrade O acetyl B-chemical - I-chemical or O propionyl B-chemical - I-chemical CoA I-chemical . O A O comparison B-experimental_method of O the O PduL B-protein_type active B-site site I-site to O that O of O the O functionally O identical O Pta B-protein_type suggests O that O the O two O enzymes O have O distinctly O different O mechanisms O . O The O two O high O - O resolution O crystal B-evidence structures I-evidence presented O here O will O serve O as O the O foundation O for O mechanistic O studies O on O this O noncanonical O PTAC B-protein_type enzyme O to O determine O how O the O dimetal B-site active I-site site I-site functions O to O catalyze O both O forward O and O reverse O reactions O . O A O detailed O understanding O of O the O underlying O principles O governing O the O assembly O and O internal O structural O organization O of O BMCs B-complex_assembly is O a O requisite O for O synthetic O biologists O to O design O custom O nanoreactors O that O use O BMC B-complex_assembly architectures O as O a O template O . O Furthermore O , O given O the O growing O number O of O metabolosomes B-complex_assembly implicated O in O pathogenesis O , O the O PduL B-protein_type structure B-evidence will O be O useful O in O the O development O of O therapeutics O . O EctC B-protein forms O a O dimer B-oligomeric_state with O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state arrangement O , O both O in O solution O and O in O the O crystal B-evidence structure I-evidence . O We O show O for O the O first O time O that O ectoine B-protein_type synthase I-protein_type harbors O a O catalytically O important O metal B-chemical co O - O factor O ; O metal B-experimental_method depletion I-experimental_method and I-experimental_method reconstitution I-experimental_method experiments I-experimental_method suggest O that O EctC B-protein is O probably O an O iron B-protein_state - I-protein_state dependent I-protein_state enzyme O . O Structure B-experimental_method - I-experimental_method guided I-experimental_method site I-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method experiments O targeting O amino O acid O residues O that O are O evolutionarily B-protein_state highly I-protein_state conserved I-protein_state among O the O extended O EctC B-protein_type protein I-protein_type family I-protein_type , O including O those O forming O the O presumptive O iron B-site - I-site binding I-site site I-site , O were O conducted O to O functionally O analyze O the O properties O of O the O resulting O EctC B-protein variants O . O This O stereospecific O chemical O modification O of O ectoine B-chemical ( O Fig O 1 O ) O is O catalyzed O by O the O ectoine B-protein_type hydroxylase I-protein_type ( O EctD B-protein_type ) O ( O EC O 1 O . O 14 O . O 11 O ), O a O member O of O the O non B-protein_type - I-protein_type heme I-protein_type containing I-protein_type iron I-protein_type ( I-protein_type II I-protein_type ) I-protein_type and I-protein_type 2 I-protein_type - I-protein_type oxoglutarate I-protein_type - I-protein_type dependent I-protein_type dioxygenase I-protein_type superfamily I-protein_type . O Scheme O of O the O ectoine B-chemical and O 5 B-chemical - I-chemical hydroxyectoine I-chemical biosynthetic O pathway O . O The O EctC B-protein protein O forms O a O dimer B-oligomeric_state in O solution O and O our O structural B-experimental_method analysis I-experimental_method identifies O it O as O a O member O of O the O cupin B-protein_type superfamily I-protein_type . O ( O Sa B-species ) O EctC B-protein is O a O highly O salt O - O tolerant O enzyme O since O it O exhibited O substantial O enzyme O activity O even O at O NaCl B-chemical and O KCl B-chemical concentrations O of O 1 O M O in O the O assay O buffer O ( O S3c O and O S3d O Fig O ). O The O ectoine B-protein_type synthase I-protein_type is O a O metal B-protein_type - I-protein_type containing I-protein_type protein I-protein_type The O amino O acid O sequences O of O 20 O selected O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type are O compared O . O A O metal B-chemical cofactor O is O important O for O the O catalytic O activity O of O EctC B-protein To O address O these O questions O , O we O incubated B-experimental_method the O ( O Sa B-species ) O EctC B-protein enzyme O with B-experimental_method increasing I-experimental_method concentrations I-experimental_method of O the O metal B-chemical chelator O ethylene B-chemical - I-chemical diamine I-chemical - I-chemical tetraacetic I-chemical - I-chemical acid I-chemical ( O EDTA B-chemical ) O and O subsequently O assayed O ectoine B-protein_type synthase I-protein_type activity O . O The O EctC B-protein - O catalyzed O ring O - O closure O of O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical to O form O ectoine B-chemical exhibited O Michaelis B-experimental_method - I-experimental_method Menten I-experimental_method - I-experimental_method kinetics I-experimental_method with O an O apparent O Km B-evidence of O 4 O . O 9 O ± O 0 O . O 5 O mM O , O a O vmax B-evidence of O 25 O . O 0 O ± O 0 O . O 8 O U O / O mg O and O a O kcat B-evidence of O 7 O . O 2 O s O - O 1 O ( O S4a O Fig O ). O ( O Sa B-species ) O EctC B-protein catalyzed O this O reaction O with O Michaelis B-experimental_method - I-experimental_method Menten I-experimental_method - I-experimental_method kinetics I-experimental_method exhibiting O an O apparent O Km B-evidence of O 25 O . O 4 O ± O 2 O . O 9 O mM O , O a O vmax B-evidence of O 24 O . O 6 O ± O 1 O . O 0 O U O / O mg O and O a O kcat B-evidence 0 O . O 6 O s O - O 1 O ( O S4b O Fig O ). O However O , O two O crystal B-evidence forms I-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O in O the O absence B-protein_state of I-protein_state the O substrate O were O obtained O . O Overall O fold O of O the O ( O Sa B-species ) O EctC B-protein protein O The O β B-structure_element - I-structure_element strands I-structure_element are O numbered O β1 B-structure_element - I-structure_element β11 I-structure_element and O the O helices B-structure_element α B-structure_element - I-structure_element I I-structure_element to I-structure_element α I-structure_element - I-structure_element II I-structure_element . O The O entrance O to O the O active B-site site I-site of O the O ectoine B-protein_type synthase I-protein_type is O marked O . O ( O c O ) O Overlay B-experimental_method of O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O and O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structures B-evidence . O Hence O , O ( O Sa B-species ) O EctC B-protein adopts O an O overall O bowl O shape O in O which O one O side O is O opened O towards O the O solvent O ( O Fig O 4a O to O 4c O ). O The O formation O of O this O α B-structure_element - I-structure_element II I-structure_element helix I-structure_element induces O a O reorientation O and O shift O of O a O long O unstructured B-protein_state loop B-structure_element ( O as O observed O in O the O “ O open B-protein_state ” O structure B-evidence ) O connecting O β4 B-structure_element and O β6 B-structure_element , O resulting O in O the O formation O of O the O stable B-protein_state β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element as O observed O in O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O state O of O the O ( O Sa B-species ) O EctC B-protein protein O ( O Fig O 4a O ). O Both O the O SEC B-experimental_method analysis O and O the O HPLC B-experimental_method - I-experimental_method MALS I-experimental_method experiments O ( O S2b O Fig O ) O have O shown O that O the O ectoine B-protein_type synthase I-protein_type from O S B-species . I-species alaskensis I-species is O a O dimer B-oligomeric_state in O solution O . O The O crystal B-evidence structure I-evidence of O this O protein O reflects O this O quaternary O arrangement O . O As O calculated O with O PDBePISA B-experimental_method , O the O surface O area O buried O upon O dimer B-oligomeric_state formation O is O 1462 O Å2 O , O which O is O 20 O . O 5 O % O of O the O total O accessible O surface O of O a O monomer B-oligomeric_state of O this O protein O . O In O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence , O one O monomer B-oligomeric_state is O present O in O the O asymmetric O unit O . O We O therefore O inspected O the O crystal O packing B-experimental_method and O analyzed O the O monomer B-oligomeric_state - O monomer B-oligomeric_state interactions O with O symmetry O related O molecules O to O elucidate O whether O a O physiologically O relevant O dimer B-oligomeric_state could O be O deduced O from O this O crystal B-evidence form I-evidence as O well O . O These O additional O amino O acids O fold O into O a O small B-structure_element helix I-structure_element , O which O seals O the O open B-protein_state cavity B-site of O the O cupin B-structure_element - I-structure_element fold I-structure_element of O the O ( O Sa B-species ) O EctC B-protein protein O ( O Fig O 4a O ). O As O a O result O , O the O newly O formed O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element is O reoriented O and O moved O by O 2 O . O 4 O Å O within O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence ( O Fig O 4a O to O 4c O ). O Therefore O the O sealing O of O the O cupin B-structure_element fold I-structure_element , O as O described O above O , O seem O to O have O an O indirect O influence O on O the O architecture O of O the O postulated O iron B-site - I-site binding I-site site I-site . O In O the O “ O open B-protein_state ” O structure B-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O , O this O interaction O does O not O occur O since O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number is O rotated O outwards O ( O Fig O 6a O and O 6b O ). O Hence O , O one O might O speculate O that O this O missing O interaction O might O be O responsible O for O the O flexibility O of O the O carboxy B-structure_element - I-structure_element terminus I-structure_element in O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence and O consequently O results O in O less O well O defined O electron B-evidence density I-evidence in O this O region O . O These O distances O are O to O long O when O compared O to O other O iron B-site binding I-site sites I-site , O a O fact O that O might O be O caused O by O the O absence B-protein_state of I-protein_state the O proper O substrate O in O the O ( O Sa B-species ) O EctC B-protein crystal B-evidence structure I-evidence . O Since O both O the O refinement O and O the O distance O did O not O clearly O identify O an O iron B-chemical molecule O , O we O decided O to O conservatively O place O a O water B-chemical molecule O at O this O position O . O Only O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number is O slightly O rotated O inwards O in O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O structure B-evidence , O most O likely O due O to O formation O of O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element as O described O above O . O Taken O together O , O this O observations O indicate O , O that O the O architecture O of O the O presumptive O iron B-site - I-site binding I-site site I-site is O pre O - O set O for O the O binding O of O the O catalytically O important O metal B-chemical by O the O ectoine B-protein_type synthase I-protein_type . O This O is O in O contrast O to O the O high O - O resolution O “ O open B-protein_state ” O structure B-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O where O no O additional O electron B-evidence density I-evidence was O observed O after O refinement O . O When O analyzing O the O interactions O of O this O compound O within O the O ( O Sa B-species ) O EctC B-protein protein O , O we O found O that O it O is O bound B-protein_state via O interactions O with O Trp B-residue_name_number - I-residue_name_number 21 I-residue_name_number and O Ser B-residue_name_number - I-residue_name_number 23 I-residue_name_number of O β B-structure_element - I-structure_element sheet I-structure_element β3 B-structure_element , O Thr B-residue_name_number - I-residue_name_number 40 I-residue_name_number located O in O β B-structure_element - I-structure_element sheet I-structure_element β4 B-structure_element , O and O Cys B-residue_name_number - I-residue_name_number 105 I-residue_name_number and O Phe B-residue_name_number - I-residue_name_number 107 I-residue_name_number , O which O are O both O part O of O β B-structure_element - I-structure_element sheet I-structure_element β11 B-structure_element . O As O described O above O , O the O side O chains O of O Glu B-residue_name_number - I-residue_name_number 57 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number , O and O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number are O probably O involved O in O iron B-chemical binding O ( O Table O 1 O and O Fig O 6a O ). O However O , O the O Cys B-mutant - I-mutant 105 I-mutant / I-mutant Ala I-mutant variant B-protein_state was O practically O catalytically B-protein_state inactive I-protein_state while O largely O maintaining O its O iron B-chemical content O ( O Table O 1 O ). O We O observed O two O amino B-experimental_method acid I-experimental_method substitutions I-experimental_method that O simultaneously O strongly O affected O enzyme O activity O and O iron B-chemical content O ; O these O were O the O Tyr B-mutant - I-mutant 52 I-mutant / I-mutant Ala I-mutant and O the O His B-mutant - I-mutant 55 I-mutant / I-mutant Ala I-mutant ( O Sa B-species ) O EctC B-protein protein O variants O ( O Table O 1 O ). O The O carboxy B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O ( O Sa B-species ) O EctC B-protein protein O is O held O in O its O position O via O an O interaction O of O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number with O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number , O where O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number in O turn O interacts O with O Pro B-residue_name_number - I-residue_name_number 110 I-residue_name_number ( O Fig O 6a O and O 6b O ). O The O Glu B-mutant - I-mutant 115 I-mutant / I-mutant Ala I-mutant mutant B-protein_state possessed O wild B-protein_state - I-protein_state type I-protein_state levels O of O iron B-chemical , O whereas O the O iron B-chemical content O of O the O His B-mutant - I-mutant 55 I-mutant / I-mutant Ala I-mutant substitutions O dropped O to O 15 O % O of O the O wild B-protein_state - I-protein_state type I-protein_state level O ( O Table O 1 O ). O As O a O consequence O of O the O structural O relatedness O of O EctC B-protein and O RemF B-protein and O the O type O of O chemical O reaction O these O two O enzymes O catalyze O , O is O now O understandable O why O bona O fide O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type are O frequently O ( O mis O )- O annotated O in O microbial B-taxonomy_domain genome O sequences O as O “ O RemF B-protein_type - I-protein_type like I-protein_type ” O proteins O . O Except O for O some O cupin B-protein_type - I-protein_type related I-protein_type proteins I-protein_type that O seem O to O function O as O metallo B-protein_type - I-protein_type chaperones I-protein_type , O the O bound B-protein_state metal B-chemical is O typically O an O essential O part O of O the O active B-site sites I-site . O The O architecture O of O the O metal B-site center I-site of O ectoine B-protein_type synthase I-protein_type seems O to O be O subjected O to O considerable O evolutionary O constraints O . O This O set O of O data O and O the O fact O that O the O targeted O residues O are O strongly B-protein_state conserved I-protein_state among O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type ( O Fig O 2 O ) O is O consistent O with O their O potential O role O in O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical binding O or O enzyme O catalysis O . O Because O microbial B-taxonomy_domain ectoine B-chemical producers O can O colonize O ecological O niches O with O rather O different O physicochemical O attributes O , O it O seems O promising O to O exploit O this O considerable O biodiversity O to O identify O EctC B-protein_type proteins I-protein_type with O enhanced O protein O stability O . O Structures B-evidence of O human B-species ADAR2 B-protein bound B-protein_state to I-protein_state dsRNA B-chemical reveal O base O - O flipping O mechanism O and O basis O for O site O selectivity O We O then O evaluated O the O importance O of O protein O - O RNA B-chemical contacts O using O structure B-experimental_method - I-experimental_method guided I-experimental_method mutagenesis I-experimental_method and O RNA B-experimental_method - I-experimental_method modification I-experimental_method experiments I-experimental_method coupled O with O adenosine B-experimental_method deamination I-experimental_method kinetics I-experimental_method . O For O trapping O hADAR2d B-mutant bound B-protein_state to I-protein_state RNA B-chemical for O crystallography B-experimental_method , O we O incorporated O 8 B-chemical - I-chemical azanebularine I-chemical into O duplex B-structure_element RNAs I-structure_element shown O recently O to O be O excellent O substrates O for O deamination O by O hADAR2d B-mutant ( O for O duplex O sequence O see O Fig O . O 1c O ) O ( O for O characterization O of O protein O – O RNA B-chemical complex O see O Supplementary O Fig O . O 1 O ). O In O each O of O these O complexes O , O the O protein O binds O the O RNA B-chemical on O one O face O of O the O duplex O over O ~ O 20 O bp O using O a O positively O charged O surface O near O the O zinc B-site - I-site containing I-site active I-site site I-site ( O Fig O . O 2 O , O Supplementary O Fig O . O 2a O ). O The O side O chain O of O E396 B-residue_name_number H B-bond_interaction - I-bond_interaction bonds I-bond_interaction to O purine B-chemical N1 O and O O6 O . O Lastly O , O the O side O chain O of O V351 B-residue_name_number provides O a O hydrophobic B-site surface I-site for O interaction O with O the O nucleobase O of O the O edited B-protein_state nucleotide B-chemical . O The O side O chain O of O this O amino O acid O penetrates O the O helix O where O it O occupies O the O space O vacated O by O the O flipped B-protein_state out I-protein_state base B-chemical and O H B-bond_interaction - I-bond_interaction bonds I-bond_interaction to O the O complementary O strand O orphaned B-protein_state base B-chemical and O to O the O 2 O ’ O hydroxyl O of O the O nucleotide O immediately O 5 O ’ O to O the O editing B-site site I-site ( O Figs O . O 3b O , O 3c O ). O In O the O four O structures B-evidence reported O here O , O three O different O combinations O of O helix O - O penetrating O residue O and O orphan B-protein_state base B-chemical are O observed O ( O i O . O e O . O E488 B-residue_name_number + O U B-residue_name , O E488 B-residue_name_number + O C B-residue_name and O Q488 B-residue_name_number + O C B-residue_name ) O and O all O three O combinations O show O the O same O side O chain O and O base O positions O ( O Figs O . O 3b O , O 3c O , O Supplementary O Fig O . O 4a O for O overlay B-experimental_method of O all O three O ). O In O the O complex B-protein_state with I-protein_state hADAR2d B-mutant WT B-protein_state and O the O Bdf2 B-chemical - I-chemical U I-chemical duplex I-chemical , O a O similar O interaction O is O observed O with O the O E488 B-residue_name_number backbone O NH O hydrogen B-bond_interaction bonded I-bond_interaction to O the O uracil B-residue_name O2 O and O the O E488 B-residue_name_number side O chain O H B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O the O uracil B-residue_name N3H O ( O Fig O . O 3c O ). O The O flipping B-structure_element loop I-structure_element in O ADAR2 B-protein ( O i O . O e O . O aa487 O – B-residue_range 489 I-residue_range ) O also O has O the O helix O - O penetrating O residue O flanked O by O glycines B-residue_name . O The O ADAR B-protein_type - O induced O distortion O in O RNA B-chemical conformation O results O in O a O kink B-structure_element in O the O RNA B-chemical strand O opposite O the O editing B-site site I-site ( O Fig O . O 4b O ). O As O described O above O , O the O base O pair O including O the O 5 O ’ O nearest O neighbor O U B-residue_name ( O U11 B-residue_name_number - O A13 B-residue_name_number ’ O in O the O Bdf2 B-chemical duplex O ) O is O shifted O from O the O position O it O would O occupy O in O a O typical O A B-structure_element - I-structure_element form I-structure_element helix I-structure_element to O accommodate O the O loop B-structure_element ( O Fig O . O 4a O ). O Modeling O a O G B-structure_element - I-structure_element C I-structure_element or I-structure_element C I-structure_element - I-structure_element G I-structure_element pair I-structure_element at O this O position O ( O i O . O e O . O 5 O ’ O G B-residue_name or O 5 O ’ O C B-residue_name ) O suggests O a O 2 O - O amino O group O in O the O minor B-site groove I-site would O clash O with O the O protein O at O G489 B-residue_name_number ( O Fig O . O 5a O , O Supplementary O Fig O . O 7c O ). O Indeed O , O replacing O the O U B-structure_element - I-structure_element A I-structure_element pair I-structure_element adjacent O to O the O editing B-site site I-site with O a O C B-structure_element - I-structure_element G I-structure_element pair I-structure_element in O the O Gli1 B-protein duplex O substrate O resulted O in O an O 80 O % O reduction O in O the O rate O of O hADAR2d B-mutant - O catalyzed O deamination O ( O Figs O . O 5b O , O 5c O ). O To O determine O whether O this O effect O arises O from O an O increase O in O local O duplex O stability O from O the O C O - O G O for O U O - O A O substitution O or O from O the O presence O of O the O 2 O - O amino O group O , O we O replaced O the O U B-structure_element - I-structure_element A I-structure_element pair I-structure_element with O a O U B-structure_element - I-structure_element 2 I-structure_element - I-structure_element aminopurine I-structure_element ( I-structure_element 2AP I-structure_element ) I-structure_element pair I-structure_element . O RNA B-structure_element - I-structure_element binding I-structure_element loops I-structure_element of O the O ADAR B-protein_type catalytic B-structure_element domain I-structure_element In O addition O , O mutation B-experimental_method of O G593 B-residue_name_number to O glutamic B-residue_name acid I-residue_name ( O G593E B-mutant ) O resulted O in O a O nearly O two O orders O of O magnitude O reduction O in O rate O , O consistent O with O proximity O of O this O residue O to O the O negatively O charged O phosphodiester O backbone O of O the O RNA B-chemical ( O Fig O . O 6c O ). O This O loop B-structure_element binds O the O RNA B-structure_element duplex I-structure_element contacting O the O minor B-site groove I-site near O the O editing B-site site I-site and O inserting O into O the O adjacent O major B-site groove I-site ( O Fig O . O 6e O ). O Thus O , O this O system O is O not O illustrative O of O base O flipping O from O a O normal B-protein_state duplex O and O does O not O involve O an O enzyme O that O must O carryout O a O chemical O reaction O on O the O flipped B-protein_state out I-protein_state nucleotide B-chemical . O Thus O , O the O E488 B-residue_name_number side O chain O directly O contacts O each O orphan B-protein_state base B-chemical , O likely O by O accepting O an O H B-bond_interaction - I-bond_interaction bond I-bond_interaction from O uracil B-residue_name N3H O or O by O donating O an O H B-bond_interaction - I-bond_interaction bond I-bond_interaction to O cytidine B-residue_name N3 O . O Aicardi O - O Goutieres O Syndrome O ( O AGS O ) O and O Dyschromatosis O Symmetrica O Hereditaria O ( O DSH O ) O are O human B-species diseases O caused O by O mutations O in O the O human B-species ADAR1 B-protein gene O and O several O of O the O disease O - O associated O mutations O are O found O in O the O deaminase B-structure_element domain I-structure_element . O An O arginine B-residue_name at O this O position O would O preclude O close O approach O of O the O flipping B-structure_element loop I-structure_element to O the O RNA B-chemical , O preventing O E1008 B-residue_name_number insertion O and O base O flipping O into O the O active B-site site I-site ( O Supplementary O Fig O . O 8b O ). O This O is O consistent O with O the O observation O that O the O G1007R B-mutant mutation O in O hADAR1 B-protein inhibits O RNA B-chemical editing O activity O . O In O addition O , O this O work O provides O a O basis O for O understanding O the O role O of O the O ADAR B-protein_type catalytic B-structure_element domain I-structure_element in O determining O editing B-site site I-site selectivity O and O additional O structural O context O to O evaluate O the O impact O of O ADAR B-protein_type mutations O associated O with O human B-species disease O . O Human B-species ADAR2 B-protein and O modified O RNAs B-chemical for O crystallography B-experimental_method A O transparent O surface O is O shown O for O the O hADAR2d B-mutant protein O . O c O , O Summary O of O the O contacts O between O hADAR2d B-mutant E488Q B-mutant and O the O Bdf2 B-chemical - I-chemical C I-chemical RNA I-chemical duplex I-chemical . O b O , O Orphan B-protein_state nucleotide B-chemical recognition O in O the O hADAR2d B-complex_assembly E488Q I-complex_assembly – I-complex_assembly Bdf2 I-complex_assembly - I-complex_assembly C I-complex_assembly complex O . O a O , O The O minor B-site groove I-site edge O of O the O U11 B-residue_name_number - O A13 B-residue_name_number ’ O base O pair O from O the O Bdf2 B-chemical duplex I-chemical approaches O G489 B-residue_name_number ; O model O with O a O C B-structure_element - I-structure_element G I-structure_element pair I-structure_element at O this O position O suggests O a O clash O with O the O G B-residue_name 2 O - O amino O group O b O , O RNA B-structure_element duplex I-structure_element substrates O prepared O with O different O 5 O ’ O nearest O neighbor O nucleotides O adjacent O to O editing B-site site I-site indicated O in O red O ( O 2AP B-structure_element = O 2 B-structure_element - I-structure_element aminopurine I-structure_element ). O Regnase B-protein - I-protein 1 I-protein is O an O RNase B-protein_type that O directly O cleaves O mRNAs B-chemical of O inflammatory O genes O such O as O IL B-protein_type - I-protein_type 6 I-protein_type and O IL B-protein_type - I-protein_type 12p40 I-protein_type , O and O negatively O regulates O cellular O inflammatory O responses O . O Regnase B-protein - I-protein 1 I-protein is O a O member O of O Regnase B-protein_type family I-protein_type and O is O composed O of O a O PilT B-structure_element N I-structure_element - I-structure_element terminus I-structure_element like I-structure_element ( O PIN B-structure_element ) O domain O followed O by O a O CCCH B-structure_element - I-structure_element type I-structure_element zinc I-structure_element – I-structure_element finger I-structure_element ( O ZF B-structure_element ) O domain O , O which O are O conserved B-protein_state among O Regnase B-protein_type family I-protein_type members I-protein_type . O The O structure B-evidence combined O with O functional O analyses O revealed O that O four O catalytically O important O Asp B-residue_name residues O form O the O catalytic B-site center I-site and O stabilize O Mg2 B-chemical + I-chemical binding O that O is O crucial O for O RNase B-protein_type activity O . O Our O data O revealed O that O the O catalytic O activity O of O Regnase B-protein - I-protein 1 I-protein is O regulated O through O both O intra O and O intermolecular O domain O interactions O in O vitro O . O In O order O to O characterize O the O role O of O each O domain O in O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein , O we O performed O an O in B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method using O fluorescently B-protein_state 5 I-protein_state ′- I-protein_state labeled I-protein_state RNA B-chemical corresponding O to O nucleotides O 82 O – O 106 O of O the O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical 3 B-structure_element ′ I-structure_element UTR I-structure_element ( O Fig O . O 1g O ). O Regnase B-protein - I-protein 1 I-protein constructs O consisting O of O NTD B-mutant - I-mutant PIN I-mutant - I-mutant ZF I-mutant completely O cleaved O the O target O mRNA B-chemical and O generated O the O cleaved O products O . O During O purification B-experimental_method by O gel B-experimental_method filtration I-experimental_method , O the O PIN B-structure_element domain O exhibited O extremely O asymmetric O elution O peaks O in O a O concentration O dependent O manner O ( O Fig O . O 2a O ). O Likewise O , O upon O addition B-experimental_method of I-experimental_method the O PIN B-structure_element domain O , O NMR B-experimental_method signals O derived O from O R56 B-residue_name_number , O L58 B-residue_range - I-residue_range G59 I-residue_range , O and O V86 B-residue_range - I-residue_range H88 I-residue_range in O the O NTD B-structure_element exhibited O large O chemical O shift O changes O and O residues O D53 B-residue_name_number , O F55 B-residue_name_number , O K57 B-residue_name_number , O Y60 B-residue_range - I-residue_range S61 I-residue_range , O V68 B-residue_name_number , O T80 B-residue_range - I-residue_range G83 I-residue_range , O L85 B-residue_name_number , O and O G89 B-residue_name_number of O the O NTD B-structure_element as O well O as O side O chain O amide O signals O of O N79 B-residue_name_number exhibited O small O but O appreciable O chemical O shift O changes O ( O Fig O . O 3b O and O Supplementary O Fig O . O 5 O ). O Our O mutational B-experimental_method experiments I-experimental_method indicated O that O the O observed O dimer B-oligomeric_state is O functional O and O that O the O role O of O the O secondary B-protein_state PIN B-structure_element domain O is O to O position O Regnase B-protein - I-protein 1 I-protein - O unique O RNA B-site binding I-site residues I-site near O the O active B-site site I-site of O the O primary B-protein_state PIN B-structure_element domain O . O If O this O model O is O correct O , O then O we O reasoned O that O a O catalytically B-protein_state inactive I-protein_state PIN B-structure_element and O a O PIN B-structure_element lacking B-protein_state the O putative O RNA B-site - I-site binding I-site residues I-site ought O to O be O inactive B-protein_state in O isolation O but O become O active B-protein_state when O mixed O together O . O In O order O to O test O this O hypothesis O , O we O performed O in B-experimental_method vitro I-experimental_method cleavage I-experimental_method assays I-experimental_method using O combinations O of O Regnase B-protein - I-protein 1 I-protein mutants B-protein_state that O had O no O or O decreased O RNase B-protein_type activities O by O themselves O ( O Fig O . O 5 O ). O Consistently O , O when O we O compared O the O fluorescence B-evidence intensity I-evidence of O the O uncleaved B-protein_state Regnase B-protein - I-protein 1 I-protein mRNA B-chemical , O basic O residue O mutants B-protein_state K184A B-mutant and O R214A B-mutant were O rescued O upon O addition O of O the O DDNN B-mutant mutant B-protein_state ( O Fig O . O 5c O ). O According O to O the O proposed O model O , O an O R214A B-mutant PIN B-structure_element domain O can O only O form O a O dimer B-oligomeric_state when O the O DDNN B-mutant PIN B-structure_element acts O as O the O secondary B-protein_state PIN B-structure_element . O This O inconsistency O might O be O due O to O difference O in O the O analytical O methods O and O / O or O protein O concentrations O used O in O each O experiment O , O since O the O oligomer B-oligomeric_state formation O of O PIN B-structure_element was O dependent O on O the O protein O concentration O in O our O study O . O Since O the O NMR B-experimental_method spectra B-evidence of O monomeric B-oligomeric_state mutants B-protein_state overlaps O with O those O of O the O oligomeric O forms O , O it O is O unlikely O that O the O tertiary O structure O of O the O monomeric B-oligomeric_state mutants B-protein_state were O affected O by O the O mutations O . O ( O Supplementary O Fig O . O 4b O , O c O ). O Based O on O these O observations O , O we O concluded O that O PIN B-structure_element - O PIN B-structure_element dimer B-oligomeric_state formation O is O critical O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O in O vitro O . O Within O the O crystal B-evidence structure I-evidence of O the O PIN B-structure_element dimer B-oligomeric_state , O the O Regnase B-protein - I-protein 1 I-protein specific O basic O regions O in O both O the O “ O primary B-protein_state ” O and O “ O secondary B-protein_state ” O PINs B-structure_element are O located O around O the O catalytic B-site site I-site of O the O primary O PIN B-structure_element ( O Supplementary O Fig O . O 6 O ). O ( O d O ) O Solution B-evidence structure I-evidence of O the O ZF B-structure_element domain O . O ( O f O ) O In B-experimental_method vitro I-experimental_method gel I-experimental_method shift I-experimental_method binding I-experimental_method assay I-experimental_method between O Regnase B-protein - I-protein 1 I-protein and O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O Fluorescence B-evidence intensity I-evidence of O the O uncleaved B-protein_state IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical was O indicated O as O the O percentage O against O that O in O the O absence B-protein_state of I-protein_state Regnase B-protein - I-protein 1 I-protein . O ( O a O ) O Gel B-experimental_method filtration I-experimental_method analyses I-experimental_method of O the O PIN B-structure_element domain O . O ( O b O ) O Dimer B-oligomeric_state structure B-evidence of O the O PIN B-structure_element domain O . O S62 B-residue_name_number was O colored O gray O and O excluded O from O the O analysis O , O due O to O low O signal O intensity O . O ( O c O ) O Docking O model O of O the O NTD B-structure_element and O the O PIN B-structure_element domain O . O Residues O in O close O proximity O (< O 5 O Å O ) O to O each O other O in O the O docking B-evidence structure I-evidence were O colored O yellow O . O Critical O residues O in O the O PIN B-structure_element domain O for O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein . O The O mutations O whose O RNase B-protein_type activities O were O restored O in O the O presence B-protein_state of I-protein_state DDNN B-mutant mutant B-protein_state were O colored O in O red O or O yellow O on O the O primary O PIN B-structure_element . O RAD51 B-protein is O a O recombinase B-protein_type involved O in O the O homologous O recombination O of O double O ‐ O strand O breaks O in O DNA O . O RAD51 B-protein interacts O with O BRCA2 B-protein , O and O is O thought O to O localise O RAD51 B-protein to O sites O of O DNA O damage O 2 O , O 3 O . O The O ability O of O BRC3 B-chemical to O interact O with O RAD51 B-protein nucleoprotein O filaments O is O disrupted O when O threonine B-residue_name is O mutated B-experimental_method to O an O alanine B-residue_name 3 O . O The O BRC5 B-chemical repeat O in O humans B-species has O serine B-residue_name in O the O place O of O alanine B-residue_name , O and O is O thought O to O be O a O nonbinding B-structure_element repeat I-structure_element 12 O . O Affinities B-evidence of O peptides O were O measured O directly O using O Isothermal B-experimental_method Titration I-experimental_method Calorimetry I-experimental_method ( O ITC B-experimental_method ) O and O the O structures B-evidence of O many O of O the O peptides O bound B-protein_state to I-protein_state humanised B-protein_state RadA B-protein were O determined O by O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method . O In O this O context O , O we O have O previously O reported O the O use O of O stable B-protein_state monomeric B-oligomeric_state forms O of O RAD51 B-protein , O humanised B-protein_state from O Pyrococcus B-species furiosus I-species homologue O RadA B-protein , O for O ITC B-experimental_method experiments O and O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method 8 O , O 15 O . O The O residue O makes O no O interactions O with O the O RAD51 B-protein protein O , O but O may O make O an O internal O hydrogen B-bond_interaction bond I-bond_interaction with O Thr1520 B-residue_name_number in O the O context O of O BRC4 B-chemical , O Fig O . O 3A O . O FPTA B-structure_element was O also O tested O , O but O was O found O to O have O no O affinity B-evidence for O the O protein O ( O Table O 2 O , O entry O 5 O ). O For O example O , O an O overlay B-experimental_method of O the O bound O poses O of O the O ligands O FHTA B-structure_element and O FHPA B-structure_element ( O Fig O . O 2B O ) O reveals O a O high O similarity O in O the O binding O modes O , O indicating O that O the O conformational O rigidity O conferred O by O the O proline B-residue_name is O compatible O with O the O FHTA B-structure_element ‐ O binding O mode O , O and O a O reduction O in O an O entropic B-evidence penalty I-evidence of O binding O may O be O the O source O of O the O improvement O in O affinity B-evidence . O Only O one O structure B-evidence of O BRC4 B-chemical is O published O in B-protein_state complex I-protein_state with I-protein_state human B-species RAD51 B-protein ( O PDB O : O 1n0w O ). O Either O a O threonine B-residue_name or O serine B-residue_name is O most O commonly O found O in O the O third O position O of O the O FxxA B-structure_element motif O . O The O high B-protein_state degree I-protein_state of I-protein_state conservation I-protein_state of O these O three O residues O suggests O an O important O possible O role O in O facilitating O a O turn O and O stabilising O the O conformation O of O the O peptide O as O it O continues O its O way O to O a O second O interaction B-site site I-site on O the O side O of O RAD51 B-protein . O Two O residues O in O the O FxxA B-structure_element motif O , O phenylalanine B-residue_name and O alanine B-residue_name , O are O highly B-protein_state conserved I-protein_state ( O Fig O 4a O ). O Phenylalanine B-residue_name mutated B-experimental_method to I-experimental_method tryptophan B-residue_name , O in O the O context O of O the O tetrapeptide B-chemical improved O potency O , O contrary O to O the O reported O result O of O comparable O activity O in O the O context O of O BRC4 B-chemical 12 O . O These O studies O also O revealed O a O well O ordered O break O in O the O polypeptide O chain O at O Lys147 B-residue_name_number , O resulting O in O a O large O conformational O rearrangement O close O to O the O active B-site site I-site . O Cysteine B-protein_type peptidases I-protein_type play O crucial O roles O in O the O virulence O of O bacterial B-taxonomy_domain and O other O eukaryotic B-taxonomy_domain pathogens O . O However O , O despite O these O similarities O , O clan B-protein_type CD I-protein_type forms O a O functionally O diverse O group O of O enzymes O : O the O overall O structural O diversity O between O ( O and O at O times O within O ) O the O various O families O provides O these O peptidases B-protein_type with O a O wide O variety O of O substrate O specificities O and O activation O mechanisms O . O The O archetypal O and O arguably O most O notable O family O in O the O clan O is O that O of O the O mammalian B-taxonomy_domain caspases B-protein_type ( O C14a B-protein_type ), O although O clan B-protein_type CD I-protein_type members O are O distributed O throughout O the O entire O phylogenetic O kingdom O and O are O often O required O in O fundamental O biological O processes O . O The O structure B-evidence also O includes O two O short O β B-structure_element - I-structure_element hairpins I-structure_element ( O βA B-structure_element – I-structure_element βB I-structure_element and O βD B-structure_element – I-structure_element βE I-structure_element ) O and O a O small B-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O βC B-structure_element – I-structure_element βF I-structure_element ), O which O is O formed O from O two O distinct O regions O of O the O sequence O ( O βC B-structure_element precedes O α11 B-structure_element , O α12 B-structure_element and O β9 B-structure_element , O whereas O βF B-structure_element follows O the O βD B-structure_element - I-structure_element βE I-structure_element hairpin B-structure_element ) O in O the O middle O of O the O CTD B-structure_element ( O Fig O . O 1B O ). O Crystal B-evidence structure I-evidence of O a O C11 B-protein_type peptidase I-protein_type from O P B-species . I-species merdae I-species . O The O N O and O C O termini O ( O N O and O C O ) O of O PmC11 B-protein along O with O the O central O β B-structure_element - I-structure_element sheet I-structure_element ( O 1 O – O 9 O ), O helix B-structure_element α5 B-structure_element , O and O helices B-structure_element α8 B-structure_element , O α11 B-structure_element , O and O α13 B-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O are O all O labeled O . O Of O the O interacting O secondary O structure O elements O , O α5 B-structure_element is O perhaps O the O most O interesting O . O PmC11 B-protein is O , O as O expected O , O most O structurally O similar O to O other O members O of O clan B-protein_type CD I-protein_type with O the O top O hits O in O a O search O of O known O structures B-evidence being O caspase B-protein - I-protein 7 I-protein , O gingipain B-protein - I-protein K I-protein , O and O legumain B-protein ( O PBD O codes O 4hq0 O , O 4tkx O , O and O 4aw9 O , O respectively O ) O ( O Table O 2 O ). O E O , O intermolecular B-ptm processing I-ptm of O PmC11C179A B-mutant by O PmC11 B-protein . O Inactive O PmC11C179A B-mutant was O not O processed O to O a O major O extent O by O active B-protein_state PmC11 B-protein until O around O a O ratio O of O 1 O : O 4 O ( O 5 O μg O of O active B-protein_state PmC11 B-protein ). O The O position O of O the O catalytic B-site dyad I-site , O one O potential O key B-site substrate I-site binding I-site residue I-site Asp177 B-residue_name_number , O and O the O ends O of O the O cleavage B-site site I-site Lys147 B-residue_name_number and O Ala148 B-residue_name_number are O indicated O . O Other O than O its O more O extended B-structure_element β I-structure_element - I-structure_element sheet I-structure_element , O PmC11 B-protein differs O most O significantly O from O other O clan B-protein_type CD I-protein_type members O at O its O C O terminus O , O where O the O CTD B-structure_element contains O a O further O seven O α B-structure_element - I-structure_element helices I-structure_element and O four O β B-structure_element - I-structure_element strands I-structure_element after O β8 B-structure_element . O To O investigate O whether O processing O is O a O result O of O intra O - O or O intermolecular O cleavage O , O the O PmC11C179A B-mutant mutant B-protein_state was O incubated B-experimental_method with I-experimental_method increasing I-experimental_method concentrations I-experimental_method of O processed B-protein_state and O activated B-protein_state PmC11 B-protein . O Collectively O , O these O data O suggest O that O the O pro B-protein_state - I-protein_state form I-protein_state of O PmC11 B-protein is O autoinhibited B-protein_state by O a O section O of O L5 B-structure_element blocking O access O to O the O active B-site site I-site , O prior O to O intramolecular B-ptm cleavage I-ptm at O Lys147 B-residue_name_number . O These O results O confirm O that O PmC11 B-protein accepts O substrates O containing O Arg B-residue_name or O Lys B-residue_name in O P1 B-residue_number with O a O possible O preference O for O Arg B-residue_name . O Because O PmC11 B-protein recognizes O basic O substrates O , O the O tetrapeptide O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O tested O as O an O enzyme O inhibitor O and O was O found O to O inhibit B-protein_state both O the O autoprocessing B-ptm and O activity O of O PmC11 B-protein ( O Fig O . O 3A O ). O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O also O shown O to O bind O to O the O enzyme O : O a O size B-evidence - I-evidence shift I-evidence was O observed O , O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method analysis O , O in O the O larger O processed O product O of O PmC11 B-protein suggesting O that O the O inhibitor B-protein_state bound I-protein_state to O the O active B-site site I-site ( O Fig O . O 3B O ). O Asp177 B-residue_name_number is O highly B-protein_state conserved I-protein_state throughout O the O clan B-protein_type CD I-protein_type C11 I-protein_type peptidases I-protein_type and O is O thought O to O be O primarily O responsible O for O substrate O specificity O of O the O clan B-protein_type CD I-protein_type enzymes I-protein_type , O as O also O illustrated O from O the O proximity O of O these O residues O relative O to O the O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical when O PmC11 B-protein is O overlaid B-experimental_method on O the O MALT1 B-protein - I-protein P I-protein structure B-evidence ( O Fig O . O 3C O ). O Cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O a O fluorometric B-experimental_method activity I-experimental_method assay I-experimental_method with O (+, O purple O ) O and O without O (−, O red O ) O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical . O B O , O gel B-experimental_method - I-experimental_method shift I-experimental_method assay I-experimental_method reveals O that O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical binds O to O PmC11 B-protein . O Furthermore O , O Cu2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical and O Zn2 B-chemical + I-chemical appear O to O inhibit B-protein_state PmC11 B-protein . O Comparison O with O Clostripain B-protein In O addition O , O the O predicted O primary O S1 B-site - I-site binding I-site residue I-site in O PmC11 B-protein Asp177 B-residue_name_number also O overlays B-experimental_method with O the O residue O predicted O to O be O the O P1 B-site specificity I-site determining I-site residue I-site in O clostripain B-protein ( O Asp229 B-residue_name_number , O Fig O . O 1A O ). O This O is O also O the O case O in O PmC11 B-protein , O although O the O cleavage B-ptm loop B-structure_element is O structurally O different O to O that O found O in O the O caspases B-protein_type and O follows O the O catalytic B-protein_state His B-residue_name ( O Fig O . O 1A O ), O as O opposed O to O the O Cys B-residue_name in O the O caspases B-protein_type . O The O PmC11 B-protein structure B-evidence should O provide O a O good O basis O for O structural B-experimental_method modeling I-experimental_method and O , O given O the O importance O of O other O clan B-protein_type CD I-protein_type enzymes I-protein_type , O this O work O should O also O advance O the O exploration O of O these O peptidases B-protein_type and O potentially O identify O new O biologically O important O substrates O . O Ribosome B-protein_type biogenesis I-protein_type factor I-protein_type Tsr3 B-protein is O the O aminocarboxypropyl B-protein_type transferase I-protein_type responsible O for O 18S B-chemical rRNA I-chemical hypermodification O in O yeast B-taxonomy_domain and O humans B-species Here O we O identify O the O cytoplasmic O ribosome O biogenesis O protein O Tsr3 B-protein as O the O responsible O enzyme O in O yeast B-taxonomy_domain and O human B-species cells O . O This O unique O SAM B-site binding I-site mode I-site explains O why O Tsr3 B-protein transfers O the O acp B-chemical and O not O the O methyl O group O of O SAM B-chemical to O its O substrate O . O Defects O of O rRNA B-chemical modification O enzymes O often O lead O to O disturbed O ribosome O biogenesis O or O functionally O impaired O ribosomes O , O although O the O lack O of O individual O rRNA B-chemical modifications O often O has O no O or O only O a O slight O influence O on O the O cell O . O Methylation B-ptm can O only O occur O once O pseudouridylation B-ptm has O taken O place O , O as O the O latter O reaction O generates O the O substrate O for O the O former O . O Hypermodified B-protein_state m1acp3Ψ B-chemical elutes O at O 7 O . O 4 O min O ( O wild B-protein_state type I-protein_state , O left O profile O ) O and O is O missing O in O Δtsr3 B-mutant ( O middle O profile O ) O and O Δnep1 B-mutant Δnop6 I-mutant mutants O ( O right O profile O ). O Upper O lanes O show O the O ethidium B-chemical bromide I-chemical staining O of O the O 18S B-chemical rRNAs I-chemical for O quantification O . O Archaeal B-taxonomy_domain Tyw2 B-protein has O a O structure B-evidence very O similar O to O Rossmann B-protein_type - I-protein_type fold I-protein_type ( I-protein_type class I-protein_type I I-protein_type ) I-protein_type RNA I-protein_type - I-protein_type methyltransferases I-protein_type , O but O its O distinctive O SAM B-site - I-site binding I-site mode I-site enables O the O transfer O of O the O acp B-chemical group O instead O of O the O methyl O group O of O the O cofactor O . O On O this O basis O , O YOR006C B-gene was O renamed O ‘ O Twenty B-protein S I-protein rRNA I-protein accumulation I-protein 3 I-protein ′ O ( O TSR3 B-protein ). O In O contrast O , O the O only O other O structurally O characterized O acp B-protein_type transferase I-protein_type enzyme O Tyw2 B-protein belongs O to O the O Rossmann B-protein_type - I-protein_type fold I-protein_type class I-protein_type of I-protein_type methyltransferase I-protein_type proteins I-protein_type . O By O comparison O , O treating O cells O with O siRNA B-chemical 545 O , O which O only O reduced O the O TSR3 B-protein mRNA O to O 20 O %, O did O not O markedly O reduced O the O acp B-chemical signal O . O This O suggests O that O low O residual O levels O of O HsTsr3 B-protein are O sufficient O to O modify O the O RNA B-chemical . O Similar O to O a O temperature O - O sensitive O nep1 B-gene mutant B-protein_state , O the O Δtsr3 B-mutant deletion O caused O hypersensitivity O to O paromomycin B-chemical and O , O to O a O lesser O extent O , O to O hygromycin B-chemical B I-chemical ( O Figure O 2B O ), O but O not O to O G418 B-chemical or O cycloheximide B-chemical ( O data O not O shown O ). O In O accordance O with O the O synthetic O sick O growth O phenotype O the O paromomycin B-chemical and O hygromycin B-chemical B I-chemical hypersensitivity O further O increased O in O a O Δtsr3 B-mutant Δsnr35 I-mutant recombination O strain O ( O Figure O 2B O ). O In O a O yeast B-taxonomy_domain Δtsr3 B-mutant strain O as O well O as O in O the O Δtsr3 B-mutant Δsnr35 I-mutant recombinant O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical accumulated O significantly O and O the O level O of O mature O 18S B-chemical rRNA I-chemical was O reduced O ( O Supplementary O Figures O S2C O and O S3D O ), O as O reported O previously O . O However O , O these O archaeal B-taxonomy_domain homologs O are O significantly O smaller O than O ScTsr3 B-protein (∼ O 190 O aa O in O archaea B-taxonomy_domain vs O . O 313 O aa O in O yeast B-taxonomy_domain ) O due O to O shortened O N O - O and O C O - O termini O ( O Supplementary O Figure O S1A O ). O Even O a O Tsr3 B-protein fragment O with O a O 90 B-residue_range aa I-residue_range C O - O terminal O truncation O showed O a O residual O primer O extension O stop O , O whereas O N O - O terminal O truncations O exceeding O 46 B-residue_range aa I-residue_range almost O completely O abolished O the O primer O extension O arrest O ( O Figure O 3B O ). O ( O B O ) O Primer B-experimental_method extension I-experimental_method analysis I-experimental_method of O 18S B-chemical rRNA I-chemical acp B-chemical modification O in O yeast B-taxonomy_domain cells O expressing O the O indicated O TSR3 B-protein fragments O . O While O for O S B-species . I-species solfataricus I-species the O existence O of O a O modified O nucleotide B-chemical of O unknown O chemical O composition O in O the O loop B-structure_element capping I-structure_element helix I-structure_element 31 I-structure_element of O its O 16S B-chemical rRNA I-chemical has O been O demonstrated O , O no O information O regarding O rRNA O modifications O is O yet O available O for O V B-species . I-species distributa I-species . O The O structure B-evidence of O VdTsr3 B-protein was O solved O ab O initio O , O by O single B-experimental_method - I-experimental_method wavelength I-experimental_method anomalous I-experimental_method diffraction I-experimental_method phasing I-experimental_method ( O Se B-experimental_method - I-experimental_method SAD I-experimental_method ) O with O Se B-chemical containing O derivatives O ( O selenomethionine B-chemical and O seleno B-chemical - I-chemical substituted I-chemical SAM I-chemical ). O Thus O , O the O VdTsr3 B-protein structure B-evidence contains O a O deep B-structure_element trefoil I-structure_element knot I-structure_element . O β B-structure_element - I-structure_element strands I-structure_element are O colored O in O crimson O whereas O α B-structure_element - I-structure_element helices I-structure_element in O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element are O colored O light O blue O and O α B-structure_element - I-structure_element helices I-structure_element in O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element are O colored O dark O blue O . O A O red O arrow O marks O the O location O of O the O topological B-structure_element knot I-structure_element in O the O structure B-evidence . O ( O B O ) O Secondary O structure O representation O of O the O VdTsr3 B-protein structure B-evidence . O However O , O there O are O no O structural O similarities O between O Tsr3 B-protein and O Tyw2 B-protein , O which O contains O an O all B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheet I-structure_element of O a O different O topology O and O no O knot B-structure_element structure I-structure_element . O SAM B-chemical - O binding O by O Tsr3 B-protein . O Bound B-protein_state SAM B-chemical was O modelled O based O on O the O X B-evidence - I-evidence ray I-evidence structure I-evidence of O the O Trm10 B-complex_assembly / I-complex_assembly SAH I-complex_assembly - O complex O ( O pdb4jwf O ). O 3xHA B-protein_state tagged I-protein_state Tsr3 B-protein mutants B-protein_state are O expressed O comparable O to O the O wild B-protein_state type I-protein_state as O shown O by O western B-experimental_method blot I-experimental_method ( O lower O left O ). O VdTsr3 B-protein could O not O be O used O in O these O experiments O since O we O could O not O purify O it O in O a O stable B-protein_state SAM B-protein_state - I-protein_state free I-protein_state form O . O The O side O chain O of O D70 B-residue_name_number ( O VdTsr3 B-protein ) O located O in O β4 B-structure_element is O ∼ O 5 O Å O away O from O the O SAM B-chemical sulfur O atom O . O A O second O cluster O of O positively O charged O residues O is O found O in O or O near O helix B-structure_element α3 B-structure_element ( O K74 B-residue_name_number , O R75 B-residue_name_number , O K82 B-residue_name_number , O R85 B-residue_name_number and O K87 B-residue_name_number ). O A O triple B-experimental_method mutation I-experimental_method of O the O conserved B-protein_state positively O charged O residues O R60 B-residue_name_number , O K65 B-residue_name_number and O R131 B-residue_name_number to O A B-residue_name in O ScTsr3 B-protein resulted O in O a O protein O with O a O significantly O impaired O acp B-protein_type transferase I-protein_type activity O in O vivo O ( O Figure O 6D O ) O in O line O with O an O important O functional O role O for O these O positively O charged O residues O . O For O S B-species . I-species solfataricus I-species the O chemical O identity O of O the O hypermodified B-protein_state nucleotide B-chemical is O not O known O but O the O existence O of O NEP1 B-protein and O TSR3 B-protein homologs O suggest O that O it O is O indeed O N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical acp I-chemical - I-chemical pseudouridine I-chemical . O The O formation O of O 1 B-chemical - I-chemical methyl I-chemical - I-chemical 3 I-chemical -( I-chemical 3 I-chemical - I-chemical amino I-chemical - I-chemical 3 I-chemical - I-chemical carboxypropyl I-chemical )- I-chemical pseudouridine I-chemical ( O m1acp3Ψ B-chemical ) O is O very O complex O requiring O three O successive O modification O reactions O involving O one O H B-structure_element / I-structure_element ACA I-structure_element snoRNP B-complex_assembly ( O snR35 B-protein ) O and O two O protein O enzymes O ( O Nep1 B-protein / O Emg1 B-protein and O Tsr3 B-protein ). O This O makes O it O unique O in O eukaryotic B-taxonomy_domain rRNA B-chemical modification O . O A O similar O modification O ( O acp3U B-chemical ) O was O identified O in O Haloferax B-species volcanii I-species and O corresponding O modified O nucleotides B-chemical were O also O shown O to O occur O in O other O archaea B-taxonomy_domain . O As O shown O here O TSR3 B-protein encodes O the O transferase O catalyzing O the O acp B-chemical modification O as O the O last O step O in O the O biosynthesis O of O m1acp3Ψ B-chemical in O yeast B-taxonomy_domain and O human B-species cells O . O In O contrast O , O in O the O structurally O closely O related O RNA B-protein_type methyltransferase I-protein_type Trm10 B-protein the O methyl O group O of O the O cofactor O SAM B-chemical is O accessible O whereas O its O acp B-chemical side O chain O is O buried O inside O the O protein O . O In O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O can O sequester O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O provoking O the O diguanylate O cyclase O activity O of O YfiN B-protein to O induce O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O . O Based O on O the O structural B-evidence and I-evidence biochemical I-evidence data I-evidence , O we O propose O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O . O The O functional O role O of O a O number O of O downstream O effectors O of O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical has O been O characterized O as O affecting O exopolysaccharide B-chemical ( O EPS B-chemical ) O production O , O transcription O , O motility O , O and O surface O attachment O ( O Caly O et O al O .,; O Camilli O and O Bassler O ,; O Ha O and O O O ’ O Toole O ,; O Pesavento O and O Hengge O ,). O Recently O , O Malone O and O coworkers O identified O the O tripartite B-protein_state c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical signaling O module O system O YfiBNR B-complex_assembly ( O also O known O as O AwsXRO B-complex_assembly ( O Beaumont O et O al O .,; O Giddens O et O al O .,) O or O Tbp B-complex_assembly ( O Ueda O and O Wood O ,)) O by O genetic B-experimental_method screening I-experimental_method for O mutants O that O displayed O SCV O phenotypes O in O P B-species . I-species aeruginosa I-species PAO1 I-species ( O Malone O et O al O .,; O Malone O et O al O .,). O Together O with O functional O data O , O these O results O provide O new O mechanistic O insights O into O how O activated B-protein_state YfiB B-protein sequesters O YfiR B-protein and O releases O the O suppression O of O YfiN B-protein . O These O findings O may O facilitate O the O development O and O optimization O of O anti O - O biofilm O drugs O for O the O treatment O of O chronic O infections O . O Overall O structure B-evidence of O YfiB B-protein Each O crystal O form O contains O three O different O dimeric B-oligomeric_state types O of O YfiB B-protein , O two O of O which O are O present O in O both O , O suggesting O that O the O rest O of O the O dimeric B-oligomeric_state types O may O result O from O crystal O packing O . O The O dimerization O occurs O mainly O via O hydrophobic B-bond_interaction interactions I-bond_interaction formed O by O A37 B-residue_name_number and O I40 B-residue_name_number on O the O α1 B-structure_element helices I-structure_element , O L50 B-residue_name_number on O the O β1 B-structure_element strands I-structure_element , O and O W55 B-residue_name_number on O the O β2 B-structure_element strands I-structure_element of O both O molecules O , O making O a O hydrophobic B-site interacting I-site core I-site ( O Fig O . O 2A O – O C O ). O Two O interacting O regions O are O highlighted O by O red O rectangles O . O ( O B O ) O Structural B-experimental_method superposition I-experimental_method of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant . O To O gain O structural O insights O into O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O we O co B-experimental_method - I-experimental_method expressed I-experimental_method YfiB B-protein ( O residues O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein ( O residues O 35 B-residue_range – I-residue_range 190 I-residue_range , O lacking B-protein_state the O signal B-structure_element peptide I-structure_element ), O but O failed O to O obtain O the O complex O , O in O accordance O with O a O previous O report O in O which O no B-protein_state stable I-protein_state complex O of O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly was O observed O ( O Malone O et O al O .,). O The O N O - O terminal O structural O conformation O of O YfiBL43P B-mutant , O from O the O foremost O N O - O terminus O to O residue O D70 B-residue_name_number , O is O significantly O altered O compared O with O that O of O the O apo B-protein_state YfiB B-protein . O The O majority O of O the O α1 B-structure_element helix I-structure_element ( O residues O 34 B-residue_range – I-residue_range 43 I-residue_range ) O is O invisible O on O the O electron B-evidence density I-evidence map I-evidence , O and O the O α2 B-structure_element helix I-structure_element and O β1 B-structure_element and O β2 B-structure_element strands I-structure_element are O rearranged O to O form O a O long O loop B-structure_element containing O two O short O α B-structure_element - I-structure_element helix I-structure_element turns I-structure_element ( O Fig O . O 3B O and O 3C O ), O thus O embracing O the O YfiR B-protein dimer B-oligomeric_state . O Therefore O , O it O is O possible O that O both O dimeric B-oligomeric_state types O might O exist O in O solution O . O ( O C O ) O Close O - O up O view O showing O the O key O residues O of O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant interacting O with O a O sulfate B-chemical ion O . O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant is O shown O in O cyan O ; O the O sulfate B-chemical ion O , O in O green O ; O and O the O water B-chemical molecule O , O in O yellow O . O ( O D O ) O Structural B-experimental_method superposition I-experimental_method of O the O PG B-site - I-site binding I-site sites I-site of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant , O the O key O residues O are O shown O in O stick O . O In O the O Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O structure B-evidence , O the O m B-chemical - I-chemical Dap5 I-chemical ϵ I-chemical - I-chemical carboxylate I-chemical group O interacts O with O the O side O - O chain O atoms O of O D71 B-residue_name_number and O the O main O - O chain O amide O of O D37 B-residue_name_number ( O Fig O . O 4B O ). O In O addition O , O sequence B-experimental_method alignment I-experimental_method of O YfiB B-protein with O Pal B-protein_type and O the O periplasmic B-structure_element domain I-structure_element of O OmpA B-protein_type ( O proteins O containing O PG B-site - I-site binding I-site site I-site ) O showed O that O N68 B-residue_name_number and O D102 B-residue_name_number are O highly B-protein_state conserved I-protein_state ( O Fig O . O 4G O , O blue O stars O ), O suggesting O that O these O residues O contribute O to O the O PG O - O binding O ability O of O YfiB B-protein . O Therefore O , O we O proposed O that O the O PG B-chemical - O binding O ability O of O inactive B-protein_state YfiB B-protein might O be O weaker O than O that O of O active B-protein_state YfiB B-protein . O To O validate O this O , O we O performed O a O microscale B-experimental_method thermophoresis I-experimental_method ( O MST B-experimental_method ) O assay O to O measure O the O binding B-evidence affinities I-evidence of O PG B-chemical to O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant , O respectively O . O Interestingly O , O these O residues O are O part O of O the O conserved B-site surface I-site of O YfiR B-protein ( O Fig O . O 3G O ). O Collectively O , O a O part O of O the O YfiB B-site - I-site YfiR I-site interface I-site overlaps O with O the O proposed O YfiR B-site - I-site YfiN I-site interface I-site , O suggesting O alteration O in O the O association O - O disassociation O equilibrium O of O YfiR B-protein - O YfiN B-protein and O hence O the O ability O of O YfiB B-protein to O sequester O YfiR B-protein . O However O , O whether O YfiR B-protein is O involved O in O other O regulatory O mechanisms O is O still O an O open O question O . O Overall O Structures B-evidence of O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein . O ( O A O ) O Superposition B-experimental_method of O the O overall O structures B-evidence of O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein . O ( O B O ) O Close O - O up O views O showing O the O key O residues O of O YfiR B-protein that O bind O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical . O In O parallel O , O to O better O understand O the O putative O functional O role O of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical , O yfiB B-gene was O deleted B-experimental_method in O a O PAO1 B-species wild B-protein_state - I-protein_state type I-protein_state strain O , O and O a O construct B-experimental_method expressing I-experimental_method the O YfiBL43P B-mutant mutant B-protein_state was O transformed B-experimental_method into I-experimental_method the O PAO1 B-species ΔyfiB B-mutant strain O to O trigger O YfiBL43P B-mutant - O induced O biofilm O formation O . O By O contrast O , O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant ( O residues O 44 B-residue_range – I-residue_range 168 I-residue_range ) O has O a O stretched B-protein_state conformation I-protein_state of O approximately O 55 O Å O in O length O . O Provided O that O the O diameter O of O the O widest O part O of O the O YfiB B-protein dimer B-oligomeric_state is O approximately O 64 O Å O , O which O is O slightly O smaller O than O the O smallest O diameter O of O the O PG O pore O ( O 70 O Å O ) O ( O Meroueh O et O al O .,), O the O YfiB B-protein dimer B-oligomeric_state should O be O able O to O penetrate O the O PG O layer O . O Regulatory O model O of O the O YfiBNR B-complex_assembly tripartite B-protein_state system O . O Once O activated B-protein_state by O certain O cell O stress O , O the O dimeric B-oligomeric_state YfiB B-protein transforms O from O a O compact B-protein_state conformation I-protein_state to O a O stretched B-protein_state conformation I-protein_state , O allowing O the O periplasmic B-structure_element domain I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state , O thus O relieving O the O repression O of O YfiN B-protein These O results O , O together O with O our O observation O that O activated B-protein_state YfiB B-protein has O a O much O higher O cell B-evidence wall I-evidence binding I-evidence affinity I-evidence , O and O previous O mutagenesis O data O showing O that O ( O 1 O ) O both O PG B-chemical binding O and O membrane O anchoring O are O required O for O YfiB B-protein activity O and O ( O 2 O ) O activating O mutations O possessing O an O altered O N O - O terminal O loop B-structure_element length O are O dominant O over O the O loss O of O PG B-chemical binding O ( O Malone O et O al O .,), O suggest O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O ( O Fig O . O 7 O ). O The O mechanism O by O which O activated B-protein_state YfiB B-protein relieves O the O repression O of O YfiN B-protein may O be O applicable O to O the O YfiBNR B-complex_assembly system O in O other O bacteria B-taxonomy_domain and O to O analogous O outside O - O in O signaling O for O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O , O which O in O turn O may O be O relevant O to O the O development O of O drugs O that O can O circumvent O complicated O antibiotic O resistance O . O UHRF1 B-protein recognizes O hemi B-chemical - I-chemical methylated I-chemical DNA I-chemical ( O hm B-chemical - I-chemical DNA I-chemical ) O and O trimethylation B-ptm of O histone B-protein_type H3K9 B-protein_type ( O H3K9me3 B-protein_type ), O but O the O regulatory O mechanism O remains O unknown O . O UHRF1 B-protein also O plays O an O important O role O in O promoting O proliferation O and O is O shown O to O be O upregulated O in O a O number O of O cancers O , O suggesting O that O UHRF1 B-protein may O serve O as O a O potential O drug O target O for O therapeutic O applications O . O Here O we O report O that O UHRF1 B-protein adopts O a O closed B-protein_state conformation O , O in O which O the O C O - O terminal O Spacer B-structure_element binds B-protein_state to I-protein_state the O TTD B-structure_element and O inhibits O its O recognition O of O H3K9me3 B-protein_type , O whereas O the O SRA B-structure_element binds B-protein_state to I-protein_state the O PHD B-structure_element and O inhibits O its O recognition O of O H3R2 B-site ( O unmethylated B-protein_state histone B-protein_type H3 B-protein_type at O residue O R2 B-residue_name_number ). O As O a O result O , O UHRF1 B-protein is O locked O in O the O open B-protein_state conformation O by O the O association O of O H3K9me3 B-protein_type by O TTD B-structure_element – I-structure_element PHD I-structure_element , O and O thus O SRA B-structure_element - I-structure_element Spacer I-structure_element either O recognizes O hm B-chemical - I-chemical DNA I-chemical or O recruits O DNMT1 B-protein for O DNA B-chemical methylation B-ptm . O To O investigate O how O UHRF1 B-protein coordinates O the O recognition O of O H3K9me3 B-protein_type and O hm B-chemical - I-chemical DNA I-chemical , O we O purified O recombinant O UHRF1 B-protein ( O truncations O and O mutations O ) O proteins O from O bacteria O . O These O results O suggest O that O hm B-chemical - I-chemical DNA I-chemical facilitates O histone B-protein_type recognition O by O UHRF1 B-protein . O The O gel B-experimental_method filtration I-experimental_method analysis I-experimental_method showed O that O UHRF1 B-protein is O a O monomer B-oligomeric_state in O solution O ( O Supplementary O Fig O . O 1b O ), O indicating O that O the O intramolecular O ( O not O intermolecular O ) O interaction O of O UHRF1 B-protein regulates O histone B-protein_type recognition O . O These O results O suggest O that O UHRF1 B-protein adopts O an O unfavourable O conformation O for O histone B-protein_type H3 B-protein_type tails O recognition O , O in O which O TTD B-structure_element – I-structure_element PHD I-structure_element might O be O blocked O by O other O regions O of O UHRF1 B-protein , O and O hm B-chemical - I-chemical DNA I-chemical impairs O this O intramolecular O interaction O to O facilitate O its O recognition O of O histone B-protein_type H3 B-protein_type tails O . O The O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ) O measurements O show O that O the O TTD B-structure_element bound B-protein_state to I-protein_state the O Spacer B-structure_element ( O but O not O the O SRA B-structure_element ) O in O a O 1 O : O 1 O stoichiometry O with O a O binding B-evidence affinity I-evidence ( O KD B-evidence ) O of O 1 O . O 59 O μM O ( O Fig O . O 2b O ). O Compared O with O the O PHD B-structure_element alone B-protein_state , O PHD B-structure_element - I-structure_element SRA I-structure_element showed O decreased O binding B-evidence affinity I-evidence to O H3K9me0 B-protein_type peptide O by O a O factor O of O eight O ( O Fig O . O 2e O ). O These O results O indicate O that O the O SRA B-structure_element directly O binds B-protein_state to I-protein_state the O PHD B-structure_element and O inhibits O its O binding B-evidence affinity I-evidence to O H3K9me0 B-protein_type . O The O Spacer B-structure_element ( O residues O 643 B-residue_range – I-residue_range 655 I-residue_range were O built O in O the O model O ) O adopts O an O extended B-protein_state conformation I-protein_state and O binds B-protein_state to I-protein_state an O acidic B-site groove I-site on O the O TTD B-structure_element ( O Fig O . O 3c O ). O Comparison B-experimental_method of O TTD B-structure_element – I-structure_element Spacer I-structure_element and O TTD B-complex_assembly – I-complex_assembly PHD I-complex_assembly – I-complex_assembly H3K9me3 I-complex_assembly ( O PDB O : O 4GY5 O ) O structures B-evidence indicates O that O the O Spacer B-structure_element and O the O Linker B-structure_element bind O to O the O TTD B-structure_element in O a O similar O manner O in O the O two O complexes O ( O Fig O . O 3b O ). O The O ITC B-experimental_method experiment O shows O that O the O Linker B-structure_element peptide O ( O 289 B-residue_range – I-residue_range 306 I-residue_range ) O bound B-protein_state to I-protein_state the O TTD B-structure_element with O a O binding B-evidence affinity I-evidence of O 24 O . O 04 O μM O ( O Supplementary O Fig O . O 4b O ), O ∼ O 15 O - O fold O lower O than O that O of O the O Spacer B-structure_element peptide O ( O KD B-evidence = O 1 O . O 59 O μM O , O Fig O . O 3e O ). O As O shown O in O Fig O . O 4d O , O hm B-chemical - I-chemical DNA I-chemical largely O enhanced O the O H3K9me3 B-evidence - I-evidence binding I-evidence affinities I-evidence of O both O mutants B-protein_state in O the O presence B-protein_state of I-protein_state DTT B-chemical , O but O not O in O the O absence B-protein_state of I-protein_state DTT B-chemical , O indicating O that O the O disulphide B-ptm bond I-ptm formation O ( O in O the O absence B-protein_state of I-protein_state DTT B-chemical ) O disallows O hm B-chemical - I-chemical DNA I-chemical to O disrupt O TTD B-structure_element – I-structure_element Spacer I-structure_element interaction O for O H3K9me3 B-protein_type recognition O . O The O above O results O collectively O demonstrate O that O ( O i O ) O full B-protein_state - I-protein_state length I-protein_state UHRF1 B-protein adopts O a O closed B-protein_state form O , O in O which O the O Spacer B-structure_element binds B-protein_state to I-protein_state the O TTD B-structure_element and O H3K9me3 B-protein_type recognition O is O inhibited O ; O ( O ii O ) O hm B-chemical - I-chemical DNA I-chemical displaces O the O Spacer B-structure_element from O the O TTD B-structure_element in O the O context O of O full B-protein_state - I-protein_state length I-protein_state UHRF1 B-protein and O therefore O largely O enhances O its O histone B-protein_type H3K9me3 B-protein_type - O binding O activity O in O a O manner O independent O on O the O PHD B-structure_element ( O SRA B-structure_element is O required O ). O The O results O suggest O that O UHRF1ΔSRA B-mutant adopts O closed B-protein_state conformation O so O that O H3K9me3 B-protein_type recognition O by O TTD B-structure_element – I-structure_element PHD I-structure_element is O blocked O by O the O intramolecular O interaction O , O and O support O the O regulatory O role O of O the O Spacer B-structure_element in O PCH O localization O of O UHRF1 B-protein in O vivo O . O Getting O these O structures B-evidence would O greatly O help O for O understanding O the O hm B-chemical - I-chemical DNA I-chemical - O mediated O regulation O of O UHRF1 B-protein . O These O findings O together O indicate O that O the O Spacer B-structure_element plays O a O very O important O role O in O the O dynamic O regulation O of O UHRF1 B-protein . O When O our O manuscript O was O in O preparation O , O Gelato O et O al O . O reported O that O binding O of O PI5P B-chemical to O the O Spacer B-structure_element opens O the O closed B-protein_state conformation O of O UHRF1 B-protein and O increases O H3K9me3 B-evidence - I-evidence binding I-evidence affinity I-evidence of O the O TTD B-structure_element . O Interestingly O , O variant B-protein in I-protein methylation I-protein 1 I-protein ( O VIM1 B-protein , O a O UHRF1 B-protein homologue O in O Arabidopsis B-taxonomy_domain ) O contains O an O equivalent O spacer B-structure_element region O , O which O was O shown O to O be O required O for O hm B-chemical - I-chemical DNA I-chemical recognition O by O its O SRA B-structure_element domain O , O suggesting O a O conserved O regulatory O mechanism O in O SRA B-structure_element domain O - O containing O proteins O . O As O shown O in O the O proposed O model O , O recognition O of O H3K9me3 B-protein_type by O full B-protein_state - I-protein_state length I-protein_state UHRF1 B-protein is O blocked O to O avoid O its O miss O - O localization O to O unmethylated B-protein_state genomic O region O , O in O which O chromatin O contains O H3K9me3 B-protein_type ( O KD B-evidence = O 4 O . O 61 O μM O ) O or O H3K9me0 B-protein_type ( O KD B-evidence = O 25 O . O 99 O μM O ). O This O function O is O probably O induced O by O a O direct O interaction O between O the O SRA B-structure_element and O RFTSDNMT1 B-protein ( O refs O ) O or O interaction O between O DNMT1 B-protein and O ubiquitylation B-ptm of O histione B-protein_type tail O . O In O our O in B-experimental_method vitro I-experimental_method assays I-experimental_method , O we O could O detect O interaction O between O SRA B-structure_element – I-structure_element Spacer I-structure_element and O RFTSDNMT1 B-protein , O but O not O the O interaction O between O full B-protein_state - I-protein_state length I-protein_state UHRF1 B-protein and O RFTSDNMT1 B-protein ( O Supplementary O Fig O . O 8a O , O b O and O Fig O . O 5e O ). O The O results O suggest O that O UHRF1 B-protein adopts O multiple O conformations O . O SRA B-structure_element – I-structure_element Spacer I-structure_element was O incubated B-experimental_method with O GST B-protein_state - I-protein_state tagged I-protein_state TTD B-structure_element – I-structure_element PHD I-structure_element or O TTD B-structure_element in O the O presence B-protein_state of I-protein_state increasing O concentrations O of O hm B-chemical - I-chemical DNA I-chemical and O analysed O in O pull B-experimental_method - I-experimental_method down I-experimental_method experiment I-experimental_method as O described O in O a O . O The O quantified O band B-experimental_method densitometries I-experimental_method are O indicated O below O the O Coomassie B-experimental_method blue I-experimental_method staining I-experimental_method . O This O hierarchical O assembly O provides O a O model O , O in O which O full B-protein_state - I-protein_state length I-protein_state Aβ B-protein transitions O from O an O unfolded B-protein_state monomer B-oligomeric_state to O a O folded B-protein_state β B-structure_element - I-structure_element hairpin I-structure_element , O which O assembles O to O form O oligomers B-oligomeric_state that O further O pack O to O form O an O annular B-site pore I-site . O In O Alzheimer O ’ O s O disease O , O monomeric B-oligomeric_state Aβ B-protein aggregates O to O form O soluble O low O molecular O weight O oligomers B-oligomeric_state , O such O as O dimers B-oligomeric_state , O trimers B-oligomeric_state , O tetramers B-oligomeric_state , O hexamers B-oligomeric_state , O nonamers B-oligomeric_state , O and O dodecamers B-oligomeric_state , O as O well O as O high O molecular O weight O aggregates O , O such O as O annular B-complex_assembly protofibrils I-complex_assembly . O Mouse B-taxonomy_domain models O for O Alzheimer O ’ O s O disease O have O helped O shape O our O current O understanding O about O the O Aβ B-protein oligomerization O that O precedes O neurodegeneration O . O Purified O Aβ B-complex_assembly * I-complex_assembly 56 I-complex_assembly injected B-experimental_method intercranially I-experimental_method into O healthy O rats B-taxonomy_domain was O found O to O impair O memory O , O providing O evidence O that O this O Aβ B-protein oligomer B-oligomeric_state may O cause O memory O loss O in O Alzheimer O ’ O s O disease O . O The O approach O of O isolating O and O characterizing O Aβ B-protein oligomers B-oligomeric_state has O not O provided O any O high O - O resolution O structures B-evidence of O Aβ B-protein oligomers B-oligomeric_state . O The O structure B-evidence revealed O that O monomeric B-oligomeric_state Aβ B-protein forms O a O β B-structure_element - I-structure_element hairpin I-structure_element when O bound B-protein_state to I-protein_state the O affibody B-chemical . O In O the O current O study O we O set O out O to O restore B-experimental_method the O Aβ24 B-protein – B-residue_range 29 I-residue_range loop B-structure_element , O reintroduce B-experimental_method the O methionine B-residue_name residue O at O position O 35 B-residue_number , O and O determine O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structures I-evidence of O oligomers B-oligomeric_state that O form O . O We O routinely O use O p B-chemical - I-chemical iodophenylalanine I-chemical to O determine O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence phases I-evidence . O Upon O synthesizing O peptide B-mutant 3 I-mutant , O we O found O that O it O formed O an O amorphous O precipitate O in O most O crystallization O conditions O screened O and O failed O to O afford O crystals B-evidence in O any O condition O . O To O address O this O issue O , O we O next O incorporated O a O disulfide B-ptm bond I-ptm between O residues O 24 B-residue_number and O 29 B-residue_number as O a O conformational O constraint O that O serves O as O a O surrogate O for O δOrn B-structure_element . O We O used O acid B-protein_state - I-protein_state stable I-protein_state Acm B-protein_state - I-protein_state protected I-protein_state cysteine B-residue_name residues O at O positions O 24 B-residue_number and O 29 B-residue_number and O removed O the O Acm O groups O by O oxidation O with O I2 O in O aqueous O acetic B-chemical acid I-chemical to O afford O the O disulfide B-ptm linkage I-ptm . O Peptide B-mutant 2 I-mutant also O afforded O crystals B-evidence in O these O conditions O . O Crystal B-evidence diffraction I-evidence data I-evidence for O peptide B-mutant 2 I-mutant were O also O collected O at O the O Advanced O Light O Source O at O Lawrence O Berkeley O National O Laboratory O with O a O synchrotron O source O at O 1 O . O 00 O Å O wavelength O to O achieve O higher O resolution O . O Data O for O peptides B-mutant 4 I-mutant and I-mutant 2 I-mutant were O scaled O and O merged O using O XDS O . O No O evidence O for O cleavage O of O the O disulfides B-ptm was O observed O in O the O refinement B-experimental_method of O the O data O set O collected O on O the O X O - O ray O diffractometer O , O and O we O refined B-experimental_method all O disulfide B-ptm linkages I-ptm as O intact B-protein_state ( O PDB O 5HOY O ). O The O trimer B-oligomeric_state maintains O all O of O the O same O stabilizing O contacts O as O those O of O peptide B-mutant 1 I-mutant . O Hydrogen B-bond_interaction bonding I-bond_interaction and O hydrophobic B-bond_interaction interactions I-bond_interaction between O residues O on O the O β B-structure_element - I-structure_element strands I-structure_element comprising O Aβ17 B-protein – B-residue_range 23 I-residue_range and O Aβ30 B-protein – B-residue_range 36 I-residue_range stabilize O the O core B-structure_element of O the O trimer B-oligomeric_state . O The O disulfide B-ptm bonds I-ptm between O residues O 24 B-residue_number and O 29 B-residue_number are O adjacent O to O the O structural B-structure_element core I-structure_element of O the O trimer B-oligomeric_state and O do O not O make O any O substantial O intermolecular O contacts O . O Three O ordered O water B-chemical molecules O fill O the O hole O in O the O center O of O the O trimer B-oligomeric_state , O hydrogen B-bond_interaction bonding I-bond_interaction to O each O other O and O to O the O main O chain O of O F20 B-residue_name_number ( O Figure O 3A O ). O Figure O 4A O illustrates O the O octahedral B-protein_state shape O of O the O dodecamer B-oligomeric_state . O The O electron B-evidence density I-evidence map I-evidence for O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structure I-evidence of O peptide B-mutant 2 I-mutant has O long O tubes O of O electron B-evidence density I-evidence inside O the O central B-site cavity I-site of O the O dodecamer B-oligomeric_state . O Jeffamine B-chemical M I-chemical - I-chemical 600 I-chemical is O a O polypropylene O glycol O derivative O with O a O 2 O - O methoxyethoxy O unit O at O one O end O and O a O 2 O - O aminopropyl O unit O at O the O other O end O . O Annular B-site Pore I-site The O staggered B-protein_state interfaces B-site occur O between O dodecamers B-structure_element 2 I-structure_element and I-structure_element 3 I-structure_element and O 4 B-structure_element and I-structure_element 5 I-structure_element . O The O same O eclipsed B-site interface I-site also O occurs O between O dodecamers B-structure_element 1 I-structure_element and I-structure_element 5 I-structure_element and O 3 B-structure_element and I-structure_element 4 I-structure_element . O ( O C O ) O Staggered B-site interface I-site between O dodecamers B-structure_element 2 I-structure_element and I-structure_element 3 I-structure_element ( O side O view O ). O The O annular B-site pore I-site is O comparable O in O size O to O other O large O protein O assemblies O . O At O this O point O , O we O can O only O speculate O whether O the O trimer B-oligomeric_state and O dodecamer B-oligomeric_state formed O by O peptide B-mutant 2 I-mutant share O structural O similarities O to O Aβ B-protein trimers B-oligomeric_state and O Aβ B-complex_assembly * I-complex_assembly 56 I-complex_assembly , O as O little O is O known O about O the O structure B-evidence of O Aβ B-protein trimers B-oligomeric_state and O Aβ B-complex_assembly * I-complex_assembly 56 I-complex_assembly . O The O difficulty O in O studying O the O oligomers B-oligomeric_state formed O in O solution O may O reflect O the O propensity O of O the O dodecamer B-oligomeric_state to O assemble O on O all O four O F20 B-residue_name_number faces O . O The O crystallographically B-evidence observed I-evidence trimer B-oligomeric_state recapitulates O the O Aβ B-protein trimers B-oligomeric_state that O are O observed O even O before O the O onset O of O symptoms O in O Alzheimer O ’ O s O disease O . O Our O approach O of O constraining O Aβ17 B-protein – B-residue_range 36 I-residue_range into O a O β B-structure_element - I-structure_element hairpin I-structure_element conformation O and O blocking O aggregation O with O an O N O - O methyl O group O has O allowed O us O to O crystallize B-experimental_method a O large O fragment O of O what O is O generally O considered O to O be O an O uncrystallizable O peptide O . O Predictive O features O of O ligand O ‐ O specific O signaling O through O the O estrogen B-protein_type receptor I-protein_type For O some O ligand O series O , O a O single O inter B-evidence ‐ I-evidence atomic I-evidence distance I-evidence in O the O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element predicted O their O proliferative O effects O . O In O contrast O , O the O N O ‐ O terminal O coactivator B-site ‐ I-site binding I-site site I-site , O activation B-structure_element function I-structure_element ‐ I-structure_element 1 I-structure_element ( O AF B-structure_element ‐ I-structure_element 1 I-structure_element ), O determined O cell O ‐ O specific O signaling O induced O by O ligands O that O used O alternate O mechanisms O to O control O cell O proliferation O . O Thus O , O incorporating O systems B-experimental_method structural I-experimental_method analyses I-experimental_method with O quantitative B-experimental_method chemical I-experimental_method biology I-experimental_method reveals O how O ligands O can O achieve O distinct O allosteric O signaling O outcomes O through O ERα B-protein . O ERα B-protein domain O organization O lettered O , O A O ‐ O F O . O DBD B-structure_element , O DNA B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O LBD B-structure_element , O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O AF B-structure_element , O activation B-structure_element function I-structure_element Linear O causality O model O for O ERα B-protein ‐ O mediated O cell O proliferation O . O Yet O , O it O is O unknown O how O different O ERα B-protein ligands O control O AF B-structure_element ‐ I-structure_element 1 I-structure_element through O the O LBD B-structure_element , O and O whether O this O inter O ‐ O domain O communication O is O required O for O cell O ‐ O specific O signaling O or O anti O ‐ O proliferative O responses O . O Our O long O ‐ O term O goal O is O to O be O able O to O predict O proliferative O or O anti O ‐ O proliferative O activity O of O a O ligand O in O different O tissues O from O its O crystal B-evidence structure I-evidence by O identifying O different O structural O perturbations O that O lead O to O specific O signaling O outcomes O . O In O this O signaling O model O , O multiple O coregulator O binding O events O and O target O genes O ( O Won O Jeong O et O al O , O 2012 O ; O Nwachukwu O et O al O , O 2014 O ), O LBD B-structure_element conformation O , O nucleocytoplasmic O shuttling O , O the O occupancy O and O dynamics O of O DNA O binding O , O and O other O biophysical O features O could O contribute O independently O to O cell O proliferation O ( O Lickwar O et O al O , O 2012 O ). O We O also O determined B-experimental_method the O structures B-evidence of O 76 O distinct O ERα B-protein LBD B-structure_element complexes O bound B-protein_state to I-protein_state different O ligand O types O , O which O allowed O us O to O understand O how O diverse O ligand O scaffolds O distort O the O active B-protein_state conformation O of O the O ERα B-protein LBD B-structure_element . O To O compare O ERα B-protein signaling O induced O by O diverse O ligand O types O , O we O synthesized B-experimental_method and I-experimental_method assayed I-experimental_method a O library O of O 241 O ERα B-protein ligands O containing O 19 O distinct O molecular O scaffolds O . O Structure B-evidence of O the O E2 B-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBD B-structure_element in B-protein_state complex I-protein_state with I-protein_state an O NCOA2 B-protein peptide O of O ( O PDB O 1GWR O ). O The O ERα B-protein ligand O library O contains O 241 O ligands O representing O 15 O indirect O modulator O scaffolds O , O plus O 4 O direct O modulator O scaffolds O . O To O test O this O idea O , O we O compared O the O average B-evidence L I-evidence ‐ I-evidence Luc I-evidence activities I-evidence of O each O scaffold O in O HepG2 O cells O co B-experimental_method ‐ I-experimental_method transfected I-experimental_method with O wild B-protein_state ‐ I-protein_state type I-protein_state ERα B-protein or O with O ERα B-protein lacking B-protein_state the I-protein_state AB B-structure_element domain O ( O Figs O 1B O and O EV1 O ). O Deletion B-experimental_method of I-experimental_method the O AB B-structure_element domain O significantly O reduced O the O average B-evidence L I-evidence ‐ I-evidence Luc I-evidence activities I-evidence of O 14 O scaffolds O ( O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method , O P B-evidence ≤ O 0 O . O 05 O ) O ( O Fig O 3B O ). O This O cluster O includes O two O direct O modulator O scaffolds O ( O OBHS B-chemical ‐ I-chemical ASC I-chemical and O OBHS B-chemical ‐ I-chemical BSC I-chemical ), O and O five O indirect O modulator O scaffolds O ( O A B-chemical ‐ I-chemical CD I-chemical , O cyclofenil B-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical , O imine B-chemical , O and O imidazopyridine B-chemical ). O Thus O , O examining O the O correlated O patterns O of O ERα B-protein activity O within O each O scaffold O demonstrates O that O an O extended O side O chain O is O not O required O for O cell O ‐ O specific O signaling O . O To O evaluate O the O role O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O the O F B-structure_element domain O in O ERα B-protein signaling O specificity O , O we O compared O activity O of O truncated O ERα B-protein constructs O in O HepG2 O liver O cells O with O endogenous O ERα B-protein activity O in O the O other O cell O types O . O Thus O , O in O cluster O 2 O , O AF B-structure_element ‐ I-structure_element 1 I-structure_element substantially O modulated O the O specificity O of O ligands O with O cell O ‐ O specific O activity O ( O Fig O 3D O lanes O 5 O – O 12 O ). O Thus O , O ligands O in O cluster O 2 O rely O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O both O activity O ( O Fig O 3B O ) O and O signaling O specificity O ( O Fig O 3D O ). O The O average O induction O of O GREB1 B-protein by O cluster O 1 O ligands O showed O greater O variance O , O with O a O range O between O ~ O 25 O and O ~ O 75 O % O for O OBHS B-chemical and O a O range O from O full O agonist O to O inverse O agonist O for O the O others O in O cluster O 1 O ( O Fig O EV2A O ). O The O significant O correlations O with O GREB1 B-protein expression O and O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O observed O in O this O cluster O are O consistent O with O the O canonical O signaling O model O ( O Fig O 1D O ), O where O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O determines O GREB1 B-protein expression O , O which O then O drives O proliferation O . O Despite O this O phenotypic O variance O , O proliferation O was O not O generally O predicted O by O correlated O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O and O GREB1 B-protein induction O ( O Figs O 3F O lanes O 5 O – O 19 O , O and O EV3H O ). O NCOA3 B-protein occupancy O at O GREB1 B-protein did O not O predict O the O proliferative O response O NCOA3 B-protein occupancy O at O GREB1 B-protein is O statistically O robust O but O does O not O predict O transcriptional O activity O In O panel O ( O C O ), O correlation B-experimental_method analysis I-experimental_method was O performed O for O two O biological O replicates O . O The O M2H B-experimental_method assay I-experimental_method for O NCOA3 B-protein recruitment O broadly O correlated O with O the O other O assays O , O and O was O predictive O for O GREB1 B-protein expression O and O cell O proliferation O ( O Fig O 3E O ). O ERβ B-protein activity O is O not O an O independent O predictor O of O cell O ‐ O specific O activity O ERα B-protein activity O of O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O correlates O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O . O Examining O many O closely O related O structures B-evidence allows O us O to O visualize O subtle O structural O differences O , O in O effect O using O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method as O a O systems O biology O tool O . O The O 24 O structures B-evidence containing O OBHS B-chemical , O OBHS B-chemical ‐ I-chemical N I-chemical , O or O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O showed O structural O diversity O in O the O same O part O of O the O scaffolds O ( O Figs O 5A O and O EV5A O ), O and O the O same O region O of O the O LBD B-structure_element — O the O C O ‐ O terminal O end O of O h11 B-structure_element ( O Figs O 5B O and O C O , O and O EV5B O ), O which O in O turn O nudges O h12 B-structure_element ( O Fig O 5C O and O D O ). O Triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O bound B-protein_state to I-protein_state the O superposed B-experimental_method crystal B-evidence structures I-evidence of O the O ERα B-protein LBD B-structure_element are O shown O . O Panel O ( O A O ) O shows O the O crystal B-evidence structure I-evidence of O an O S B-protein_state ‐ I-protein_state OBHS I-protein_state ‐ I-protein_state 3 I-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBD B-structure_element ( O PDB O 5DUH O ). O Hierarchical B-experimental_method clustering I-experimental_method of O ligand O ‐ O specific O binding O of O 154 O interacting O peptides O to O the O ERα B-protein LBD B-structure_element was O performed O in O triplicate O by O MARCoNI B-experimental_method analysis I-experimental_method . O One O phenol O pushed O further O toward O h3 B-structure_element ( O Fig O 6D O ), O while O the O other O phenol O pushed O toward O the O C O ‐ O terminus O of O h11 B-structure_element to O a O greater O extent O than O A B-chemical ‐ I-chemical CD I-chemical ‐ O ring O estrogens B-chemical ( O Nwachukwu O et O al O , O 2014 O ), O which O are O close O structural O analogs O of O E2 B-chemical that O lack O a O B O ‐ O ring O ( O Fig O 2 O ). O Despite O the O similar O average O activities O of O these O ligand O classes O ( O Fig O 3A O and O B O ), O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical analogs O displayed O remarkably O different O peptide O recruitment O patterns O ( O Fig O 6H O ), O consistent O with O the O structural B-experimental_method analyses I-experimental_method . O Thus O , O the O isomeric O attachment O of O diaryl O groups O to O the O thiophene B-chemical core O changed O the O AF B-site ‐ I-site 2 I-site surface I-site from O inside O the O ligand B-site ‐ I-site binding I-site pocket I-site , O as O predicted O by O the O crystal B-evidence structures I-evidence . O This O perturbation O determined O proliferation O that O correlated O strongly O with O AF B-structure_element ‐ I-structure_element 2 I-structure_element activity O , O recruitment O of O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein family O members O , O and O induction O of O the O GREB1 B-protein gene O , O consistent O with O the O canonical O ERα B-protein signaling O pathway O ( O Fig O 1D O ). O This O finding O can O be O explained O by O the O fact O that O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein contain O distinct O binding B-site sites I-site for O interaction O with O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O AF B-structure_element ‐ I-structure_element 2 I-structure_element ( O McInerney O et O al O , O 1996 O ; O Webb O et O al O , O 1998 O ), O which O allows O ligands O to O nucleate O ERα B-complex_assembly – I-complex_assembly NCOA1 I-complex_assembly / I-complex_assembly 2 I-complex_assembly / I-complex_assembly 3 I-complex_assembly interaction O through O AF B-structure_element ‐ I-structure_element 2 I-structure_element , O and O reinforce O this O interaction O with O additional O binding O to O AF B-structure_element ‐ I-structure_element 1 I-structure_element . O For O K B-species . I-species pneumoniae I-species , O this O is O the O first O high O - O resolution O cleavage O complex O structure B-evidence to O be O reported O . O This O complex O is O compared O with O a O similar O complex O from O Streptococcus B-species pneumoniae I-species , O which O has O recently O been O solved O . O Acquiring O a O deep O structural O and O functional O understanding O of O the O mode O of O action O of O fluoroquinolones B-chemical ( O Tomašić O & O Mašič O , O 2014 O ) O and O the O development O of O new O drugs O targeted O against O topoisomerase B-complex_assembly IV I-complex_assembly and O gyrase B-protein_type from O a O wide O range O of O Gram B-taxonomy_domain - I-taxonomy_domain positive I-taxonomy_domain and O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain pathogenic O bacteria B-taxonomy_domain are O highly O active O areas O of O current O research O directed O at O overcoming O the O vexed O problem O of O drug O resistance O ( O Bax O et O al O ., O 2010 O ; O Chan O et O al O ., O 2015 O ; O Drlica O et O al O ., O 2014 O ; O Mutsaev O et O al O ., O 2014 O ; O Pommier O , O 2013 O ; O Srikannathasan O et O al O ., O 2015 O ). O In O both O cases O the O DNA B-chemical is O bent O into O a O U B-protein_state - I-protein_state form I-protein_state and O bound B-protein_state snugly O against O the O protein O of O the O G B-structure_element - I-structure_element gate I-structure_element . O The O sequence B-experimental_method alignment I-experimental_method is O given O in O Supplementary O Fig O . O S1 O , O with O the O key O metal B-site - I-site binding I-site residues I-site and O those O which O give O rise O to O quinolone O resistance O highlighted O . O The O side O chains O surrounding O them O in O ParE B-protein are O quite O disordered O and O are O more O defined O in O K B-species . I-species pneumoniae I-species ( O even O though O this O complex O is O at O lower O resolution O ) O than O in O S B-species . I-species pneumoniae I-species . O There O are O no O direct O hydrogen B-bond_interaction bonds I-bond_interaction from O the O drug O to O these O residues O ( O although O it O is O possible O that O some O are O formed O through O water B-chemical , O which O cannot O be O observed O at O this O resolution O ). O The O CC25 B-evidence ( O the O drug O concentration O that O converted O 25 O % O of O the O supercoiled O DNA B-chemical substrate O to O a O linear O form O ) O was O 0 O . O 5 O µM O for O the O Klebsiella B-taxonomy_domain enzyme O and O 1 O µM O for O the O pneumococcal B-taxonomy_domain enzyme O . O Moreover O , O although O topoisomerase B-complex_assembly IV I-complex_assembly is O primarily O the O target O of O levofloxacin B-chemical in O S B-species . I-species pneumoniae I-species , O it O is O likely O to O be O gyrase B-protein_type in O the O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain K B-species . I-species pneumoniae I-species . O The O magnesium B-chemical ions O and O their O coordinating O amino O acids O are O shown O in O purple O . O The O active B-site - I-site site I-site tyrosine B-residue_name and O arginine B-residue_name are O in O orange O . O The O ParC B-protein and O ParE B-protein backbones O are O shown O in O blue O and O yellow O , O respectively O . O Comparison O of O DNA B-chemical cleavage O by O topoisomerase B-complex_assembly IV I-complex_assembly core O ParE B-complex_assembly - I-complex_assembly ParC I-complex_assembly fusion O proteins O from O K B-species . I-species pneumoniae I-species ( O KP B-species ) O and O S B-species . I-species pneumoniae I-species ( O SP B-species ) O promoted O by O levofloxacin B-chemical . O Lane O A O , O supercoiled O pBR322 O DNA B-chemical ; O N O , O L O and O S O , O nicked O , O linear O and O supercoiled O pBR322 O , O respectively O . O Using O Cryo B-experimental_method - I-experimental_method EM I-experimental_method to O Map O Small O Ligands O on O Dynamic O Metabolic O Enzymes O : O Studies O with O Glutamate B-protein_type Dehydrogenase I-protein_type X B-experimental_method - I-experimental_method ray I-experimental_method crystallographic I-experimental_method studies I-experimental_method have O shown O that O the O functional O unit O of O GDH B-protein_type is O a O homohexamer B-oligomeric_state composed O of O a O trimer B-oligomeric_state of O dimers B-oligomeric_state , O with O a O 3 O - O fold O axis O and O an O equatorial O plane O that O define O its O D3 O symmetry O ( O Fig O . O 1A O ). O Each O 56 O - O kDa O protomer B-oligomeric_state consists O of O three O domains O . O Structure O and O quaternary O conformational O changes O in O GDH B-protein_type . O ( O A O ) O Views O of O open B-protein_state ( O PDB O ID O 1NR7 O ) O and O closed B-protein_state ( O PDB O 3MW9 O ) O states O of O the O GDH B-protein_type hexamer B-oligomeric_state , O shown O in O ribbon O representation O perpendicular O to O the O 2 O - O fold O symmetry O axis O ( O side O view O , O top O ) O and O 3 O - O fold O symmetry O axis O ( O top O view O , O bottom O ). O The O dashed O lines O and O arrows O , O respectively O , O highlight O the O slight O extension O in O length O , O and O twist O in O shape O that O occurs O with O transition O from O open B-protein_state to O the O closed B-protein_state state O . O The O open B-protein_state state O shown O is O for O unliganded B-protein_state GDH B-protein_type , O whereas O the O closed B-protein_state state O has O NADH B-chemical , O GTP B-chemical , O and O glutamate B-chemical bound B-protein_state . O ( O B O ) O Superposition B-experimental_method of O structures B-evidence for O closed B-protein_state and O open B-protein_state conformations O , O along O with O a O series O of O possible O intermediate O conformations O along O the O trajectory O that O serve O to O illustrate O the O extent O of O change O in O structure O across O different O regions O of O the O protein O . O These O allosteric O modulators O tightly O control O GDH B-protein_type function O in O vivo O . O Although O there O are O numerous O crystal B-evidence structures I-evidence available O for O GDH B-protein_type in B-protein_state complex I-protein_state with I-protein_state cofactors O and O nucleotides O , O they O are O limited O to O the O combinations O that O have O been O amenable O to O crystallization B-experimental_method . O When O GDH B-protein is O bound B-protein_state to I-protein_state NADH B-chemical , O GTP B-chemical , O and O glutamate B-chemical , O the O enzyme O adopts O a O closed B-protein_state conformation O ; O this O “ O abortive O complex O ” O has O been O determined O to O 2 O . O 4 O - O Å O resolution O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method ( O PDB O 3MW9 O ). O However O , O crystal B-evidence structures I-evidence of O GDH B-protein bound B-protein_state only I-protein_state to I-protein_state NADH B-chemical or O to B-protein_state GTP B-chemical have O not O yet O been O reported O . O Comparison O of O the O NADH B-protein_state - I-protein_state bound I-protein_state closed B-protein_state conformation O to O the O NADH B-protein_state - I-protein_state bound I-protein_state open B-protein_state conformation O shows O that O , O as O expected O , O the O catalytic B-site cleft I-site is O closed B-protein_state and O the O NBDs B-structure_element are O displaced O toward O the O equatorial O plane O , O accompanied O by O a O rotation O of O the O pivot B-structure_element helix I-structure_element by O ∼ O 7 O °, O concomitant O with O a O large O conformational O change O in O the O antennae B-structure_element domains O ( O Figs O . O 1 O and O 2D O ). O A O comparison O between O NADH B-protein_state - I-protein_state bound I-protein_state open B-protein_state and O closed B-protein_state conformations O also O involves O a O displacement O of O helix B-structure_element 5 I-structure_element ( O residues O 171 B-residue_range – I-residue_range 186 I-residue_range ), O as O well O as O a O tilt O of O the O core O β B-structure_element - I-structure_element sheets I-structure_element relative O to O the O equatorial O plane O of O the O enzyme O ( O residues O 57 B-residue_range – I-residue_range 97 I-residue_range , O 122 B-residue_range – I-residue_range 130 I-residue_range ) O and O α B-structure_element - I-structure_element helix I-structure_element 2 I-structure_element ( O residues O 36 B-residue_range – I-residue_range 54 I-residue_range ), O and O a O bending O of O the O N O - O terminal O helix B-structure_element . O Although O there O is O a O difference O in O orientation O of O the O nicotinamide O moiety O between O the O closed B-protein_state and O open B-protein_state states O in O the O regulatory B-site site I-site , O in O both O structures B-evidence the O adenine O portion O of O NADH B-chemical has O a O similar O binding B-site pocket I-site and O is O located O in O almost O exactly O the O same O position O as O ADP B-chemical , O a O potent O activator O of O GDH B-protein function O ( O Supplemental O Fig O . O 5 O ). O This O suggests O that O although O the O conformation O of O NADH B-chemical in O the O open B-protein_state state O regulatory B-site site I-site more O closely O mimics O the O binding O of O ADP B-chemical , O the O conformation O of O NADH B-chemical in O the O closed B-protein_state state O regulatory B-site site I-site is O significantly O different O ; O these O differences O may O contribute O to O the O opposite O effects O of O NADH B-chemical and O ADP B-chemical on O GDH B-protein enzymatic O activity O . O Cryo B-experimental_method - I-experimental_method EM I-experimental_method structure B-evidence of O GDH B-protein bound B-protein_state to I-protein_state both O NADH B-chemical and O GTP B-chemical . O ( O C O , O D O ) O Detailed O inspection O of O the O interactions O near O the O regulatory B-site site I-site show O that O the O orientation O of O His209 B-residue_name_number switches O between O the O two O states O , O which O may O allow O interactions O with O bound B-protein_state GTP B-chemical in O the O closed B-protein_state ( O D O ), O but O not O open B-protein_state ( O C O ) O conformation O . O Our O structural B-experimental_method studies I-experimental_method thus O establish O that O whether O or O not O GTP B-chemical is O bound B-protein_state , O NADH B-chemical binding O is O detectable O at O catalytic B-site and I-site regulatory I-site sites I-site , O in O both O the O open B-protein_state and O closed B-protein_state conformational O states O . O The O role O of O the O nicotinamide O moiety O in O acting O as O a O wedge O that O prevents O the O transition O to O the O open B-protein_state conformation O also O suggests O a O structural O explanation O of O the O mechanism O by O which O NADH B-chemical binding O inhibits O the O activity O of O the O enzyme O by O stabilizing O the O closed B-protein_state conformation O state O . O We O have O solved B-experimental_method the O structure B-evidence of O the O HR1 B-structure_element domain O of O TOCA1 B-protein , O providing O the O first O structural B-evidence data I-evidence for O this O protein O . O All O members O share O a O well O defined O core O structure O of O ∼ O 20 O kDa O known O as O the O G B-structure_element domain I-structure_element , O which O is O responsible O for O guanine B-chemical nucleotide I-chemical binding O . O The O overall O conformation O of O small B-protein_type G I-protein_type proteins I-protein_type in O the O active B-protein_state and O inactive B-protein_state states O is O similar O , O but O they O differ O significantly O in O two O main O regions O known O as O switch B-site I I-site and O switch B-site II I-site . O However O , O because O each O of O the O 150 O members O of O the O superfamily O interacts O with O multiple O effectors O , O there O are O still O a O huge O number O of O known O G B-protein_type protein I-protein_type - O effector O interactions O that O have O not O yet O been O studied O structurally O . O The O most O widely O studied O role O of O TOCA1 B-protein is O in O membrane O invagination O and O endocytosis O , O although O it O has O also O been O implicated O in O filopodia O formation O , O neurite O elongation O , O transcriptional O reprogramming O via O nuclear O actin B-protein_type , O and O interaction O with O ZO B-protein - I-protein 1 I-protein at O tight O junctions O . O How O different O HR1 B-structure_element domain O proteins O distinguish O their O specific O G B-protein_type protein I-protein_type partners O remains O only O partially O understood O , O and O structural O characterization O of O a O novel O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interaction O would O add O to O the O growing O body O of O information O pertaining O to O these O protein O complexes O . O We O also O present O data O pertaining O to O binding O of O the O TOCA B-protein_type HR1 B-structure_element domain O to O Cdc42 B-protein , O which O is O the O first O biophysical O description O of O an O HR1 B-structure_element domain O binding O this O particular O Rho B-protein_type family I-protein_type small I-protein_type G I-protein_type protein I-protein_type . O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence describing O competition O . O As O the O observed O affinity B-evidence between O TOCA1 B-protein HR1 B-structure_element and O Cdc42 B-protein was O much O lower O than O expected O , O we O reasoned O that O the O C O terminus O of O Cdc42 B-protein might O be O necessary O for O a O high O affinity B-evidence interaction O . O Thus O , O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O Cdc42 B-protein is O not O required O for O maximal O binding O of O TOCA1 B-protein HR1 B-structure_element . O The O SPA B-experimental_method signal O was O corrected O by O subtraction O of O control O data O with O no O fusion O protein O . O The O low O affinity O of O the O TOCA1 B-protein HR1 B-structure_element - O Cdc42 B-protein interaction O raised O the O question O of O whether O the O other O known O Cdc42 B-protein - O binding O TOCA B-protein_type family I-protein_type proteins I-protein_type , O FBP17 B-protein and O CIP4 B-protein , O also O bind O weakly O . O Initial O experiments O were O performed O with O TOCA1 B-protein residues O 324 B-residue_range – I-residue_range 426 I-residue_range , O but O we O observed O that O the O N O terminus O was O cleaved O during O purification O to O yield O a O new O N O terminus O at O residue O 330 B-residue_number ( O data O not O shown O ). O We O therefore O engineered O a O construct O comprising O residues O 330 B-residue_range – I-residue_range 426 I-residue_range to O produce O the O minimal B-protein_state , O stable B-protein_state HR1 B-structure_element domain O . O A O , O the O backbone O trace B-evidence of O the O 35 O lowest O energy O structures B-evidence of O the O HR1 B-structure_element domain O overlaid O with O the O structure B-evidence closest O to O the O mean O is O shown O alongside O a O schematic O representation O of O the O structure B-evidence closest O to O the O mean O . O D O , O a O close O - O up O of O the O interhelix B-structure_element loop I-structure_element region O showing O some O of O the O contacts O between O the O loop B-structure_element and O helix B-structure_element 1 I-structure_element . O Overall O chemical B-experimental_method shift I-experimental_method perturbations I-experimental_method ( O CSPs B-experimental_method ) O were O calculated O for O each O residue O , O whereas O those O that O had O disappeared O were O assigned O a O shift O change O of O 0 O . O 2 O ( O Fig O . O 4B O ). O Mapping O the O binding B-site surface I-site of O Cdc42 B-protein onto O the O TOCA1 B-protein HR1 B-structure_element domain O . O TOCA1 B-protein residues O whose O signals O were O affected O by O Cdc42 B-protein binding O were O mapped O onto O the O structure B-evidence of O TOCA1 B-protein HR1 B-structure_element ( O Fig O . O 4C O ). O As O was O the O case O when O labeled B-protein_state HR1 B-structure_element was O observed O , O several O peaks O were O shifted O in O the O complex O , O but O many O disappeared O , O indicating O exchange O on O an O unfavorable O , O millisecond O time O scale O ( O Fig O . O 5A O ). O A O , O the O 15N B-experimental_method HSQC I-experimental_method of O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly is O shown O in O its O free B-protein_state form I-protein_state ( O black O ) O and O in O the O presence B-protein_state of I-protein_state excess O TOCA1 B-protein HR1 B-structure_element domain O ( O 1 O : O 2 O . O 2 O , O red O ). O The O flexible B-protein_state switch B-site regions I-site are O circled O . O Although O the O binding B-site interface I-site may O be O overestimated O , O this O suggests O that O the O switch B-site regions I-site are O involved O in O binding O to O TOCA1 B-protein . O The O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O was O not O amenable O to O full O structural O analysis O due O to O the O weak O interaction O and O the O extensive O exchange O broadening O seen O in O the O NMR B-experimental_method experiments O . O The O cluster O with O the O lowest O root B-evidence mean I-evidence square I-evidence deviation I-evidence from O the O lowest O energy O structure B-evidence is O assumed O to O be O the O best O model O . O By O these O criteria O , O in O the O best O model O , O the O HR1 B-structure_element domain O is O in O a O similar O orientation O to O the O HR1a B-structure_element domain O of O PRK1 B-protein bound B-protein_state to I-protein_state RhoA B-protein and O the O HR1b B-structure_element domain O bound B-protein_state to I-protein_state Rac1 B-protein . O Model O of O Cdc42 B-complex_assembly · I-complex_assembly HR1 I-complex_assembly complex O . O C O , O sequence B-experimental_method alignment I-experimental_method of O RhoA B-protein , O Cdc42 B-protein and O Rac1 B-protein . O Some O of O these O can O be O rationalized O ; O for O example O , O Thr B-residue_name_number - I-residue_name_number 24Cdc42 I-residue_name_number , O Leu B-residue_name_number - I-residue_name_number 160Cdc42 I-residue_name_number , O and O Lys B-residue_name_number - I-residue_name_number 163Cdc42 I-residue_name_number all O pack O behind O switch B-site I I-site and O are O likely O to O be O affected O by O conformational O changes O within O the O switch B-site , O while O Glu B-residue_name_number - I-residue_name_number 95Cdc42 I-residue_name_number and O Lys B-residue_name_number - I-residue_name_number 96Cdc42 I-residue_name_number are O in O the O helix B-structure_element behind O switch B-site II I-site . O Lys B-residue_name_number - I-residue_name_number 16Cdc42 I-residue_name_number is O unlikely O to O be O a O contact O residue O because O it O is O involved O in O nucleotide O binding O , O but O the O others O may O represent O specific O Cdc42 B-complex_assembly - I-complex_assembly TOCA1 I-complex_assembly contacts O . O Studies O in O CHO O cells O indicated O that O a O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly complex O existed O because O FRET B-evidence was O observed O between O RFP B-chemical - O TOCA1 B-protein and O GFP B-chemical - O N B-protein - I-protein WASP I-protein , O and O the O efficiency O was O decreased O when O an O N B-protein - I-protein WASP I-protein mutant B-protein_state was O used O that O no O longer O binds O Cdc42 B-protein . O A O basic O region O in O WASP B-protein including O three O lysines B-residue_name ( O residues O 230 B-residue_range – I-residue_range 232 I-residue_range ), O N O - O terminal O to O the O core O CRIB B-structure_element , O has O been O implicated O in O an O electrostatic O steering O mechanism O , O and O these O residues O would O be O free O to O bind O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein HR1 B-structure_element ( O Fig O . O 7A O ). O The O core O CRIB B-structure_element region O of O WASP B-protein is O shown O in O red O , O whereas O its O basic O region O is O shown O in O orange O and O the O C O - O terminal O region O required O for O maximal O affinity O is O shown O in O cyan O . O Unlabeled B-protein_state N B-protein - I-protein WASP I-protein GBD B-structure_element was O titrated B-experimental_method into O 15N B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly , O and O the O backbone O NH O groups O were O monitored O using O HSQCs B-experimental_method ( O Fig O . O 7C O ). O These O experiments O were O recorded O at O sufficiently O high O protein O concentrations O ( O 145 O μm O Cdc42 B-protein , O 145 O μm O N B-protein - I-protein WASP I-protein GBD B-structure_element , O 725 O μm O TOCA1 B-protein HR1 B-structure_element domain O ) O to O be O far O in O excess O of O the O Kd B-evidence values O of O the O individual O interactions O ( O TOCA1 B-protein Kd B-evidence ≈ O 5 O μm O , O N B-protein - I-protein WASP I-protein Kd B-evidence = O 37 O nm O ). O The O spectrum B-evidence when O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein were O equimolar O was O identical O to O that O of O the O free B-protein_state HR1 B-structure_element domain O , O whereas O the O spectrum B-evidence in O the O presence B-protein_state of I-protein_state 0 O . O 25 O eq O of O N B-protein - I-protein WASP I-protein was O intermediate O between O the O TOCA1 B-protein HR1 B-structure_element free B-protein_state and O complex B-protein_state spectra B-evidence ( O Fig O . O 7D O ). O Actin B-protein_type polymerization O in O all O cases O was O initiated O by O the O addition O of O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical - O containing O liposomes O . O The O GBD B-structure_element presumably O acts O as O a O dominant O negative O , O sequestering O endogenous O Cdc42 B-protein and O preventing O endogenous B-protein_state full B-protein_state - I-protein_state length I-protein_state N B-protein - I-protein WASP I-protein from O binding O and O becoming O activated O . O This O is O over O 100 O times O lower O than O that O of O the O N B-protein - I-protein WASP I-protein GBD B-structure_element ( O Kd B-evidence = O 37 O nm O ) O and O considerably O lower O than O other O known O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O . O The O polybasic O tract O within O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O Cdc42 B-protein does O not O appear O to O be O required O for O binding O to O TOCA1 B-protein , O which O is O in O contrast O to O the O interaction O between O Rac1 B-protein and O the O HR1b B-structure_element domain O of O PRK1 B-protein but O more O similar O to O the O PRK1 B-protein HR1a B-structure_element - O RhoA B-protein interaction O . O The O TOCA1 B-protein HR1 B-structure_element domain O is O a O left O - O handed O coiled B-structure_element - I-structure_element coil I-structure_element comparable O with O other O known O HR1 B-structure_element domains O . O This O region O is O distant O from O the O G B-site protein I-site - I-site binding I-site interface I-site of O the O HR1 B-structure_element domains O , O so O the O structural O differences O may O relate O to O the O structure O and O regulation O of O these O domains O rather O than O their O G B-protein_type protein I-protein_type interactions O . O N52T B-mutant is O one O of O a O combination O of O seven O residues O found O to O confer O ACK B-protein binding O on O Rac1 B-protein and O so O may O represent O a O specific O Cdc42 B-protein - O effector O contact O residue O . O Nonetheless O , O structural B-experimental_method studies I-experimental_method of O the O TOCA1 B-protein HR1 B-structure_element domain O , O combined O with O chemical B-experimental_method shift I-experimental_method mapping I-experimental_method , O have O highlighted O some O potentially O interesting O differences O between O Cdc42 B-protein - O HR1TOCA1 B-structure_element and O RhoA B-protein / O Rac1 B-protein - O HR1PRK1 B-structure_element binding O . O Evidence O suggests O that O the O TOCA B-protein_type family I-protein_type of O proteins O are O recruited O to O the O membrane O via O an O interaction O between O their O F B-structure_element - I-structure_element BAR I-structure_element domain O and O specific O signaling O lipids O . O A O simplified O model O of O the O early O stages O of O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly - O dependent O actin O polymerization O . O The O HR1TOCA1 B-structure_element - O Cdc42 O and O SH3TOCA1 B-structure_element - O N O - O WASP O interactions O position O Cdc42 B-protein and O N B-protein - I-protein WASP I-protein for O binding O . O In O conclusion O , O the O data O presented O here O show O that O the O TOCA1 B-protein HR1 B-structure_element domain O is O sufficient O for O Cdc42 B-protein binding O in O vitro O and O that O the O interaction O is O of O micromolar O affinity O , O lower O than O that O of O other O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O . O Eukaryotic B-taxonomy_domain ACCs B-protein_type are O single B-protein_type - I-protein_type chain I-protein_type multienzymes I-protein_type characterized O by O a O large O , O non B-protein_state - I-protein_state catalytic I-protein_state central B-structure_element domain I-structure_element ( O CD B-structure_element ), O whose O role O in O ACC B-protein_type regulation O remains O poorly O characterized O . O Combining O the O yeast B-taxonomy_domain CD B-structure_element structure B-evidence with O intermediate O and O low O - O resolution O data O of O larger B-mutant fragments I-mutant up O to O intact B-protein_state ACCs B-protein_type provides O a O comprehensive O characterization O of O the O dynamic B-protein_state fungal B-taxonomy_domain ACC B-protein_type architecture O . O ACC B-experimental_method inhibition I-experimental_method and I-experimental_method knock I-experimental_method - I-experimental_method out I-experimental_method studies I-experimental_method show O the O potential O of O targeting O ACC B-protein_type for O treatment O of O the O metabolic O syndrome O . O BRCA1 B-protein binds O only O to O the O phosphorylated B-protein_state form O of O ACC1 B-protein and O prevents O ACC B-protein_type activation O by O phosphatase B-protein_type - O mediated O dephosphorylation O . O The O crystal B-evidence structure I-evidence of O the O CD B-structure_element of O SceACC B-protein ( O SceCD B-species ) O was O determined O at O 3 O . O 0 O Å O resolution O by O experimental B-experimental_method phasing I-experimental_method and O refined B-experimental_method to O Rwork B-evidence / O Rfree B-evidence = O 0 O . O 20 O / O 0 O . O 24 O ( O Table O 1 O ). O A O regulatory B-structure_element loop I-structure_element mediates O interdomain O interactions O To O define O the O functional O state O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method ACC B-protein_type variants O , O we O employed O mass B-experimental_method spectrometry I-experimental_method ( O MS B-experimental_method ) O for O phosphorylation B-experimental_method site I-experimental_method detection I-experimental_method . O The O SceCD B-species structure B-evidence thus O authentically O represents O the O state O of O SceACC B-protein , O where O the O enzyme B-protein is O inhibited B-protein_state by O SNF1 B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm . O Already O the O binding O of O phosphorylated B-protein_state Ser1157 B-residue_name_number apparently O stabilizes O the O regulatory B-structure_element loop I-structure_element conformation O ; O the O accessory O phosphorylation B-site sites I-site Ser1148 B-residue_name_number and O Ser1162 B-residue_name_number in O the O same B-structure_element loop I-structure_element may O further O modulate O the O strength O of O interaction O between O the O regulatory B-structure_element loop I-structure_element and O the O CDC1 B-structure_element and O CDC2 B-structure_element domains O . O However O , O residual O phosphorylation B-ptm levels O were O detected O for O Ser1204 B-residue_name_number ( O 7 O %) O and O Ser1218 B-residue_name_number ( O 7 O %) O in O the O same B-structure_element loop I-structure_element . O To O further O obtain O insights O into O the O functional O architecture O of O fungal B-taxonomy_domain ACC B-protein_type , O we O characterized O larger B-mutant multidomain I-mutant fragments I-mutant up O to O the O intact B-protein_state enzymes B-protein . O Using O molecular B-experimental_method replacement I-experimental_method based O on O fungal B-taxonomy_domain ACC B-protein_type CD B-structure_element and O CT B-structure_element models O , O we O obtained O structures B-evidence of O a O variant B-mutant comprising O CthCT B-species and O CDC1 B-structure_element / O CDC2 B-structure_element in O two B-evidence crystal I-evidence forms I-evidence at O resolutions O of O 3 O . O 6 O and O 4 O . O 5 O Å O ( O CthCD B-mutant - I-mutant CTCter1 I-mutant / I-mutant 2 I-mutant ), O respectively O , O as O well O as O of O a O CthCT B-species linked O to O the O entire O CD B-structure_element at O 7 O . O 2 O Å O resolution O ( O CthCD B-mutant - I-mutant CT I-mutant ; O Figs O 1a O and O 2 O , O Table O 1 O ). O Owing O to O the O limited O resolution O the O discussion O of O structures B-evidence of O CthCD B-mutant - I-mutant CT I-mutant and O CthΔBCCP B-mutant is O restricted O to O the O analysis O of O domain O localization O . O However O , O MS B-experimental_method analysis O of O CthCD B-mutant - I-mutant CT I-mutant and O CthΔBCCP B-mutant constructs O revealed O between O 60 O and O 70 O % O phosphorylation B-ptm of O Ser1170 B-residue_name_number ( O corresponding O to O SceACC B-protein Ser1157 B-residue_name_number ). O Class B-evidence averages I-evidence , O obtained O by O maximum B-experimental_method - I-experimental_method likelihood I-experimental_method - I-experimental_method based I-experimental_method two I-experimental_method - I-experimental_method dimensional I-experimental_method ( I-experimental_method 2D I-experimental_method ) I-experimental_method classification I-experimental_method , O are O focused O on O the O dimeric B-oligomeric_state CT B-structure_element domain O and O the O full B-protein_state BC B-mutant – I-mutant BCCP I-mutant – I-mutant CD I-mutant domain O of O only O one O protomer B-oligomeric_state , O due O to O the O non O - O coordinated O motions O of O the O lateral O BC B-structure_element / O CD B-structure_element regions O relative O to O the O CT B-structure_element dimer B-oligomeric_state . O They O identify O the O connections O between O CDN B-structure_element / O CDL B-structure_element and O between O CDC2 B-structure_element / O CT B-structure_element as O major O contributors O to O conformational O heterogeneity O ( O Supplementary O Fig O . O 4a O , O b O ). O The O most O relevant O candidate O site O for O mediating O such O additional O flexibility O and O permitting O an O extended O set O of O conformations O is O the O CDC1 B-site / I-site CDC2 I-site interface I-site , O which O is O rigidified O by O the O Ser1157 B-residue_name_number - O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element , O as O depicted O in O the O SceCD B-species crystal B-evidence structure I-evidence . O The O CD B-structure_element consists O of O four O distinct O subdomains B-structure_element and O acts O as O a O tether O from O the O CT B-structure_element to O the O mobile B-protein_state BCCP B-structure_element and O an O oriented B-protein_state BC B-structure_element domain O . O In O higher B-taxonomy_domain eukaryotic I-taxonomy_domain ACCs B-protein_type , O regulation O via O phosphorylation B-ptm is O achieved O by O combining O the O effects O of O phosphorylation B-ptm at O Ser80 B-residue_name_number , O Ser1201 B-residue_name_number and O Ser1263 B-residue_name_number . O A O comparison O between O fungal B-taxonomy_domain and O human B-species ACC B-protein_type will O help O to O further O discriminate O mechanistic O differences O that O contribute O to O the O extended O control O and O polymerization O of O human B-species ACC B-protein_type . O In O flACC B-protein , O CDC2 B-structure_element rotates O ∼ O 120 O ° O with O respect O to O the O CT B-structure_element domain O . O On O the O basis O of O a O superposition B-experimental_method of O CDC2 B-structure_element , O CDC1 B-structure_element of O the O phosphorylated B-protein_state SceCD B-species is O rotated O by O 30 O ° O relative O to O CDC1 B-structure_element of O the O non B-protein_state - I-protein_state phosphorylated I-protein_state flACC B-protein ( O Supplementary O Fig O . O 5d O ), O similar O to O what O we O have O observed O for O the O non B-protein_state - I-protein_state phosphorylated I-protein_state HsaBT B-mutant - I-mutant CD I-mutant ( O Supplementary O Fig O . O 1d O ). O When O inspecting B-experimental_method all O individual O protomer B-oligomeric_state and O fragment B-mutant structures B-evidence in O their O study O , O Wei O and O Tong O also O identify O the O CDN B-structure_element / I-structure_element CDC1 I-structure_element connection I-structure_element as O a O highly B-protein_state flexible I-protein_state hinge B-structure_element , O in O agreement O with O our O observations O . O It O disfavours O the O adoption O of O a O rare B-protein_state , I-protein_state compact I-protein_state conformation I-protein_state , O in O which O intramolecular O dimerization O of O the O BC B-structure_element domains O results O in O catalytic O turnover O . O ( O e O ) O Structural O overview O of O HsaBT B-mutant - I-mutant CD I-mutant . O Cartoon O representation O of O crystal B-evidence structures I-evidence of O multidomain B-mutant constructs I-mutant of O CthACC B-protein . O ( O b O ) O The O interdomain B-site interface I-site of O CDC1 B-structure_element and O CDC2 B-structure_element exhibits O only O limited O plasticity O . O We O identified O that O the O full B-protein_state - I-protein_state length I-protein_state SEL1L B-protein forms O a O self B-oligomeric_state - I-oligomeric_state oligomer I-oligomeric_state through O the O SEL1Lcent B-structure_element domain O in O mammalian B-taxonomy_domain cells O . O The O process O is O called O ER O - O associated O protein O degradation O ( O ERAD O ) O and O is O conserved B-protein_state in O all O eukaryotes B-taxonomy_domain . O SEL1L B-protein is O required O for O ER O homeostasis O , O which O is O essential O for O protein O translation O , O pancreatic O function O , O and O cellular O and O organismal O survival O . O Based O on O these O observations O , O we O propose O a O model O wherein O the O SLR B-structure_element domains O of O SEL1L B-protein contribute O to O the O formation O of O stable B-protein_state oligomers B-oligomeric_state of O the O ERAD O translocation O machinery O , O which O is O indispensable O for O ERAD O . O The O SLR B-structure_element motifs O can O be O grouped O into O three O regions O due O to O the O presence O of O linker B-structure_element sequences I-structure_element among O the O groups O of O SLR B-structure_element motifs O : O SLR B-structure_element - I-structure_element N I-structure_element ( O SLR B-structure_element motifs I-structure_element 1 I-structure_element to I-structure_element 4 I-structure_element ), O SLR B-structure_element - I-structure_element M I-structure_element ( O SLR B-structure_element motifs I-structure_element 5 I-structure_element to I-structure_element 9 I-structure_element ), O and O SLR B-structure_element - I-structure_element C I-structure_element ( O SLR B-structure_element motifs I-structure_element 10 I-structure_element to I-structure_element 11 I-structure_element ) O ( O Fig O . O 1A O ). O We O first O tried O to O prepare O the O full B-protein_state - I-protein_state length I-protein_state mouse B-taxonomy_domain SEL1L B-protein protein O , O excluding O the O transmembrane B-structure_element domain I-structure_element at O the O C O - O terminus O ( O residues O 735 B-residue_range – I-residue_range 755 I-residue_range ), O by O expression B-experimental_method in I-experimental_method bacteria I-experimental_method . O Both O SLR B-structure_element - I-structure_element N I-structure_element ( O residues O 194 B-residue_range – I-residue_range 343 I-residue_range ) O and O SLR B-structure_element - I-structure_element C I-structure_element ( O residues O 639 B-residue_range – I-residue_range 719 I-residue_range ) O alone O could O be O solubilized O with O an O MBP B-experimental_method tag I-experimental_method at I-experimental_method the I-experimental_method N I-experimental_method - I-experimental_method terminus I-experimental_method , O but O appeared O to O be O polydisperse O when O analyzed O by O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method . O Starting O from O its O N O - O terminus O , O the O α B-structure_element - I-structure_element solenoid I-structure_element of O SEL1L B-protein extends O across O a O semi O - O circle O in O a O right O - O handed O superhelix O fashion O along O the O rotation O axis O of O the O yin B-structure_element - I-structure_element yang I-structure_element circle I-structure_element . O However O , O the O last O helix O , O 9B B-structure_element , O at O the O C O - O terminus O adopts O a O different O conformation O , O lying O parallel O to O the O long O axis O of O helix B-structure_element 9A I-structure_element instead O of O forming O an O antiparallel O SLR B-structure_element . O Helix B-structure_element 9B I-structure_element from O one O protomer B-oligomeric_state inserts O into O the O empty O space O surrounded O by O the O concave B-site region I-site in O the O other O monomer B-oligomeric_state , O forming O a O domain B-protein_state - I-protein_state swapped I-protein_state conformation O . O In O this O interface B-site , O Leu B-residue_name_number 516 I-residue_name_number and O Tyr B-residue_name_number 519 I-residue_name_number on O helix B-structure_element 9B I-structure_element are O located O in O the O center O , O making O hydrophobic B-bond_interaction interactions I-bond_interaction with O Trp B-residue_name_number 478 I-residue_name_number on O helix B-structure_element 8B I-structure_element , O Val B-residue_name_number 444 I-residue_name_number on O helix B-structure_element 7B I-structure_element , O Phe B-residue_name_number 411 I-residue_name_number on O helix B-structure_element 6B I-structure_element , O and O Leu B-residue_name_number 380 I-residue_name_number on O helix B-structure_element 5B I-structure_element from O the O SEL1Lcent B-structure_element counterpart O ( O Fig O . O 2A O , O Interface B-site 1 I-site detail O ). O Second O , O the O residues O from O helix B-structure_element 9A I-structure_element interact O with O the O residues O from O helix B-structure_element 5A I-structure_element of O its O counterpart O in O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state orientation O . O However O , O the O mutant B-protein_state behaved O as O a O monomer B-oligomeric_state in O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method and O analytical B-experimental_method ultracentrifugation I-experimental_method experiments O ( O Fig O . O 2B O , O Supplementary O Fig O . O 2C O ). O SLRs B-structure_element of O mouse B-taxonomy_domain SEL1L B-protein were O predicted O using O the O TPRpred B-experimental_method server I-experimental_method . O Although O amino O acid O sequences O from O helix B-structure_element 9A I-structure_element and O 9B B-structure_element correctly O aligned O with O the O regular O SLR B-structure_element repeats I-structure_element and O corresponded O to O SLR B-structure_element motif I-structure_element 9 I-structure_element ( O Fig O . O 3A O ), O the O structural O arrangement O of O the O two O helices B-structure_element deviated O from O the O common O structure O for O the O SLR B-structure_element motif O . O Thus O , O the O Gly B-structure_element - I-structure_element Gly I-structure_element residues O generate O an O unusual O sharp O bend O at O the O C O - O terminal O SLR B-structure_element motif I-structure_element 9 I-structure_element . O G512A B-mutant or O G513A B-mutant alone O showed O no O differences O from O wild B-protein_state - I-protein_state type I-protein_state in O terms O of O the O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method elution O profile O ( O Fig O . O 3D O ), O suggesting O that O the O restriction O for O single O glycine B-residue_name flexibility O would O not O be O enough O to O break O the O swapped O structure O of O helix B-structure_element 9B I-structure_element . O We O generated O full B-protein_state - I-protein_state length I-protein_state SEL1L B-protein - O HA B-experimental_method and O SEL1L B-protein - O FLAG B-experimental_method fusion B-experimental_method constructs I-experimental_method and O co B-experimental_method - I-experimental_method transfected I-experimental_method the O constructs O into O HEK293T O cells O . O Indeed O , O immunoprecipitation B-experimental_method followed O by O western B-experimental_method blot I-experimental_method analysis O using O the O culture O medium O detected O secreted O SEL1L348 B-mutant – I-mutant 497 I-mutant fragment O , O but O not O SEL1Lcent B-structure_element ( O Fig O . O 4B O ). O To O this O end O , O we O co B-experimental_method - I-experimental_method transfected I-experimental_method the O differentially O tagged B-protein_state full B-protein_state - I-protein_state length I-protein_state SEL1L B-protein ( O SEL1L B-protein - O HA B-experimental_method and O SEL1L B-protein - O FLAG B-experimental_method ) O and O increasing B-experimental_method doses I-experimental_method of O SEL1Lcent B-mutant - I-mutant KDEL I-mutant , O SEL1L348 B-mutant – I-mutant 497 I-mutant - I-mutant KDEL I-mutant or O SEL1Lcent B-mutant ( I-mutant L521A I-mutant )- I-mutant KDEL I-mutant , O respectively O . O Co B-experimental_method - I-experimental_method immunoprecipitation I-experimental_method assay I-experimental_method revealed O that O wild B-protein_state - I-protein_state type I-protein_state SEL1Lcent B-mutant - I-mutant KDEL I-mutant , O indeed O , O competitively O disrupted O the O self O - O association O of O the O full B-protein_state - I-protein_state length I-protein_state SEL1L O ( O Fig O . O 4E O ). O This O is O one O of O the O biggest O differences O from O TPRs B-structure_element in O Cdc23 B-protein and O from O the O SLRs B-structure_element in O HcpC B-protein , O where O the O motifs O exist O in O tandem O . O Indirect O evidence O from O a O previous O yeast B-taxonomy_domain study O shows O that O the O circumscribed O region O of O C O - O terminal O Hrd3p B-protein , O specifically O residues O 664 B-residue_range – I-residue_range 695 I-residue_range , O forms O contacts O with O the O Hrd1 B-protein luminal B-structure_element loops I-structure_element . O This O hypothesis O is O supported O by O cross B-experimental_method - I-experimental_method linking I-experimental_method data I-experimental_method suggesting O that O human B-species HRD1 B-protein forms O a O homodimer B-oligomeric_state . O However O , O metazoans B-taxonomy_domain lack O a O clear O Usa1p B-protein homolog O . O Assuming O that O the O correct O oligomerization O of O ERAD O components O may O be O critical O for O their O function O , O we O hypothesize O that O homodimer B-oligomeric_state formation O of O SEL1L B-protein in O the O ER O lumen O may O stabilize O oligomerization O of O the O HRD B-complex_assembly complex O , O given O that O SEL1L B-protein forms O a O stoichiometric O complex B-protein_state with I-protein_state HRD1 B-protein . O Recently O , O a O truncated B-protein_state version O of O Yos9 B-protein was O shown O to O form O a O dimer B-oligomeric_state in O the O ER O lumen O and O to O contribute O to O the O dimeric B-oligomeric_state state O of O the O Hrd1p B-protein complex O . O Putative O N B-site - I-site glycosylation I-site sites I-site are O indicated O by O black O triangles O . O The O schematic O diagrams O representing O the O protein O constructs O used O in O the O SEC B-experimental_method are O shown O on O the O left O of O each O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method profile O . O ( O A O ) O Sequence B-experimental_method alignment I-experimental_method of O the O SLR B-structure_element motifs O in O SEL1L B-protein . O The O 11 O SLR B-structure_element motifs O of O SEL1L B-protein were O expressed O with O red O cylinders O and O grouped O into O three O parts O ( O SLR B-structure_element - I-structure_element N I-structure_element , O SLR B-structure_element - I-structure_element M I-structure_element , O and O SLR B-structure_element - I-structure_element C I-structure_element ) O based O on O the O sequence B-experimental_method alignment I-experimental_method across O the O motifs O and O the O crystal B-evidence structure I-evidence presented O herein O . O Crystal B-evidence Structures I-evidence of O Putative O Sugar B-protein_type Kinases I-protein_type from O Synechococcus B-species Elongatus I-species PCC I-species 7942 I-species and O Arabidopsis B-species Thaliana I-species The O genome O of O the O Synechococcus B-species elongatus I-species strain I-species PCC I-species 7942 I-species encodes O a O putative O sugar B-protein_type kinase I-protein_type ( O SePSK B-protein ), O which O shares O 44 O . O 9 O % O sequence O identity O with O the O xylulose B-protein kinase I-protein - I-protein 1 I-protein ( O AtXK B-protein - I-protein 1 I-protein ) O from O Arabidopsis B-species thaliana I-species . O The O At2g21370 B-gene gene O product O from O Arabidopsis B-species thaliana I-species , O xylulose B-protein kinase I-protein - I-protein 1 I-protein ( O AtXK B-protein - I-protein 1 I-protein ), O whose O mature B-protein_state form I-protein_state contains O 436 B-residue_range amino O acids O , O is O located O in O the O chloroplast O ( O ChloroP O 1 O . O 1 O Server O ). O Two O possible O xylulose B-protein_type kinases I-protein_type ( O xylulose B-protein kinase I-protein - I-protein 1 I-protein : O XK B-protein - I-protein 1 I-protein and O xylulose B-protein kinase I-protein - I-protein 2 I-protein : O XK B-protein - I-protein 2 I-protein ) O from O Arabidopsis B-species thaliana I-species were O previously O proposed O . O The O attempt O to O solve O the O SePSK B-protein structure B-evidence by O molecular B-experimental_method replacement I-experimental_method method I-experimental_method failed O with O ribulokinase B-protein from O Bacillus B-species halodurans I-species ( O PDB O code O : O 3QDK O , O 15 O . O 7 O % O sequence O identity O ) O as O an O initial O model O . O Among O all O these O structural O elements O , O α4 B-structure_element / O α5 B-structure_element / O α11 B-structure_element / O α18 B-structure_element , O β3 B-structure_element / O β2 B-structure_element / O β1 B-structure_element / O β6 B-structure_element / O β19 B-structure_element / O β20 B-structure_element / O β17 B-structure_element and O α21 B-structure_element / O α32 B-structure_element form O three O patches O , O referred O to O as O A1 B-structure_element , O B1 B-structure_element and O A2 B-structure_element , O exhibiting O the O core B-structure_element region I-structure_element . O ( O A O ) O Three O - O dimensional O structure B-evidence of O apo B-protein_state - O SePSK B-protein . O ( O B O ) O Three O - O dimensional O structure B-evidence of O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein . O In O contrary O , O limited O increasing O of O ATP B-chemical hydrolysis O activity O was O detected O for O AtXK B-protein - I-protein 1 I-protein upon O addition O of O D B-chemical - I-chemical ribulose I-chemical ( O Fig O 2C O ), O despite O its O structural O similarity O with O SePSK B-protein . O While O the O ATP B-chemical hydrolysis O activity O of O SePSK B-protein greatly O increases O upon O addition O of O D B-chemical - I-chemical ribulose I-chemical ( O DR B-chemical ). O The O ATP B-chemical hydrolysis O activity O measured O via O luminescent B-experimental_method ADP I-experimental_method - I-experimental_method Glo I-experimental_method assay I-experimental_method ( O Promega O ). O Our O results O suggested O that O three O conserved O residues O ( O D8 B-residue_name_number , O T11 B-residue_name_number and O D221 B-residue_name_number of O SePSK B-protein ) O play O an O important O role O in O SePSK B-protein function O . O Using O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method , O we O found O that O all O of O these O mutants O exhibit O much O lower O activity O of O ATP B-chemical hydrolysis O after O adding O D B-chemical - I-chemical ribulose I-chemical than O that O of O wild B-protein_state type I-protein_state , O indicating O the O possibility O that O these O three O residues O are O involved O in O the O catalytic O process O of O phosphorylation B-ptm D B-chemical - I-chemical ribulose I-chemical and O are O vital O for O the O function O of O SePSK B-protein ( O Fig O 2D O ). O Thus O the O two O structures B-evidence were O named O ADP B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O ADP B-complex_assembly - I-complex_assembly AtXK I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O respectively O . O As O shown O in O Fig O 3A O , O one O SePSK B-protein protein O molecule O is O in O an O asymmetric O unit O with O one O AMP B-chemical - I-chemical PNP I-chemical molecule O . O The O AMP B-chemical - I-chemical PNP I-chemical is O bound O at O the O domain B-structure_element II I-structure_element , O where O it O fits O well O inside O a O positively B-site charged I-site groove I-site . O ( O B O ) O The O AMP B-site - I-site PNP I-site binding I-site pocket I-site . O 7 O . O 1 O Å O ( O RBL1 B-residue_name_number - O C4 O and O RBL2 B-residue_name_number - O C1 O ). O Furthermore O , O the O O2 O of O RBL1 B-residue_name_number interacts B-bond_interaction with I-bond_interaction the O main O chain O amide O nitrogen O of O Ser72 B-residue_name_number ( O Fig O 4B O ). O The O original O data O is O shown O as O black O curve O , O and O the O fitted O data O is O shown O as O different O color O ( O wild B-protein_state type I-protein_state SePSK B-protein : O red O curve O , O D8A B-mutant - O SePSK B-protein : O green O curve O ). O The O side O chain O of O Asp8 B-residue_name_number interacts B-bond_interaction strongly I-bond_interaction with I-bond_interaction O3 O and O O4 O of O RBL2 B-residue_name_number . O Structural B-experimental_method comparison I-experimental_method of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O that O while O the O RBL1 B-site binding I-site pocket I-site is O conserved B-protein_state , O the O RBL2 B-site pocket I-site is O disrupted O in O AtXK B-protein - I-protein 1 I-protein structure B-evidence , O despite O the O fact O that O the O residues O interacting O with O RBL2 B-residue_name_number are O highly B-protein_state conserved I-protein_state between O the O two O proteins O . O Our O SePSK B-protein structure B-evidence shows O that O the O Asp8 B-residue_name_number residue O forms O strong O hydrogen B-bond_interaction bond I-bond_interaction with O RBL2 B-residue_name_number ( O Fig O 4B O ). O In O addition O , O this O difference O may O be O caused O by O the O binding O of O substrates O and O / O or O ATP B-chemical . O The O results O of O superposition B-experimental_method displayed O different O crossing O angle O between O these O two O domains O . O Meanwhile O , O the O distances O of O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical and O the O first O hydroxyl O group O of O RBL2 B-residue_name_number are O 7 O . O 2 O Å O ( O superposed B-experimental_method with O AtXK B-protein - I-protein 1 I-protein ), O 6 O . O 7 O Å O ( O superposed B-experimental_method with O SePSK B-protein ), O 3 O . O 7 O Å O ( O superposed B-experimental_method with O 3LL3 O ), O until O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical fully O contacts O RBL2 B-residue_name_number after O superposition B-experimental_method with O 1GLJ O ( O Fig O 5 O ). O In O summary O , O our O structural B-experimental_method and I-experimental_method enzymatic I-experimental_method analyses I-experimental_method provide O evidence O that O SePSK B-protein shows O D B-protein_type - I-protein_type ribulose I-protein_type kinase I-protein_type activity O , O and O exhibits O the O conserved O features O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O Three O conserved B-site residues O in O SePSK B-protein were O identified O to O be O essential O for O this O function O . O The O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein is O an O important O enterobacterial B-taxonomy_domain acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type whereas O LdcC B-protein is O its O close O paralogue O thought O to O play O mainly O a O metabolic O role O . O Decarboxylation O of O the O amino B-chemical acid I-chemical into O a O polyamine B-chemical is O catalysed O by O a O PLP B-chemical cofactor O in O a O multistep O reaction O that O consumes O a O cytoplasmic O proton B-chemical and O produces O a O CO2 B-chemical molecule O passively O diffusing O out O of O the O cell O , O while O the O polyamine B-chemical is O excreted O by O the O antiporter B-protein_type in O exchange O for O a O new O amino B-chemical acid I-chemical substrate O . O Each O monomer B-oligomeric_state is O composed O of O three O domains O – O an O N O - O terminal O wing B-structure_element domain I-structure_element ( O residues O 1 B-residue_range – I-residue_range 129 I-residue_range ), O a O PLP B-structure_element - I-structure_element binding I-structure_element core I-structure_element domain I-structure_element ( O residues O 130 B-residue_range – I-residue_range 563 I-residue_range ), O and O a O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element , O residues O 564 B-residue_range – I-residue_range 715 I-residue_range ). O Furthermore O , O we O recently O solved B-experimental_method the I-experimental_method structure I-experimental_method of O the O E B-species . I-species coli I-species LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O by O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method ( O cryoEM B-experimental_method ) O and O combined O it O with O the O crystal B-evidence structures I-evidence of O the O individual O proteins O . O In O addition O , O the O wing B-structure_element domains I-structure_element of O all O structures B-evidence are O very O similar O , O with O the O RMSD B-evidence after O optimal O rigid O body O alignment O ( O RMSDmin B-evidence ) O less O than O 1 O . O 1 O Å O . O Thus O , O taking O the O limited O resolution O of O the O cryoEM B-experimental_method maps B-evidence into O account O , O we O consider O that O the O wing B-structure_element domains I-structure_element of O all O the O four O structures B-evidence are O essentially O identical O and O that O in O the O present O study O the O RMSD B-evidence of O less O than O 2 O Å O can O serve O as O a O baseline O below O which O differences O may O be O assumed O as O insignificant O . O This O interface B-site is O formed O essentially O by O the O core B-structure_element domains I-structure_element with O some O contribution O of O the O CTDs B-structure_element . O Zooming O in O the O variations O in O the O PLP B-structure_element - I-structure_element SD I-structure_element shows O that O most O of O the O structural O changes O concern O displacements O in O the O active B-site site I-site ( O Fig O . O 3C O – O F O ). O The O most O conspicuous O differences O between O the O PLP B-structure_element - I-structure_element SDs I-structure_element can O be O linked O to O the O pH B-protein_state - I-protein_state dependent I-protein_state activation O of O the O enzymes O . O In O particular O , O transition O from O LdcIi B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly involves O ~ O 3 O . O 5 O Å O and O ~ O 4 O . O 5 O Å O shifts O away O from O the O 5 O - O fold O axis O in O the O active B-site site I-site α B-structure_element - I-structure_element helices I-structure_element spanning O residues O 218 B-residue_range – I-residue_range 232 I-residue_range and O 246 B-residue_range – I-residue_range 254 I-residue_range respectively O ( O Fig O . O 3C O – O E O ). O An O inhibitor O of O the O LdcI B-protein and O LdcC B-protein activity O , O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical , O is O known O to O bind O at O the O interface B-site between O neighboring O monomers B-oligomeric_state within O each O ring B-structure_element ( O Fig O . O S4 O ). O Interestingly O , O although O a O number O of O ppGpp B-site binding I-site residues I-site are O strictly B-protein_state conserved I-protein_state between O LdcI B-protein and O AdiA B-protein that O also O forms O decamers B-oligomeric_state at O low B-protein_state pH I-protein_state optimal I-protein_state for O its O arginine B-protein_type decarboxylase I-protein_type activity O , O no O ppGpp B-chemical regulation O of O AdiA B-protein could O be O demonstrated O . O All O lysine B-protein_type decarboxylases I-protein_type predicted O to O be O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O or O biodegradable B-protein_state based O on O their O genetic O environment O , O as O for O example O their O organization O in O an O operon O with O a O gene O encoding O the O CadB B-protein antiporter B-protein_type ( O see O Methods O ), O were O found O in O one O group O , O whereas O all O enzymes B-protein_type predicted O as O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O or O biosynthetic B-protein_state partitioned O into O another O group O . O Our O structures B-evidence show O that O this B-structure_element motif I-structure_element is O not O involved O in O the O enzymatic O activity O or O the O oligomeric O state O of O the O proteins O . O Only O one O of O the O two O rings B-structure_element of O the O double B-structure_element toroid I-structure_element is O shown O for O clarity O . O ( O B O ) O The O LdcIi B-protein dimer B-oligomeric_state extracted O from O the O crystal B-evidence structure I-evidence of O the O decamer B-oligomeric_state . O The O PLP B-chemical is O red O . O ( O A O ) O Maximum B-evidence likelihood I-evidence tree I-evidence with O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O and O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O groups O highlighted O in O green O and O pink O , O respectively O . O ( O B O ) O Analysis O of O consensus O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O sequences O around O the O first O and O second O C O - O terminal O β B-structure_element - I-structure_element strands I-structure_element . O ( O C O ) O Signature O sequences O of O LdcI B-protein and O LdcC B-protein in O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element . O Mep2 B-protein_type proteins I-protein_type are O fungal B-taxonomy_domain transceptors B-protein_type that O play O an O important O role O as O ammonium B-chemical sensors O in O fungal B-taxonomy_domain development O . O Mep2 B-protein_type activity O is O tightly O regulated O by O phosphorylation B-ptm , O but O how O this O is O achieved O at O the O molecular O level O is O not O clear O . O Relative O to O the O open B-protein_state bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O non B-protein_state - I-protein_state phosphorylated I-protein_state Mep2 B-protein_type exhibits O shifts O in O cytoplasmic B-structure_element loops I-structure_element and O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element ( O CTR B-structure_element ) O to O occlude O the O cytoplasmic O exit B-site of O the O channel B-site and O to O interact O with O His2 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O One O of O the O most O important O unresolved O questions O in O the O field O is O how O the O transceptors B-protein_type couple O to O downstream O signalling O pathways O . O Mep2 B-protein_type ( B-protein_type methylammonium I-protein_type ( I-protein_type MA I-protein_type ) I-protein_type permease I-protein_type ) I-protein_type proteins I-protein_type are O ammonium B-protein_type transceptors I-protein_type that O are O ubiquitous O in O fungi B-taxonomy_domain . O Compared O with O Mep1 B-protein and O Mep3 B-protein , O Mep2 B-protein is O highly B-protein_state expressed I-protein_state and O functions O as O a O low O - O capacity O , O high O - O affinity O transporter O in O the O uptake O of O MA B-chemical . O All O the O solved O structures B-evidence including O that O of O RhCG B-protein are O very O similar O , O establishing O the O basic O architecture O of O ammonium B-protein_type transporters I-protein_type . O Where O earlier O studies O favoured O the O transport O of O ammonia B-chemical gas O , O recent O data O and O theoretical O considerations O suggest O that O Amt B-protein_type / I-protein_type Mep I-protein_type proteins I-protein_type are O instead O active B-protein_state , O electrogenic B-protein_type transporters I-protein_type of O either O NH4 B-chemical + I-chemical ( O uniport O ) O or O NH3 B-chemical / O H B-chemical + I-chemical ( O symport O ). O Ammonium B-chemical transport O is O tightly O regulated O . O The O structures B-evidence are O similar O to O each O other O but O show O considerable O differences O to O all O other O ammonium B-protein_type transporter I-protein_type structures B-evidence . O The O Mep2 B-protein protein O of O S B-species . I-species cerevisiae I-species ( O ScMep2 B-protein ) O was O overexpressed B-experimental_method in O S B-species . I-species cerevisiae I-species in O high O yields O , O enabling O structure B-experimental_method determination I-experimental_method by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method using O data O to O 3 O . O 2 O Å O resolution O by O molecular B-experimental_method replacement I-experimental_method ( O MR B-experimental_method ) O with O the O archaebacterial B-taxonomy_domain Amt B-protein - I-protein 1 I-protein structure B-evidence ( O see O Methods O section O ). O Given O that O the O modest O resolution O of O the O structure B-evidence and O the O limited O detergent O stability O of O ScMep2 B-protein would O likely O complicate O structure B-experimental_method – I-experimental_method function I-experimental_method studies I-experimental_method , O several O other O fungal B-taxonomy_domain Mep2 B-protein_type orthologues O were O subsequently O overexpressed B-experimental_method and I-experimental_method screened I-experimental_method for I-experimental_method diffraction O - O quality O crystals B-evidence . O Mep2 B-protein channels B-site are O closed B-protein_state by O a O two O - O tier O channel B-structure_element block I-structure_element In O Mep2 B-protein , O the O CTR B-structure_element has O moved O away O and O makes O relatively O few O contacts O with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type , O generating O a O more O elongated B-protein_state protein O ( O Figs O 1 O and O 4 O ). O On O one O side O , O the O Tyr390 B-residue_name_number hydroxyl O in O Amt B-protein - I-protein 1 I-protein is O hydrogen B-bond_interaction bonded I-bond_interaction with O the O side O chain O of O the O conserved B-protein_state His185 B-residue_name_number at O the O C O - O terminal O end O of O loop B-structure_element ICL3 B-structure_element . O At O the O other O end O of O ICL3 B-structure_element , O the O backbone O carbonyl O groups O of O Gly172 B-residue_name_number and O Lys173 B-residue_name_number are O hydrogen B-bond_interaction bonded I-bond_interaction to O the O side O chain O of O Arg370 B-residue_name_number . O The O result O of O these O interactions O is O that O the O CTR B-structure_element ‘ O hugs O ' O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O transporters B-protein_type ( O Fig O . O 4 O ). O Conversely O , O the O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state S457D B-mutant variant O is O active B-protein_state both O in O the O triple B-mutant mepΔ I-mutant background O and O in O a O triple B-mutant mepΔ I-mutant npr1Δ I-mutant strain O ( O Fig O . O 3 O ). O Mutation B-experimental_method of O other O potential O phosphorylation B-site sites I-site in O the O CTR B-structure_element did O not O support O growth O in O the O npr1Δ B-mutant background O . O This O segment B-structure_element ( O residues O 450 B-residue_range – I-residue_range 457 I-residue_range in O ScMep2 B-protein and O 446 B-residue_range – I-residue_range 453 I-residue_range in O CaMep2 B-protein ) O was O dubbed O an O autoinhibitory B-structure_element ( I-structure_element AI I-structure_element ) I-structure_element region I-structure_element based O on O the O fact O that O its O removal B-experimental_method generates O an O active B-protein_state transporter B-protein_type in O the O absence B-protein_state of I-protein_state Npr1 B-protein ( O Fig O . O 3 O ). O The O AI B-structure_element region I-structure_element packs O against O the O cytoplasmic O ends O of O TM2 B-structure_element and O TM4 B-structure_element , O physically O linking O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type with O the O CTR B-structure_element via O main O chain O interactions O and O side O - O chain O interactions O of O Val447 B-residue_name_number , O Asp449 B-residue_name_number , O Pro450 B-residue_name_number and O Arg452 B-residue_name_number ( O Fig O . O 6 O ). O The O peripheral O location O and O disorder B-protein_state of O the O CTR B-structure_element beyond O the O kinase B-site target I-site site I-site should O facilitate O the O phosphorylation B-ptm by O Npr1 B-protein . O The O disordered B-protein_state part O of O the O CTR B-structure_element is O not B-protein_state conserved I-protein_state in O ammonium B-protein_type transporters I-protein_type ( O Fig O . O 2 O ), O suggesting O that O it O is O not O important O for O transport O . O The O data O behind O this O hypothesis O is O the O observation O that O a O ScMep2 B-protein 449 B-mutant - I-mutant 485Δ I-mutant deletion B-protein_state mutant I-protein_state lacking B-protein_state the O AI B-structure_element region I-structure_element is O highly B-protein_state active I-protein_state in O MA B-chemical uptake O both O in O the O triple B-mutant mepΔ I-mutant and O triple B-mutant mepΔ I-mutant npr1Δ I-mutant backgrounds O , O implying O that O this O Mep2 B-mutant variant I-mutant has O a O constitutively B-protein_state open I-protein_state channel B-site . O Interestingly O , O however O , O the O Tyr49 B-residue_name_number - O His342 B-residue_name_number hydrogen B-bond_interaction bond I-bond_interaction that O closes O the O channel O in O the O WT B-protein_state protein O is O still O present O ( O Fig O . O 7 O and O Supplementary O Fig O . O 2 O ). O We O therefore O predict O that O phosphorylation B-ptm of O Ser453 B-residue_name_number will O result O in O steric O clashes O as O well O as O electrostatic O repulsion O , O which O in O turn O might O cause O substantial O conformational O changes O within O the O CTR B-structure_element . O By O contrast O , O the O conserved B-protein_state part O of O the O CTR B-structure_element has O undergone O a O large O conformational O change O involving O formation O of O a O 12 B-structure_element - I-structure_element residue I-structure_element - I-structure_element long I-structure_element α I-structure_element - I-structure_element helix I-structure_element from O Leu427 B-residue_range to I-residue_range Asp438 I-residue_range . O This O is O the O first O time O a O large O conformational O change O has O been O observed O in O an O ammonium B-protein_type transporter I-protein_type as O a O result O of O a O mutation B-experimental_method , O and O confirms O previous O hypotheses O that O phosphorylation B-ptm causes O structural O changes O in O the O CTR B-structure_element . O After O 200 O ns O of O MD B-experimental_method simulation B-experimental_method , O the O interactions O between O these O residues O and O Ser453 B-residue_name_number remain O intact O . O Finally O , O the O S453J B-mutant mutant B-protein_state is O also O stable B-protein_state throughout O the O 200 O - O ns O simulation B-experimental_method and O has O an O average O backbone O deviation O of O ∼ O 3 O . O 8 O Å O , O which O is O similar O to O the O DD B-mutant mutant I-mutant . O The O distance B-evidence between O the O phosphate B-chemical of O Sep453 B-residue_name_number and O the O acidic O oxygen O atoms O of O Glu420 B-residue_name_number is O initially O ∼ O 11 O Å O , O but O increases O to O > O 30 O Å O after O 200 O ns O . O Thus O , O the O MD B-experimental_method simulations B-experimental_method support O the O notion O from O the O crystal B-evidence structures I-evidence that O phosphorylation B-ptm generates O conformational O changes O in O the O conserved B-protein_state part O of O the O CTR B-structure_element . O In O Arabidopsis B-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein , O phosphorylation B-ptm of O the O CTR B-structure_element residue O T460 B-residue_name_number under O conditions O of O high O ammonium B-chemical inhibits O transport O activity O , O that O is O , O the O default O ( O non B-protein_state - I-protein_state phosphorylated I-protein_state ) O state O of O the O plant B-taxonomy_domain transporter B-protein_type is O open B-protein_state . O Owing O to O the O lack O of O structural O information O for O plant B-taxonomy_domain AMTs B-protein_type , O the O details O of O channel B-site closure O and O inter O - O monomer O crosstalk O are O not O yet O clear O . O Upon O phosphorylation B-ptm by O the O Npr1 B-protein kinase B-protein_type in O response O to O nitrogen B-chemical limitation O , O the O region O around O the O conserved B-protein_state ExxGxD B-structure_element motif I-structure_element undergoes O a O conformational O change O that O opens O the O channel B-site ( O Fig O . O 9 O ). O Our O Mep2 B-protein structures B-evidence show O that O this O assumption O may O not O be O correct O ( O Fig O . O 4 O and O Supplementary O Fig O . O 6 O ). O In O this O way O , O phosphorylation B-ptm can O either O lead O to O channel B-site closing O ( O in O the O case O of O AMTs B-protein_type ) O or O channel B-site opening O in O the O case O of O Mep2 B-protein . O Such O mutations O likely O cause O structural O changes O in O the O CTR B-structure_element that O prevent O close O contacts O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element , O thereby O stabilizing O a O closed B-protein_state state O that O may O be O similar O to O that O observed O in O Mep2 B-protein . O Recently O , O phosphorylation B-ptm was O also O shown O to O modulate O substrate O affinity O in O nitrate B-protein_type transporters I-protein_type . O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O Mep2 B-protein transceptors B-protein_type . O ClustalW B-experimental_method alignment I-experimental_method of O CaMep2 B-protein , O ScMep2 B-protein , O A B-species . I-species fulgidus I-species Amt B-protein - I-protein 1 I-protein , O E O . O coli O AmtB B-protein and O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein . O The O grey O sequences O at O the O C O termini O of O CaMep2 B-protein and O ScMep2 B-protein are O not O visible O in O the O structures B-evidence and O are O likely B-protein_state disordered I-protein_state . O In O b O and O c O , O the O centre O of O the O trimer B-oligomeric_state is O at O top O . O That O the O 3 B-protein_type ′- I-protein_type 5 I-protein_type ′ I-protein_type elongation I-protein_type enzyme I-protein_type performs O this O elaborate O two O - O step O reaction O in O one O catalytic B-site center I-site suggests O that O these O two O reactions O have O been O inseparable O throughout O the O process O of O protein O evolution O . O However O , O recent O studies O have O shown O that O the O Thg1 B-protein / O Thg1 B-protein_type - I-protein_type like I-protein_type protein I-protein_type ( O TLP B-protein_type ) O family O of O proteins O extends O tRNA B-chemical nucleotide O chains O in O the O reverse O ( O 3 O ′- O 5 O ′) O direction O . O In O 5 O ′- O 3 O ′ O elongation O by O DNA B-protein_type / I-protein_type RNA I-protein_type polymerases I-protein_type , O the O energy O of O the O incoming O nucleotide O is O used O for O its O own O addition O ( O tail O polymerization O ). O This O guanosine B-chemical at O position O − B-residue_number 1 I-residue_number ( O G B-residue_name_number − I-residue_name_number 1 I-residue_name_number ) O of O tRNAHis B-chemical is O a O critical O identity O element O for O recognition O by O the O histidyl B-protein_type - I-protein_type tRNA I-protein_type synthase I-protein_type . O This O finding O suggests O that O TLPs B-protein_type may O have O potential O functions O other O than O tRNAHis B-chemical maturation O . O This O finding O suggests O that O 3 B-protein_type ′- I-protein_type 5 I-protein_type ′ I-protein_type elongation I-protein_type enzymes I-protein_type are O related O to O 5 B-protein_type ′- I-protein_type 3 I-protein_type ′ I-protein_type polymerases I-protein_type and O raises O important O questions O on O why O 5 B-protein_type ′- I-protein_type 3 I-protein_type ′ I-protein_type polymerases I-protein_type predominate O in O nature O . O The O O O atom O on O the O S213 B-residue_name_number side O chain O was O also O hydrogen B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O the O phosphate B-chemical moiety O of O G57 B-residue_name_number of O the O tRNA B-chemical ( O Fig O . O 2 O ). O The O N7 O atom O of O G2 B-residue_name_number at O the O 5 O ′- O end O was O hydrogen B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O the O N O atom O of O the O R136 B-residue_name_number side O chain O , O whereas O the O α O - O phosphate B-chemical was O bonded O to O the O N137 B-residue_name_number side O chain O ( O Fig O . O 2 O ). O The O obtained O structure B-evidence showed O that O the O guanine B-chemical base O of O the O incoming O GDPNP B-chemical formed O Watson B-bond_interaction - I-bond_interaction Crick I-bond_interaction hydrogen I-bond_interaction bonds I-bond_interaction with O C72 B-residue_name_number and O accompanied O base B-bond_interaction - I-bond_interaction stacking I-bond_interaction interactions I-bond_interaction with O G2 B-residue_name_number of O the O tRNA B-chemical ( O Fig O . O 3B O ), O whereas O no O interaction O was O observed O between O the O guanine B-chemical base O and O the O enzyme O . O Surprisingly O , O the O 5 B-chemical ′- I-chemical triphosphate I-chemical moiety O after O movement O occupied O the O GTP B-chemical / O ATP B-chemical triphosphate B-chemical position O during O the O activation O step O ( O Fig O . O 3D O ). O All O of O these O residues O are O well B-protein_state conserved I-protein_state ( O fig O . O S5 O ), O and O mutation B-experimental_method of O corresponding O residues O in O ScThg1 B-protein ( O R27 B-residue_name_number , O R93 B-residue_name_number , O K96 B-residue_name_number , O and O R133 B-residue_name_number ) O decreased O the O catalytic O efficiency O of O G B-residue_name_number − I-residue_name_number 1 I-residue_name_number addition O . O ( O A O ) O Guanylylation O of O ppptRNAPheΔ1 B-chemical and O ppptRNAHisΔ1 B-chemical by O various O TLP B-protein_type mutants B-protein_state . O The O activity O using O [ B-chemical α I-chemical - I-chemical 32P I-chemical ] I-chemical GTP I-chemical , O wild B-protein_state - I-protein_state type I-protein_state MaTLP B-protein , O and O ppptRNAPheΔ1 B-chemical is O denoted O as O 100 O . O ( O B O ) O Guanylylation O of O tRNAPheΔ1 B-chemical , O tRNAPhe B-chemical , O and O tRNAHisΔ B-chemical − I-chemical 1 I-chemical by O various O TLP B-protein_type mutants B-protein_state . O The O tRNAHis B-protein_type - I-protein_type specific I-protein_type G I-protein_type − I-protein_type 1 I-protein_type addition I-protein_type enzyme I-protein_type Thg1 B-protein needs O to O recognize O both O the O accepter B-structure_element stem I-structure_element and O anticodon B-structure_element of O tRNAHis B-chemical . O TLP B-protein_type has O been O shown O to O confer O such O catalytic O activity O on O tRNAHisΔ B-chemical − I-chemical 1 I-chemical ( O Fig O . O 4B O ). O Thus O , O we O concluded O that O TLP B-protein_type has O two O tRNA B-chemical binding O modes O that O are O selectively O used O , O depending O on O both O the O length O of O the O accepter B-structure_element stem I-structure_element and O the O anticodon B-structure_element . O This O enzyme O has O two O triphosphate B-site binding I-site sites I-site and O one O reaction B-site center I-site at O the O position O overlapping O these O two O binding B-site sites I-site ( O Fig O . O 5A O ). O ( O A O ) O The O reaction B-site center I-site overlapped O with O two O triphosphate B-site binding I-site sites I-site . O Movement O of O the O 5 O ′- O terminal O chain O leaves O the O 5 B-chemical ′- I-chemical triphosphate I-chemical of O the O tRNA B-chemical in O the O same O site O as O the O activation O step O in O ( O B O ). O These O two O Mg2 B-chemical + I-chemical ions O are O coordinated B-bond_interaction by I-bond_interaction a O conserved B-protein_state Asp B-residue_name ( O D21 B-residue_name_number and O D69 B-residue_name_number in O TLP B-protein_type ) O in O the O conserved B-protein_state catalytic B-site core I-site . O However O , O from O an O energetic O viewpoint O , O these O two O reactions O are O clearly O different O : O Whereas O the O high O energy O of O the O incoming O nucleotide O is O used O for O its O own O addition O in O DNA B-protein_type / I-protein_type RNA I-protein_type polymerases I-protein_type , O the O high O energy O of O the O incoming O nucleotide O is O used O for O subsequent O addition O in O TLP B-protein_type . O TLP B-protein_type has O successfully O created O such O sites O by O utilizing O a O conformational O change O in O the O tRNA B-chemical through O Watson B-bond_interaction - I-bond_interaction Crick I-bond_interaction base I-bond_interaction pairing I-bond_interaction ( O Fig O . O 3 O ). O Structural O diversity O in O a O human B-species antibody B-protein_type germline O library O The O structures B-evidence and O their O analyses O provide O a O rich O foundation O for O future O antibody B-protein_type modeling O and O engineering O efforts O . O Our O current O structural O knowledge O of O antibodies B-protein_type is O based O on O a O multitude O of O studies O that O used O many O techniques O to O gain O insight O into O the O functional O and O structural O properties O of O this O class O of O macromolecule O . O IgG B-protein , O IgD B-protein and O IgE B-protein isotypes O are O composed O of O 2 O heavy B-structure_element chains I-structure_element ( O HCs B-structure_element ) O and O 2 O light B-structure_element chains I-structure_element ( O LCs B-structure_element ) O linked O through O disulfide B-ptm bonds I-ptm , O while O IgA B-protein and O IgM B-protein are O double O and O quintuple O versions O of O antibodies B-protein_type , O respectively O . O This O site O , O which O interacts O with O the O antigen O ( O or O target O ), O is O the O focus O of O current O antibody B-protein_type modeling O efforts O . O This O interaction B-site site I-site is O composed O of O 6 O complementarity B-structure_element - I-structure_element determining I-structure_element regions I-structure_element ( O CDRs B-structure_element ) O that O were O identified O in O early O antibody B-experimental_method amino I-experimental_method acid I-experimental_method sequence I-experimental_method analyses I-experimental_method to O be O hypervariable B-protein_state in O nature O , O and O thus O are O responsible O for O the O sequence O and O structural O diversity O of O our O antibody B-protein_type repertoire O . O A O CDR B-structure_element canonical O structure O is O defined O by O its O length O and O conserved O residues O located O in O the O hypervariable B-structure_element loop I-structure_element and O framework B-structure_element residues I-structure_element ( O V B-structure_element - I-structure_element region I-structure_element residues O that O are O not O part O of O the O CDRs B-structure_element ). O Classification O schemes O for O the O canonical O structures O of O these O 5 O CDRs B-structure_element have O emerged O and O evolved O as O the O number O of O depositions O in O the O Protein O Data O Bank O of O Fab B-structure_element fragments O of O antibodies B-protein_type grow O . O Some O clustering O of O conformations O was O observed O for O the O shortest O lengths O ; O however O , O for O the O longer O loops B-structure_element , O only O the O portions O nearest O the O framework B-structure_element ( O torso B-structure_element , O stem B-structure_element or O anchor B-structure_element region I-structure_element ) O were O found O to O have O defined O conformations O . O Current O antibody B-protein_type modeling O approaches O take O advantage O of O the O most O recent O advances O in O homology B-experimental_method modeling I-experimental_method , O the O evolving O understanding O of O the O CDR B-structure_element canonical O structures B-evidence , O the O emerging O rules O for O CDR B-structure_element H3 B-structure_element modeling O and O the O growing O body O of O antibody B-protein_type structural O data O available O from O the O PDB O . O All O 16 O HCs B-structure_element of O the O Fabs B-structure_element have O the O same O CDR B-structure_element H3 B-structure_element that O was O reported O in O an O earlier O Fab B-structure_element structure B-evidence . O This O is O the O first O systematic O study O of O the O same O VH B-structure_element and O VL B-structure_element structures B-evidence in O the O context O of O different O pairings O . O Crystallization B-experimental_method of O the O 16 O Fabs B-structure_element was O previously O reported O . O Three O sets O of O the O crystals B-evidence were O isomorphous O with O nearly O identical O unit O cells O ( O Table O 1 O ). O These O include O ( O 1 O ) O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly in O P212121 O , O ( O 2 O ) O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly in O P6522 O , O and O ( O 3 O ) O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly in O P212121 O . O No O assignment O ( O NA O ) O for O CDRs B-structure_element with O missing O residues O . O A O major O difference O of O H1 B-mutant - I-mutant 69 I-mutant from O the O other O germlines O in O the O experimental O data O set O is O the O presence O of O Gly B-residue_name instead O of O Phe B-residue_name or O Tyr B-residue_name at O position O 27 B-residue_number ( O residue O 5 O of O 13 O in O CDR B-structure_element H1 B-structure_element ). O The O superposition B-experimental_method of O CDR B-structure_element L1 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O light B-structure_element chains I-structure_element : O ( O A O ) O L1 B-mutant - I-mutant 39 I-mutant , O ( O B O ) O L3 B-mutant - I-mutant 11 I-mutant , O ( O C O ) O L3 B-mutant - I-mutant 20 I-mutant and O ( O D O ) O L4 B-mutant - I-mutant 1 I-mutant . O For O the O remaining O 2 O , O L3 B-mutant - I-mutant 20 I-mutant has O 2 O different O assignments O , O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant and O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant , O while O L4 B-mutant - I-mutant 1 I-mutant has O a O single O assignment O , O L1 B-mutant - I-mutant 17 I-mutant - I-mutant 1 I-mutant . O The O third O structure O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O CDR B-structure_element L1 B-structure_element as O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant , O which O deviates O from O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant at O residues O 29 B-residue_range - I-residue_range 32 I-residue_range , O i O . O e O ., O at O the O site O of O insertion O with O respect O to O the O 11 B-residue_range - I-residue_range residue I-residue_range CDR B-structure_element . O The O stem B-structure_element region I-structure_element of O CDR B-structure_element H3 B-structure_element in O the O parental O Fab B-structure_element is O in O a O ‘ O kinked B-protein_state ’ O conformation O , O in O which O the O indole O nitrogen O of O Trp103 B-residue_name_number forms O a O hydrogen B-bond_interaction bond I-bond_interaction with O the O carbonyl O oxygen O of O Leu100b B-residue_name_number . O The O structure B-evidence of O each O CDR B-structure_element H3 B-structure_element is O represented O with O a O different O color O . O Despite O having O the O same O amino O acid O sequence O in O all O variants O , O CDR B-structure_element H3 B-structure_element has O the O highest O degree O of O structural O diversity O and O disorder O of O all O of O the O CDRs B-structure_element in O the O experimental O set O . O In O 10 O of O the O 18 O Fab B-structure_element structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly ( O 2 O Fabs B-structure_element ), O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly ( O 2 O Fabs B-structure_element ), O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O the O CDRs B-structure_element have O similar O conformations O to O that O found O in O 4DN3 O . O The O stem B-structure_element regions I-structure_element in O these O 3 O cases O are O in O the O ‘ O kinked B-protein_state ’ O conformation O consistent O with O that O observed O for O 4DN3 O . O The O domain O packing O of O the O variants O was O assessed O by O computing O the O domain B-site interface I-site interactions O , O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly tilt B-evidence angles I-evidence , O the O buried O surface O area O and O surface O complementarity O . O The O VH B-structure_element residues O are O in O blue O , O the O VL B-structure_element residues O are O in O orange O . O The O VH B-site : I-site VL I-site interface I-site is O pseudosymmetric B-protein_state , O and O involves O 2 O stretches O of O the O polypeptide O chain O from O each O domain O , O namely O CDR3 B-structure_element and O the O framework B-structure_element region I-structure_element between O CDRs B-structure_element 1 I-structure_element and I-structure_element 2 I-structure_element . O These O stretches O form O antiparallel B-structure_element β I-structure_element - I-structure_element hairpins I-structure_element within O the O internal O 5 B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O The O second O approach O used O for O comparing O tilt B-evidence angles I-evidence involved O computing O the O difference B-evidence in O the O tilt B-evidence angles I-evidence between O all O pairs O of O structures B-evidence . O Indeed O , O this O Fab B-structure_element has O the O largest O twist B-evidence angle I-evidence HC2 B-structure_element within O the O experimental O set O that O exceeds O the O mean O value O by O 2 O . O 5 O standard O deviations O ( O Table O S2 O ). O One O of O the O 2 O structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O its O CDR B-structure_element H3 B-structure_element in O the O ‘ O extended B-protein_state ’ O conformation O ; O the O other O structure O has O it O in O the O ‘ O kinked B-protein_state ’ O conformation O . O Some O side O chain O atoms O in O CDR B-structure_element H3 B-structure_element are O missing O . O Having O all O 16 O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairs O with O the O same O CDR B-structure_element H3 B-structure_element provides O some O insights O into O why O molecular O modeling O efforts O of O CDR B-structure_element H3 B-structure_element have O proven O so O difficult O . O This O subset O also O has O 2 O structures B-evidence with O 2 O Fab B-structure_element copies O in O the O asymmetric O unit O . O Thus O , O no O patterns O of O conformational O preference O for O a O particular O HC B-structure_element or O LC B-structure_element emerge O to O shed O any O direct O light O on O what O drives O the O conformational O differences O . O At O the O other O end O of O the O stability O range O is O LC B-structure_element germline O L3 B-mutant - I-mutant 20 I-mutant , O which O yields O antibodies B-protein_type with O the O lowest O Tms B-evidence . O Yet O , O for O the O 2 O antibodies B-protein_type , O the O total O gain O in O stability O merits O the O domain O repacking O . O Quite O unexpectedly O , O 2 O of O the O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O have O the O ‘ O extended B-protein_state ’ O stem B-structure_element region I-structure_element differing O from O the O other O 14 O that O have O a O ‘ O kinked B-protein_state ’ O stem B-structure_element region I-structure_element . O For O those O applications O where O accurate O CDR B-structure_element structures B-evidence are O essential O , O such O as O docking O , O the O results O in O this O work O demonstrate O the O importance O of O experimental O structures B-evidence . O Interestingly O , O several O clinically O relevant O and O human B-species pathogenic O strains O are O inherently O resistant O towards O lantibiotics B-chemical . O The O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element exhibits O a O fold O that O classifies O NsrR B-protein as O a O member O of O the O OmpR B-protein_type / I-protein_type PhoB I-protein_type subfamily I-protein_type of O regulators O . O They O are O post O - O translationally O modified O and O contain O specific O lanthionine B-chemical / O methyl B-chemical - I-chemical lanthionine I-chemical rings O , O which O are O crucial O for O their O high O antimicrobial O activity O . O Examples O for O LanFEG B-protein_type are O NisI B-protein and O NisFEG B-protein of O the O nisin B-chemical system O , O SpaI B-protein and O SpaFEG B-protein conferring O immunity O towards O subtilin B-chemical , O and O PepI B-protein constituting O the O immunity O system O of O Pep5 B-chemical producing O strains O . O Furthermore O , O the O upregulation O of O these O genes O is O mediated O by O a O specific O two B-complex_assembly - I-complex_assembly component I-complex_assembly system I-complex_assembly ( O TCS B-complex_assembly ) O similar O to O the O one O found O in O lantibiotic B-chemical producing O strains O , O consisting O of O a O sensor O histidine B-protein_type kinase I-protein_type ( O HK B-protein_type ) O and O a O response B-protein_type regulator I-protein_type ( O RR B-protein_type ), O apparently O mediate O the O expression O of O the O resistance O proteins O : O HK B-protein_type senses O the O external O lantibiotic B-chemical and O , O upon O receiving O the O stimuli O , O auto B-ptm - I-ptm phosphorylates I-ptm at O a O conserved B-protein_state histidine B-residue_name residue O within O the O cytosol O ; O this O high O - O energetic O phosphoryl O group O is O then O transferred O to O the O associated O RR B-protein_type inducing O a O conformational O change O there O , O which O activates O the O RR B-protein_type to O evoke O the O cellular O response O . O The O recently O discovered O nsr B-gene gene O cluster O of O the O human B-species pathogen O S B-species . I-species agalactiae I-species encodes O for O the O resistance B-protein_type protein I-protein_type NSR B-protein and O the O ABC B-protein_type transporter I-protein_type NsrFP B-protein , O both O conferring O resistance O against O nisin B-chemical . O The O ED B-structure_element is O thereby O activated O and O binds O to O the O designated O promoters O , O thus O initiating O transcription O of O the O target O genes O . O Although O numerous O structures B-evidence of O the O single O domains O are O known O , O only O a O few O structures B-evidence of O full B-protein_state - I-protein_state length I-protein_state OmpR B-protein_type / I-protein_type PhoB I-protein_type - I-protein_type type I-protein_type RRs I-protein_type have O been O determined O : O RegX3 B-protein ( O PDB O code O : O 2OQR O ), O MtrA B-protein ( O PDB O code O : O 2GWR O ), O PrrA B-protein ( O PDB O code O : O 1YS6 O ) O and O PhoP B-protein ( O PDB O code O : O 3R0J O ) O from O Mycobacterium B-species tuberculosis I-species ; O DrrB B-protein ( O PDB O code O : O 1P2F O ) O and O DrrD B-protein ( O PDB O code O : O 1KGS O ) O from O Thermotoga B-species maritima I-species ; O and O KdpE B-protein from O Escherichia B-species coli I-species ( O PDB O code O : O 4KNY O ). O By O calibrating O the O column O with O proteins O of O known O molecular O weight O the O NsrR B-protein full B-protein_state length I-protein_state protein O elutes O as O a O dimer B-oligomeric_state . O Surprisingly O , O over O time O NsrR B-protein degraded O into O two O distinct O fragments O as O visible O on O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method analysis O using O the O same O purified O protein O sample O after O one O week O ( O Fig O 1C O , O indicated O by O ** O and O ***, O respectively O ). O Such O a O cleavage O of O the O full B-protein_state - I-protein_state length I-protein_state RR B-protein_type into O two O specific O domains O is O not O unusual O and O has O been O previously O reported O for O other O RRs B-protein_type as O well O . O The O bold O line O represents O the O chromatogram B-evidence of O freshly O purified O NsrR B-protein while O the O dashed O line O shows O the O chromatogram B-evidence of O the O same O NsrR B-protein protein O after O one O week O . O We O also O tried O to O solve O the O structure B-evidence of O the O thin O plate O - O shaped O crystals B-evidence with O this O template O , O but O the O resulting O model O generated O was O not O sufficient O . O We O determined O the O crystal B-evidence structures I-evidence of O NsrR B-protein - O RD B-structure_element and O NsrR B-protein - O ED B-structure_element separately O . O Ramachandran B-evidence validation I-evidence revealed O that O all O residues O ( O 100 O %, O 236 O amino O acids O ) O were O in O the O preferred O or O allowed O regions O . O Cartoon O representation O of O the O helices B-structure_element ( O α1 B-structure_element – I-structure_element α5 I-structure_element ) O and O β B-structure_element - I-structure_element sheets I-structure_element ( O β1 B-structure_element - I-structure_element β5 I-structure_element ). O Structural O areas O with O the O highest O variations O to O the O receiver B-structure_element domains I-structure_element of O DrrB B-protein ( O pink O , O 1P2F O ), O MtrA B-protein ( O grey O , O 2GWR O ), O and O PhoB B-protein ( O blue O , O 1B00 O ) O are O marked O in O separate O boxes O . O Furthermore O , O NsrR B-protein is O crystallized B-experimental_method as O a O monomer B-oligomeric_state , O and O investigation O of O the O symmetry O - O related O molecules O did O not O reveal O a O functional O dimer B-oligomeric_state within O the O crystal B-evidence . O The O rmsd B-evidence values O of O the O superimpositions B-experimental_method of O the O structures B-evidence of O NsrR B-protein - O RD B-structure_element and O NsrR B-protein - O ED B-structure_element with O the O available O structures B-evidence of O members O of O the O OmpR B-protein_type / I-protein_type PhoB I-protein_type subfamily I-protein_type are O highlighted O . O * O Seq O ID O (%) O corresponds O to O the O full B-protein_state - I-protein_state length I-protein_state protein O sequence O . O This O site O of O phosphorylation B-ptm is O conserved B-protein_state throughout O the O family O of O response B-protein_type regulators I-protein_type , O including O the O lantibiotic B-protein_type resistance I-protein_type - I-protein_type associated I-protein_type RRs I-protein_type such O as O BraR B-protein from O L B-species . I-species monocytogenes I-species , O BceR B-protein from O Bacillus B-species subtilis I-species , O CprR B-protein from O C B-species . I-species difficile I-species , O GraR B-protein from O S B-species . I-species aureus I-species , O LcrR B-protein from O S B-species . I-species mutans I-species , O LisR B-protein , O and O VirR B-protein from O L B-species . I-species monocytogenes I-species ( O Fig O 3 O ). O The O linker B-structure_element region I-structure_element of O the O known O structures B-evidence is O underlined O within O the O sequence O . O This O pocket B-site is O similar O to O the O acidic B-protein_state active B-site site I-site observed O within O most O structures B-evidence of O RRs B-protein_type such O as O PhoB B-protein from O E B-species . I-species coli I-species , O PhoP B-protein from O M B-species . I-species tuberculosis I-species , O and O DivK B-protein from O Caulobacter B-species crescentus I-species . O The O inactive B-protein_state conformation O of O NsrR B-protein differs O from O the O active B-protein_state state O structure B-evidence of O PhoB B-protein ( O light O blue O , O PDB O code O 1ZES O ) O ( O b O ) O in O the O orientation O of O the O corresponding O switch B-site residues I-site , O Ser82 B-residue_name_number and O Phe101 B-residue_name_number , O which O adopt O a O conformation O pointing O away O from O the O active B-site site I-site ( O Asp55 B-residue_name_number in O NsrR B-protein ). O In O some O RRs B-protein_type like O CheY B-protein , O Mg2 B-chemical + I-chemical is O observed O in O the O structure B-evidence , O bound B-protein_state near O the O phosphorylation B-site site I-site . O In O the O KdpE B-protein regulator B-protein_type from O E B-species . I-species coli I-species that O is O involved O in O osmoregulation O , O a O divalent O calcium B-chemical ion O is O present O . O Within O the O β4 B-structure_element - I-structure_element α4 I-structure_element loop I-structure_element and O in O β5 B-structure_element of O the O RD B-structure_element of O RRs B-protein_type , O specific O amino O acids O are O crucial O for O signal O transduction O from O the O RD B-structure_element to O the O ED B-structure_element via O conformational O changes O that O are O a O consequence O of O phosphorylation B-ptm of O the O RD B-structure_element . O These O amino O acids O are O Ser B-residue_name / O Thr B-residue_name and O Phe B-residue_name / O Tyr B-residue_name located O at O the O end O of O β4 B-structure_element and O before O β5 B-structure_element , O respectively O , O and O designated O as O “ O signature B-site switch I-site residues I-site ”. O Although O some O RRs B-protein_type such O as O KdpE B-protein , O BraR B-protein , O BceR B-protein , O GraR B-protein , O and O VirR B-protein contain O a O serine B-residue_name residue O as O the O first B-site switch I-site residue I-site , O the O others O possess O a O threonine B-residue_name instead O . O The O RD B-structure_element domain O of O NsrR B-protein was O crystallized B-experimental_method with O two O separate O monomers B-oligomeric_state in O the O asymmetric O unit O . O Afterwards O , O helix B-structure_element α4 B-structure_element and O the O adjacent O loops B-structure_element were O energy B-experimental_method minimized I-experimental_method with I-experimental_method the I-experimental_method MAB I-experimental_method force I-experimental_method field I-experimental_method as O implemented O in O the O program O Moloc O ; O all O other O atoms O of O NsrR B-protein - O RD B-structure_element were O kept O fixed O . O The O result O is O highlighted O in O S2B O Fig O . O The O energy B-protein_state minimized I-protein_state structure B-evidence of O NsrR B-protein - O RD B-structure_element was O then O superimposed B-experimental_method on O the O dimeric B-oligomeric_state structure B-evidence of O KdpE B-protein . O In O addition O , O the O dimeric B-site interface I-site of O KdpE B-protein is O characterized O by O hydrophobic B-site patch I-site formed O by O residues O Ile88 B-residue_name_number ( O α4 B-structure_element ), O Leu91 B-residue_name_number ( O α4 B-structure_element ), O Ala110 B-residue_name_number ( O α5 B-structure_element ), O and O Val114 B-residue_name_number ( O α5 B-structure_element ). O Dimeric B-oligomeric_state structure B-evidence of O the O RD B-structure_element of O NsrR B-protein aligned O to O the O structure B-evidence of O KdpE B-protein ( O PDB O code O 1ZH2 O , O not O shown O ). O ( O a O ) O The O two O monomers B-oligomeric_state of O NsrR B-protein as O functional O dimers B-oligomeric_state are O represented O in O a O cartoon O representation O displayed O in O cyan O and O yellow O colors O . O Overall O Structure B-evidence of O C O - O terminal O DNA B-structure_element - I-structure_element binding I-structure_element effector I-structure_element domain I-structure_element of O NsrR B-protein The O asymmetric O unit O contains O two O copies O of O NsrR B-protein - O ED B-structure_element related O by O two O - O fold O rotational O symmetry O . O The O structure B-evidence of O NsrR B-protein - O ED B-structure_element also O contains O such O a O wHTH B-structure_element motif O built O up O by O helices B-structure_element α7 B-structure_element and O α8 B-structure_element ( O Fig O 6 O ). O In O the O structure B-evidence of O NsrR B-protein - O ED B-structure_element , O helix B-structure_element α8 B-structure_element is O identified O as O the O recognition B-structure_element helix I-structure_element , O α7 B-structure_element as O the O positioning B-structure_element helix I-structure_element , O and O the O loop B-structure_element region I-structure_element between O helices O α7 B-structure_element - I-structure_element α8 I-structure_element as O transactivation B-structure_element loop I-structure_element as O observed O in O other O RRs B-protein_type ( O Fig O 6 O ). O The O rmsd B-evidence between O the O three O helices O of O the O effector B-structure_element domain I-structure_element ( O including O the O two O helices B-structure_element forming O the O wHTH B-structure_element motif O ) O of O PhoB B-protein and O NsrR B-protein - O ED B-structure_element is O 1 O . O 6 O Å O over O 47 O Cα O atoms O , O clearly O indicating O that O NsrR B-protein belongs O to O the O OmpR B-protein_type / I-protein_type PhoB I-protein_type family I-protein_type of I-protein_type RRs I-protein_type . O The O exact O boundaries O of O these O linkers B-structure_element are O difficult O to O predict O from O sequence B-experimental_method alignments I-experimental_method in O the O absence B-protein_state of I-protein_state structural O information O of O the O distinct O RR B-protein_type . O Linker B-structure_element lengths O in O OmpR B-protein_type / I-protein_type PhoB I-protein_type proteins I-protein_type of O unknown O structure O have O been O estimated O by O comparing O the O number O of O residues O between O conserved O landmark O residues O in O the O regulatory B-structure_element and I-structure_element effector I-structure_element domains I-structure_element to O those O from O structurally O characterized O family O members O . O As O seen O in O the O structures B-evidence of O MtrA B-protein and O KdpE B-protein , O this O arginine B-residue_name residue O residing O at O the O end O of O α5 B-structure_element participates O in O the O active B-protein_state state O dimer B-site interface I-site of O the O RD B-structure_element through O a O salt B-bond_interaction bridge I-bond_interaction interaction O with O an O aspartate B-residue_name residue O . O Although O we O aimed O at O crystallizing B-experimental_method full B-protein_state - I-protein_state length I-protein_state NsrR B-protein , O this O endeavor O failed O due O to O proteolytic O cleavage O within O the O linker B-structure_element region I-structure_element during O the O time O period O of O crystallization B-experimental_method . O DNA B-chemical - O binding O mode O of O NsrR B-protein using O a O full B-protein_state - I-protein_state length I-protein_state model O Since O the O structures B-evidence of O both O domains O of O NsrR B-protein were O determined O , O we O used O this O structural B-evidence information I-evidence together O with O the O available O crystal B-evidence structures I-evidence of O related O proteins O to O create O a O model O of O the O full B-protein_state - I-protein_state length I-protein_state NsrR B-protein in O its O active B-protein_state and O inactive B-protein_state state O . O Model O of O full B-protein_state - I-protein_state length I-protein_state NsrR B-protein in O its O inactive B-protein_state state O and O active B-protein_state state O . O In O numerous O pathogenic O bacteria B-taxonomy_domain such O as O S B-species . I-species agalactiae I-species , O S B-species . I-species aureus I-species , O and O C B-species . I-species difficile I-species that O apparently O do O not O produce O a O lantibiotic B-chemical , O a O gene O cluster O is O present O to O provide O resistance O against O lantibiotics B-chemical such O as O nisin B-chemical , O nukacin B-chemical ISK I-chemical - I-chemical 1 I-chemical , O lacticin B-chemical 481 I-chemical gallidermin B-chemical , O actagardine B-chemical , O or O mersacidin B-chemical . O NMR B-experimental_method can O theoretically O be O used O to O determine O heterogeneous O ensembles O , O but O in O practice O , O this O proves O to O be O very O challenging O . O However O , O the O impact O that O chaperones B-protein_type have O on O their O substrates O , O and O how O these O interactions O affect O the O folding O process O remain O largely O unknown O . O Spy B-protein prevents O protein O aggregation O and O aids O in O protein O folding O under O various O stress O conditions O , O including O treatment O with O tannin B-chemical and O butanol B-chemical . O We O originally O discovered O Spy B-protein by O its O ability O to O stabilize O the O protein O - O folding O model O Im7 B-protein in O vivo O and O recently O demonstrated O that O Im7 B-protein folds O while O associated O with O Spy B-protein . O Such O residual O density O is O typically O not O considered O usable O by O traditional O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method methods O . O To O determine O the O structure B-evidence of O the O substrate O portion O of O these O Spy B-protein : O substrate O complexes O , O we O conceived O of O an O approach O that O we O term O READ B-experimental_method , O for O Residual B-experimental_method Electron I-experimental_method and I-experimental_method Anomalous I-experimental_method Density I-experimental_method . O We O split O this O approach O into O five O steps O : O ( O 1 O ) O By O using O a O well O - O diffracting O Spy B-protein : O substrate O co B-evidence - I-evidence crystal I-evidence , O we O first O determined O the O structure B-evidence of O the O folded B-protein_state domain B-structure_element of O Spy B-protein and O obtained O high O quality O residual B-evidence electron I-evidence density I-evidence within O the O dynamic B-protein_state regions O of O the O substrate O . O We O then O co B-experimental_method - I-experimental_method crystallized I-experimental_method Spy B-protein and O the O eight O Im76 B-mutant - I-mutant 45 I-mutant peptides O , O each O of O which O harbored O an O individual O pI B-chemical - I-chemical Phe I-chemical substitution B-experimental_method at O one O distinct O position O , O and O collected B-experimental_method anomalous B-evidence data I-evidence for O all O eight O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complexes O ( O Fig O . O 1B O , O Supplementary O Table O 1 O Supplementary O Dataset O 1 O , O and O Supplementary O Table O 2 O ). O During O each O round O of O the O selection O , O a O genetic B-experimental_method algorithm I-experimental_method alters O the O ensemble O and O its O agreement O to O the O experimental O data O is O re O - O evaluated O . O This O strategy O allows O a O wide O range O of O substrate O conformations O to O interact O with O the O chaperone B-protein_type . O The O ensemble O primarily O encompasses O Im76 B-mutant - I-mutant 45 I-mutant laying O diagonally O within O the O Spy B-protein cradle B-site in O several O different O orientations O , O but O some O conformations O traverse O as O far O as O the O tips O or O even O extend O over O the O side O of O the O cradle B-site ( O Figs O . O 3 O , O 4a O ). O The O Spy B-site - I-site contacting I-site residues I-site comprise O a O mixture O of O charged O , O polar O , O and O hydrophobic O residues O . O For O example O , O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O Im76 B-mutant - I-mutant 45 I-mutant binds O more O consistently O in O the O Spy B-protein cradle B-site , O whereas O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element predominantly O binds O to O the O outer O edges O of O Spy B-protein ’ O s O concave B-site surface I-site . O Although O we O do O not O yet O have O time O resolution O data O of O these O various O snapshots O of O Im76 B-mutant - I-mutant 45 I-mutant , O this O ensemble O illustrates O how O a O substrate O samples O its O folding O landscape O while O bound B-protein_state to I-protein_state a O chaperone B-protein_type . O Additionally O , O we O observed O that O the O linker B-structure_element region I-structure_element ( O residues O 47 B-residue_range – I-residue_range 57 I-residue_range ) O of O Spy B-protein , O which O participates O in O substrate O interaction O , O becomes O mostly O disordered B-protein_state upon O binding O the O substrate O . O In O the O chaperone B-protein_state - I-protein_state bound I-protein_state ensemble O , O Im76 B-mutant - I-mutant 45 I-mutant samples O unfolded B-protein_state , O partially O folded B-protein_state , O and O native B-protein_state - O like O states O . O The O ensemble O provides O an O unprecedented O description O of O the O conformations O that O a O substrate O assumes O while O exploring O its O chaperone B-protein_type - O associated O folding O landscape O . O The O high O - O resolution O ensemble B-evidence obtained O here O now O provides O insight O into O exactly O how O this O occurs O . O The O ensemble B-evidence suggests O a O model O in O which O Spy B-protein provides O an O amphipathic B-site surface I-site that O allows O substrate O proteins O to O assume O different O conformations O while O bound B-protein_state to I-protein_state the O chaperone B-protein_type . O Residues O Asp32 B-residue_name_number and O Asp35 B-residue_name_number are O close O to O each O other O in O the O folded B-protein_state state O of O Im7 B-protein . O Our O study O indicates O that O the O chaperone B-protein_type Spy B-protein employs O a O simple O surface O binding O approach O that O allows O the O substrate O to O explore O various O conformations O and O form O transiently O favorable O interactions O while O being O protected O from O aggregation O . O Crystallographic O data O and O ensemble O selection O . O ( O a O ) O 2mFo B-evidence − I-evidence DFc I-evidence omit I-evidence map I-evidence of O residual O Im76 B-mutant - I-mutant 45 I-mutant and O flexible B-structure_element linker I-structure_element electron B-evidence density I-evidence contoured O at O 0 O . O 5 O σ O . O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly ensemble O , O arranged O by O RMSD B-evidence to O native B-protein_state state O of O Im76 B-mutant - I-mutant 45 I-mutant . O Although O the O six O - O membered O ensemble O from O the O READ B-experimental_method selection O should O be O considered O only O as O an O ensemble O , O for O clarity O , O the O individual O conformers O are O shown O separately O here O . O Dashed O lines O connect O non O - O contiguous O segments O of O the O Im76 B-mutant - I-mutant 45 I-mutant substrate O . O ( O a O ) O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly contact B-evidence map I-evidence projected O onto O the O bound B-protein_state Spy B-protein dimer B-oligomeric_state ( O above O ) O and O Im76 B-mutant - I-mutant 45 I-mutant ( O below O ) O structures B-evidence . O For O clarity O , O Im76 B-mutant - I-mutant 45 I-mutant is O represented O with O a O single O conformation O . O As O the O residues O involved O in O contacts O are O more O evenly O distributed O in O Im76 B-mutant - I-mutant 45 I-mutant compared O to O Spy B-protein , O its O contact B-evidence map I-evidence was O amplified O . O ( O b O ) O Detailed O contact B-evidence maps I-evidence of O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly . O ( O a O ) O Overlay B-experimental_method of O apo B-protein_state Spy B-protein ( O PDB O ID O : O 3O39 O , O gray O ) O and O bound B-protein_state Spy B-protein ( O green O ). O ( O b O ) O Overlay B-experimental_method of O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state Im76 B-mutant - I-mutant 45 I-mutant ( O green O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state Im7 B-protein L18A B-mutant L19 B-mutant AL13A I-mutant ( O blue O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state WT B-protein_state Im7 B-protein ( O yellow O ), O and O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state casein B-chemical ( O salmon O ). O ( O c O ) O Competition B-experimental_method assay I-experimental_method showing O Im76 B-mutant - I-mutant 45 I-mutant competes O with O Im7 B-protein L18A B-mutant L19A B-mutant L37A B-mutant H40W B-mutant for O the O same O binding B-site site I-site on O Spy B-protein ( O further O substrate B-experimental_method competition I-experimental_method assays I-experimental_method are O shown O in O Supplementary O Fig O . O 8 O ). O Reversal O of O DNA B-chemical damage O induced O Topoisomerase B-protein_type 2 I-protein_type DNA B-chemical – O protein O crosslinks O by O Tdp2 B-protein Mammalian B-taxonomy_domain Tyrosyl B-protein - I-protein DNA I-protein phosphodiesterase I-protein 2 I-protein ( O Tdp2 B-protein ) O reverses O Topoisomerase B-protein_type 2 I-protein_type ( O Top2 B-protein_type ) O DNA B-chemical – O protein O crosslinks O triggered O by O Top2 B-protein_type engagement O of O DNA B-chemical damage O or O poisoning O by O anticancer O drugs O . O ( O B O ) O DNA B-chemical oligonucleotide O substrates O synthesized O by O EDC O - O imidazole O coupling O and O used O in O Tdp2 B-experimental_method enzyme I-experimental_method assays I-experimental_method contain O deoxyadenine B-chemical ( O dA B-chemical ), O Ethenoadenine B-chemical ( O ϵA B-chemical ) O or O an O abasic B-site site I-site ( O THF B-chemical ) O and O a O 5 O ′– O nitrophenol O moiety O . O P B-evidence - I-evidence values I-evidence calculated O using O two O - O tailed O t B-experimental_method - I-experimental_method test I-experimental_method ; O error O bars O , O s O . O d O . O n O = O 4 O , O n O . O s O . O = O not O statistically O significant O . O ( O D O ) O Structure B-evidence of O mTdp2cat B-structure_element bound B-protein_state to I-protein_state 5 B-chemical ′- I-chemical phosphate I-chemical DNA I-chemical ( O product O complex O ) O containing O ϵA B-chemical ( O yellow O ). O DNA B-site binding I-site β2Hβ I-site – I-site grasp I-site ( O tan O ) O and O cap O elements O engage O the O 5 O ′- O nucleotide O as O well O as O the O + O 2 O and O + O 3 O nucleotides O ( O blue O ) O of O substrate O DNA B-chemical . O Our O integrated O results O from O structural B-experimental_method analysis I-experimental_method , O mutagenesis B-experimental_method , O functional B-experimental_method assays I-experimental_method and O quanyum B-experimental_method mechanics I-experimental_method / I-experimental_method molecular I-experimental_method mechanics I-experimental_method ( O QM B-experimental_method / I-experimental_method MM I-experimental_method ) O modeling B-experimental_method of O the O Tdp2 B-protein reaction O coordinate O describe O in O detail O how O Tdp2 B-protein mediates O a O single O - O metal O ion O tyrosyl B-protein_type DNA I-protein_type phosphodiesterase I-protein_type reaction O capable O of O acting O on O diverse O DNA B-chemical end O damage O . O To O understand O the O molecular O basis O for O Tdp2 B-protein processing O of O Top2cc B-complex_assembly in O the O context O of O DNA B-chemical damage O , O we O crystallized B-experimental_method and I-experimental_method determined I-experimental_method X B-experimental_method - I-experimental_method ray I-experimental_method crystal B-evidence structures I-evidence of O mTdp2cat B-structure_element bound B-protein_state to I-protein_state 5 B-chemical ′- I-chemical phosphate I-chemical DNA I-chemical ( O product O complex O ) O with O a O 5 B-chemical ′- I-chemical ϵA I-chemical at O 1 O . O 43 O Å O resolution O ( O PDB O entry O 5HT2 O ) O and O the O abasic O DNA B-chemical damage O mimic O 5 B-chemical ′- I-chemical THF I-chemical at O 2 O . O 15 O Å O resolution O ( O PDB O entry O 5INK O ; O Figure O 1D O and O E O , O Table O 1 O ). O ( O A O ) O Structure B-evidence of O mTdp2cat B-structure_element bound B-protein_state to I-protein_state 5 B-chemical ′- I-chemical phosphate I-chemical DNA I-chemical ( O product O complex O ) O containing O ϵA B-chemical ( O yellow O ), O Mg2 B-chemical + I-chemical ( O magenta O ) O and O its O inner O - O sphere O waters B-chemical ( O gray O ). O The O THF B-chemical is O shown O in O yellow O and O a O hydrogen B-bond_interaction bond I-bond_interaction from O the O THF B-chemical O4 O ′ O to O inner O - O sphere O water B-chemical is O shown O as O gray O dashes O . O Structural O plasticity O in O the O Tdp2 B-protein DNA B-site binding I-site trench I-site The O paucity O of O hydrophobic B-bond_interaction interactions I-bond_interaction stabilizing O the O β2Hβ B-structure_element DNA B-protein_state - I-protein_state bound I-protein_state conformation O suggests O that O conformational O plasticity O in O the O β2Hβ B-structure_element might O be O a O feature O of O DNA B-chemical damage O and O metal O cofactor O engagement O . O Conformational O plasticity O in O the O Tdp2 B-protein active B-site site I-site . O Wall O - O eyed O stereo O view O is O displayed O . O ( O B O ) O The O closed B-protein_state β2Hβ B-structure_element conformation O in O the O mTdp2cat B-complex_assembly – I-complex_assembly DNA I-complex_assembly product O structure B-evidence containing O 5 B-chemical ′- I-chemical ϵA I-chemical ( O yellow O , O PDB O entry O 5HT2 O ). O T309 B-residue_name_number ( O green O ) O is O an O integral O part O of O the O β2Hβ B-site DNA I-site - I-site binding I-site grasp I-site ( O tan O ) O and O hydrogen B-bond_interaction bonds I-bond_interaction to O the O backbone O of O Y321 B-residue_name_number , O while O N314 B-residue_name_number ( O orange O ) O occupies O the O β2Hβ B-site docking I-site pocket I-site . O Experiments O performed O as O in O panel O D O for O mTdp2cat B-structure_element WT B-protein_state ( O lanes O 27 O – O 39 O ) O or O mTdp2cat B-structure_element D358N B-mutant ( O lanes O 40 O – O 52 O ), O but O with O chymotrypsin B-experimental_method instead O of O trypsin B-experimental_method . O Thus O , O X B-experimental_method - I-experimental_method ray I-experimental_method structures B-evidence and O limited B-experimental_method proteolysis I-experimental_method analysis I-experimental_method indicate O that O DNA B-chemical - O and O metal O - O induced O conformational O changes O are O a O conserved B-protein_state feature O of O the O vertebrate B-taxonomy_domain Tdp2 B-protein - O substrate O interaction O . O However O , O previous O biochemical B-experimental_method analysis I-experimental_method has O suggested O an O alternative O two O - O metal O ion O mechanism O for O the O Tdp2 B-protein - O phosphotyrosyl B-protein_type phosphodiesterase I-protein_type reaction O . O Either O Mg2 B-chemical + I-chemical or O Ca2 B-chemical + I-chemical were O titrated B-experimental_method in O the O presence B-protein_state or O absence B-protein_state of I-protein_state 5 B-chemical ′- I-chemical P I-chemical DNA I-chemical , O and O the O tryptophan B-evidence fluorescence I-evidence was O monitored O with O an O excitation O wavelength O of O 280 O nm O and O emission O wavelength O of O 350 O nm O using O 10 O nm O band O pass O filters O . O PNP B-chemical release O ( O monitored O by O absorbance O at O 415 O nm O ) O as O a O function O of O Mg2 B-chemical + I-chemical concentration O and O in O the O absence B-protein_state or O presence B-protein_state of I-protein_state 1 O or O 10 O mM O Ca2 B-chemical + I-chemical is O shown O ; O error O bars O , O s O . O d O . O n O = O 4 O . O ( O C O ) O σ B-evidence - I-evidence A I-evidence weighted I-evidence 2Fo I-evidence - I-evidence Fc I-evidence electron I-evidence density I-evidence map I-evidence ( O blue O ) O and O model B-evidence - I-evidence phased I-evidence anomalous I-evidence difference I-evidence Fourier I-evidence ( O magenta O ) O maps B-evidence for O the O mTdp2cat B-complex_assembly – I-complex_assembly DNA I-complex_assembly – I-complex_assembly Mn2 I-complex_assembly + I-complex_assembly complex O ( O PDB O entry O 5INP O ) O show O a O single O Mn2 B-chemical + I-chemical ( O cyan O ) O is O bound O with O expected O octahedral O coordination O geometry O . O These O data O were O an O excellent O fit O to O a O single O - O site O binding O model O both O in O the O presence B-protein_state and O absence B-protein_state of I-protein_state DNA B-chemical ( O Figure O 4A O ). O Overall O , O these O metal B-experimental_method binding I-experimental_method analyses I-experimental_method are O consistent O with O a O single O metal O ion O mediated O reaction O . O Altogether O , O QM B-experimental_method / I-experimental_method MM I-experimental_method modeling I-experimental_method identifies O new O determinants O of O the O Tdp2 B-protein reaction O , O and O demonstrates O our O proposed O single O Mg2 B-chemical + I-chemical catalyzed O reaction O model O is O a O viable O mechanism O for O Tdp2 B-protein - O catalyzed O 5 B-residue_name ′- I-residue_name phosphotyrosine I-residue_name bond O hydrolysis O . O To O test O the O aspects O of O the O Tdp2 B-protein reaction O mechanism O described O here O derived O from O high O - O resolution O mouse B-taxonomy_domain Tdp2 B-protein crystal B-evidence structures I-evidence ( O denoted O with O superscript O numbering O ‘ O m O ’ O for O numbering O of O the O mouse B-taxonomy_domain protein O ), O we O engineered B-experimental_method and I-experimental_method purified I-experimental_method thirteen O human B-species MBP B-experimental_method - O hTdp2cat B-structure_element mutant B-protein_state proteins O ( O denoted O with O superscript O numbering O and O ‘ O h O ’ O for O the O human B-species protein O ) O and O assayed O the O impacts O of O mutations B-experimental_method on O Tdp2 B-protein catalytic O activity O using O three O in O vitro O reporter O substrates O including O a O tyrosylated B-protein_state DNA B-chemical substrate O ( O 5 B-ptm ′- I-ptm Y I-ptm ), O p B-chemical - I-chemical nitrophenyl I-chemical phosphate I-chemical ( O PNPP B-chemical ) O and O thymidine B-chemical 5 I-chemical ′- I-chemical monophosphate I-chemical p I-chemical - I-chemical nitrophenyl I-chemical ester I-chemical ( O T5PNP B-chemical ) O ( O Figure O 5E O , O Supplementary O Figures O S5B O and O S5C O ). O We O found O that O mutations B-experimental_method that O removed B-experimental_method the O charge O yet O retained O the O ability O to O hydrogen B-bond_interaction bond I-bond_interaction ( O hH351Q B-mutant ) O or O should O abrogate O the O elevated O pKa B-evidence of O the O Histidine B-residue_name ( O hD316N B-mutant ) O had O severe O impacts O on O catalysis O . O Interestingly O , O the O Tdp2 B-protein single O Mg2 B-chemical + I-chemical ion O octahedral B-bond_interaction coordination I-bond_interaction shell I-bond_interaction also O involves O an O extended O hydrogen B-bond_interaction - I-bond_interaction bonding I-bond_interaction network I-bond_interaction mediated O by O hAsp350 B-residue_name_number ( O mAsp358 B-residue_name_number ) O that O stabilizes O the O DNA B-protein_state - I-protein_state bound I-protein_state conformation O of O the O β2Hβ B-structure_element substrate I-structure_element - I-structure_element binding I-structure_element loop I-structure_element through O hydrogen B-bond_interaction bonding I-bond_interaction to O mTrp307 B-residue_name_number . O Samples O were O withdrawn O from O reactions O , O neutralized O with O TBE O - O urea O loading O dye O at O the O indicated O timepoints O , O and O electrophoresed O on O a O 20 O % O TBE B-experimental_method - I-experimental_method urea I-experimental_method PAGE I-experimental_method . O ( O D O ) O Relative O activity O of O WT B-protein_state and O indicated O mutant B-protein_state human B-species MBP B-experimental_method - O hTdp2cat B-structure_element fusion O proteins O on O three O model O Tdp2 B-protein substrates O . O Although O Mg2 B-chemical + I-chemical is O present O at O the O same O concentration O as O the O WT B-protein_state - O mTdpcat B-protein crystals B-evidence ( O 10 O mM O ), O we O find O the O metal B-site site I-site is O unoccupied B-protein_state in O the O mD358N B-mutant crystals B-evidence . O Therefore O , O metal O - O regulated O opening O / O closure O of O the O active B-site site I-site may O modulate O Tdp2 B-protein activity O , O and O D350N B-mutant is O sufficient O to O block O both O metal O binding O and O conformational O change O . O In O support O of O this O , O we O also O find O that O hD350N B-mutant ( O mD358N B-mutant ) O impairs O Mg2 B-chemical + I-chemical binding O as O measured O by O intrinsic B-evidence tryptophan I-evidence fluorescence I-evidence ( O Figure O 4A O ), O and O abrogates O Mg2 B-chemical +- I-chemical stimulated O active B-site site I-site conformational O changes O detected O by O trypsin O and O chymotrypsin O sensitivity O of O the O Tdp2 B-protein metamorphic O loop B-structure_element ( O Figure O 3D O ). O Error O bars O , O s O . O d O , O n O = O 3 O . O ( O D O ) O Junctions O recovered O from O cellular B-experimental_method end I-experimental_method - I-experimental_method joining I-experimental_method assays I-experimental_method in O the O noted O cell O types O were O characterized O by O sequencing B-experimental_method to O assess O the O end B-evidence - I-evidence joining I-evidence error I-evidence rate I-evidence . O By O comparison O the O more O frequent O I307V B-mutant has O only O mild O effects O on O in O vitro O activity O , O and O no O detectable O impact O on O cellular O assays O . O Tdp2 B-protein was O originally O identified O as O a O protein O conferring O resistance O to O both O Top1 B-protein_type and O Top2 B-protein_type anti O - O cancer O drugs O , O however O it O is O hypothesized O that O the O predominant O natural O source O of O substrates O for O Tdp2 B-protein are O likely O the O potent O DNA B-chemical damage O triggers O of O Top2 B-protein_type poisoning O and O Top2 B-protein_type DNA B-chemical protein O crosslinks O encountered O during O transcription O . O The O mechanism O of O NCX B-protein_type proteins O is O therefore O highly O likely O to O be O consistent O with O the O alternating O - O access O model O of O secondary O - O active O transport O . O Our O recent O atomic O - O resolution O structure B-evidence of O NCX_Mj B-protein from O Methanococcus B-species jannaschii I-species provided O the O first O view O of O the O basic O functional O unit O of O an O NCX B-protein_type protein O . O These O structures B-evidence reveal O the O mode O of O recognition O of O these O ions O , O their O relative O affinities O , O and O the O mechanism O of O extracellular O ion O exchange O , O for O a O well O - O defined O , O functional O conformation O in O a O membrane O - O like O environment O . O The O water B-chemical molecule O at O Smid B-site forms O hydrogen B-bond_interaction - I-bond_interaction bonds I-bond_interaction with O the O highly B-protein_state conserved I-protein_state Glu54 B-residue_name_number and O Glu213 B-residue_name_number ( O Supplementary O Fig O . O 1d O ), O stabilizing O their O orientation O to O properly O coordinate B-bond_interaction multiple O Na B-chemical + I-chemical ions O at O Sext B-site , O SCa B-site and O Sint B-site . O When O Na B-chemical + I-chemical binds O to O Sext B-site at O high B-protein_state concentrations O , O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O TM7 B-structure_element is O bent O into O two O short B-structure_element helices I-structure_element , O TM7a B-structure_element and O TM7b B-structure_element ( O Fig O . O 2a O ). O These O contacts O are O absent O in O the O structure B-evidence with O Na B-chemical + I-chemical at O Sext B-site , O in O which O there O is O an O open O gap O between O the O two O helices B-structure_element ( O Fig O . O 2b O ). O This O difference O is O noteworthy O because O TM6 B-structure_element and O TM1 B-structure_element are O believed O to O undergo O a O sliding O motion O , O relative O to O the O rest O of O the O protein O , O when O the O transporter B-protein_type switches O to O the O inward B-protein_state - I-protein_state facing I-protein_state conformation O . O Thus O , O in O 100 O mM O Na B-chemical + I-chemical and O 10 O mM O Sr2 B-chemical +, I-chemical Na B-chemical + I-chemical completely O replaced O Sr2 B-chemical + I-chemical ( O Fig O . O 3a O ) O and O reverted O NCX_Mj B-protein to O the O Na B-protein_state +- I-protein_state loaded I-protein_state , O fully B-protein_state occluded I-protein_state state O . O Similar O titration B-experimental_method experiments I-experimental_method showed O that O Ca2 B-chemical + I-chemical and O Sr2 B-chemical + I-chemical binding O to O NCX_Mj B-protein are O not O exactly O alike O The O electron B-evidence density I-evidence distribution I-evidence from O crystals B-experimental_method soaked I-experimental_method in I-experimental_method high B-protein_state Ca2 B-chemical + I-chemical and O low B-protein_state Na B-chemical +, I-chemical indicates O that O Ca2 B-chemical + I-chemical can O bind O to O Smid B-site as O well O as O SCa B-site , O with O a O preference O for O SCa B-site ( O Fig O . O 3b O ). O An O apo B-protein_state state O of O outward B-protein_state - I-protein_state facing I-protein_state NCX_Mj B-protein is O likely O to O exist O transiently O in O physiological O conditions O , O despite O the O high O amounts O of O extracellular O Na B-chemical + I-chemical (~ O 150 O mM O ) O and O Ca2 B-chemical + I-chemical (~ O 2 O mM O ). O That O secondary B-protein_type - I-protein_type active I-protein_type transporters I-protein_type are O able O to O harness O an O electrochemical O gradient O of O one O substrate O to O power O the O uphill O transport O of O another O relies O on O a O seemingly O simple O principle O : O they O must O not O transition O between O outward B-protein_state - I-protein_state and O inward B-protein_state - I-protein_state open I-protein_state conformations O unless O in O two O precise O substrate O occupancy O states O . O To O examine O this O central O question O , O we O sought O to O characterize O the O conformational B-evidence free I-evidence - I-evidence energy I-evidence landscape I-evidence of O NCX_Mj B-protein and O to O examine O its O dependence O on O the O ion O - O occupancy O state O , O using O molecular B-experimental_method dynamics I-experimental_method ( O MD B-experimental_method ) O simulations B-experimental_method . O With O Sext B-site empty B-protein_state , O however O , O TM7ab B-structure_element forms O a O canonical O α B-structure_element - I-structure_element helix I-structure_element ( O Fig O . O 4a O - O b O , O 4g O ), O thereby O creating O an O opening O between O TM3 B-structure_element and O TM7 B-structure_element , O which O in O turn O allows O water B-chemical molecules O from O the O external O solution O to O reach O into O Sext B-site ( O Fig O . O 4e O , O 4h O - O i O ), O i O . O e O . O the O transporter B-protein_type is O no B-protein_state longer I-protein_state occluded I-protein_state . O Displacement O of O Na B-chemical + I-chemical from O SCa B-site and O Sint B-site induces O further O changes O ( O Fig O . O 4c O ). O These O calculations B-experimental_method demonstrate O that O the O Na B-chemical + I-chemical occupancy O state O of O the O transporter B-protein_type has O a O profound O effect O on O its O conformational B-evidence free I-evidence - I-evidence energy I-evidence landscape I-evidence . O At O a O small O energetic O cost O , O however O , O the O transporter B-protein_type can O adopt O a O metastable B-protein_state ‘ O half B-protein_state - I-protein_state open I-protein_state ’ O conformation O in O which O TM7ab B-structure_element is O completely O straight O and O Sext B-site is O open B-protein_state to O the O exterior O ( O Fig O . O 5a O , O 5b O ). O Similarly O puzzling O is O that O a O given O antiporter B-protein_type will O undergo O this O transition O upon O recognition O of O substrates O of O different O charge O , O size O and O number O . O Yet O , O when O multiple O species O are O to O be O co O - O translocated O , O by O either O an O antiporter B-protein_type or O a O symporter B-protein_type , O partial O occupancies O must O not O be O conducive O to O the O alternating B-site - I-site access I-site switch I-site . O Nonetheless O , O the O calculated B-evidence free I-evidence - I-evidence energy I-evidence landscapes I-evidence , O derived O without O knowledge O of O the O experimental O data O , O reassuringly O confirm O that O the O crystallized B-evidence structures I-evidence correspond O to O mechanistically O relevant O , O interconverting O states O . O Specifically O , O our O crystal B-experimental_method titrations I-experimental_method suggest O that O , O during O forward O Na B-chemical +/ I-chemical Ca2 B-chemical + I-chemical exchange O , O sites O Sint B-site and O SCa B-site , O which O Ca2 B-chemical + I-chemical and O Na B-chemical + I-chemical compete O for O , O can O be O grouped O into O one O ; O Na B-chemical + I-chemical binding O to O these O sites O does O not O require O high O Na B-chemical + I-chemical concentrations O , O and O two O Na B-chemical + I-chemical ions O along O with O a O water B-chemical molecule O ( O at O Smid B-site ) O are O sufficient O to O displace O Ca2 B-chemical +, I-chemical explaining O the O Hill B-evidence coefficient I-evidence of O ~ O 2 O for O Na B-chemical +- I-chemical dependent O inhibition O of O Ca2 B-chemical + I-chemical fluxes O . O Interestingly O , O binding O of O Ca2 B-chemical + I-chemical to O Smid B-site appears O to O be O also O possible O , O but O available O evidence O indicates O that O this O event O transiently O blocks O the O exchange O cycle O . O The O electron B-evidence density I-evidence ( O grey O mesh O , O 1 O . O 9 O Å O Fo B-evidence - I-evidence Fc I-evidence ion I-evidence omit I-evidence map I-evidence contoured O at O 4σ O ) O at O Smid B-site was O modeled O as O water B-chemical ( O red O sphere O ) O and O those O at O Sext B-site , O SCa B-site and O Sint B-site as O Na B-chemical + I-chemical ions O ( O green O spheres O ). O The O displacement O of O A206 B-residue_name_number reflects O the O [ O Na B-chemical +]- I-chemical dependent O conformational O change O from O the O partially B-protein_state open I-protein_state to O the O occluded B-protein_state state O ( O observed O at O low O and O high O Na B-chemical + I-chemical concentrations O , O respectively O ). O Residues O forming O van O - O der O - O Waals O contacts O in O the O structure B-evidence at O low B-protein_state Na B-chemical + I-chemical concentration O are O shown O in O detail O . O The O vacant O Sext B-site site O in O the O structure B-evidence at O low B-protein_state Na B-chemical + I-chemical concentration O is O indicated O with O a O white O sphere O . O Residues O involved O in O Sr2 B-chemical + I-chemical coordination O are O labeled O . O ( O d O ) O Close O - O up O of O the O ion B-site - I-site binding I-site region I-site in O the O fully B-protein_state Na I-protein_state +- I-protein_state occupied I-protein_state state O . O These O descriptors O were O employed O as O collective O variables O in O the O Bias B-experimental_method - I-experimental_method Exchange I-experimental_method Metadynamics I-experimental_method simulations I-experimental_method ( O Methods O ). O Thermodynamic O basis O for O the O proposed O mechanism O of O substrate O control O of O the O alternating O - O access O transition O of O NCX B-protein_type . O ( O a O ) O Calculated B-evidence conformational I-evidence free I-evidence - I-evidence energy I-evidence landscapes I-evidence for O outward B-protein_state - I-protein_state facing I-protein_state NCX_Mj B-protein , O for O two O different O Na B-chemical +- I-chemical occupancy O states O , O and O for O a O state O with O no B-protein_state ions I-protein_state bound I-protein_state . O The O uncorrected O map B-evidence overstabilizes O the O open B-protein_state state O relative O to O the O semi B-protein_state - I-protein_state open I-protein_state and O occluded B-protein_state because O it O also O overestimates O the O cost O of O dehydration O of O the O ion O , O once O it O is O bound B-protein_state to I-protein_state the O protein O ( O this O effect O is O negligible O for O Na B-chemical +). I-chemical How O the O essential O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein recognizes O the O polypyrimidine B-chemical ( O Py B-chemical ) O signals O of O the O major O class O of O 3 B-site ′ I-site splice I-site sites I-site in O human B-species gene O transcripts O remains O incompletely O understood O . O Single B-experimental_method - I-experimental_method molecule I-experimental_method FRET I-experimental_method experiments O suggest O that O conformational O selection O and O induced O fit O of O the O U2AF65 B-protein RRMs B-structure_element are O complementary O mechanisms O for O Py B-chemical - I-chemical tract I-chemical association O . O The O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein recognizes O 3 B-site ′ I-site splice I-site sites I-site in O human B-species gene O transcripts O , O but O the O details O are O not O fully O understood O . O Milestone O crystal B-evidence structures I-evidence of O the O core B-protein_state U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element connected O by O a O shortened B-protein_state inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element ( O dU2AF651 B-mutant , I-mutant 2 I-mutant ) O detailed O a O subset O of O nucleotide O interactions O with O the O individual O U2AF65 B-protein RRMs B-structure_element . O In O a O fluorescence B-experimental_method anisotropy I-experimental_method assay I-experimental_method for O binding O a O representative O Py B-chemical tract I-chemical derived O from O the O well O - O characterized O splice B-site site I-site of O the O adenovirus B-gene major I-gene late I-gene promoter I-gene ( O AdML B-gene ), O the O RNA B-evidence affinity I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant increased O by O 100 O - O fold O relative O to O U2AF651 B-mutant , I-mutant 2 I-mutant to O comparable O levels O as O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O Fig O . O 1b O ; O Supplementary O Fig O . O 1a O – O d O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence characterize O ribose B-chemical ( O r B-chemical ) O nucleotides B-chemical at O all O of O the O binding B-site sites I-site except O the O seventh B-residue_number and O eighth B-residue_number deoxy B-chemical -( I-chemical d I-chemical ) I-chemical U I-chemical , O which O are O likely O to O lack O 2 O ′- O hydroxyl O contacts O based O on O the O RNA B-protein_state - I-protein_state bound I-protein_state dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence . O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element interacts O with O the O Py B-chemical tract I-chemical Otherwise O , O the O rU4 B-residue_name_number nucleotide B-chemical packs O against O F304 B-residue_name_number in O the O signature O ribonucleoprotein B-structure_element consensus I-structure_element motif I-structure_element ( I-structure_element RNP I-structure_element )- I-structure_element 2 I-structure_element of O RRM2 B-structure_element . O At O the O opposite O side O of O the O central O fifth B-residue_number nucleotide B-chemical , O the O sixth B-residue_number rU6 B-residue_name_number nucleotide B-chemical is O located O at O the O inter B-site - I-site RRM1 I-site / I-site RRM2 I-site interface I-site ( O Fig O . O 3e O ; O Supplementary O Movie O 1 O ). O Versatile O primary O sequence O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element However O , O stretching O of O the O truncated B-protein_state dU2AF651 B-mutant , I-mutant 2L I-mutant linker B-structure_element to O connect O the O RRM B-structure_element termini I-structure_element is O expected O to O disrupt O its O nucleotide O interactions O . O Likewise O , O deletion B-experimental_method of O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element in O the O shortened B-protein_state constructs O would O remove O packing O interactions O that O position O the O linker B-structure_element in O a O kinked B-structure_element turn I-structure_element following O P229 B-residue_name_number ( O Fig O . O 4a O ), O consistent O with O the O lower O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2L I-mutant , O dU2AF651 B-mutant , I-mutant 2 I-mutant and O U2AF651 B-mutant , I-mutant 2 I-mutant compared O with O U2AF651 B-mutant , I-mutant 2L I-mutant . O Notably O , O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method reduced O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant protein O by O 30 O - O fold O more O than O would O be O expected O based O on O simple O addition O of O the O ΔΔG B-evidence ' O s O for O the O single O mutations O . O As O a O representative O splicing O substrate O , O we O utilized O a O well O - O characterized O minigene B-chemical splicing I-chemical reporter I-chemical ( O called O pyPY B-chemical ) O comprising O a O weak O ( O that O is O , O degenerate O , O py B-chemical ) O and O strong O ( O that O is O , O U B-structure_element - I-structure_element rich I-structure_element , O PY B-chemical ) O polypyrimidine B-chemical tracts I-chemical preceding O two O alternative O splice B-site sites I-site ( O Fig O . O 5a O ). O Paramagnetic B-experimental_method resonance I-experimental_method enhancement I-experimental_method ( O PRE B-experimental_method ) O measurements O previously O had O suggested O a O predominant O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state , O or O ‘ O closed B-protein_state ' O conformation O of O the O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant RRM1 B-structure_element and O RRM2 B-structure_element in O equilibrium O with O a O minor O ‘ O open B-protein_state ' O conformation O resembling O the O RNA B-protein_state - I-protein_state bound I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element arrangement O . O Approximately O 40 O % O of O the O smFRET B-experimental_method traces B-evidence showed O apparent O transitions O between O multiple O FRET B-evidence values I-evidence ( O for O example O , O Fig O . O 6c O ). O Nevertheless O , O the O predominant O 0 O . O 45 O FRET B-evidence state I-evidence in O the O presence O of O RNA B-chemical agrees O with O the O Py B-protein_state - I-protein_state tract I-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant . O The O majority O of O traces B-evidence that O show O fluctuations O began O at O high O ( O 0 O . O 65 O – O 0 O . O 8 O ) O FRET B-evidence value I-evidence and O transitioned O to O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O Supplementary O Fig O . O 7c O – O g O ). O Altogether O , O these O data O indicate O that O interactions O among O the O U2AF65 B-protein RRM1 B-structure_element / O RRM2 B-structure_element , O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element are O mutually O inter O - O dependent O for O cognate O Py B-chemical - I-chemical tract I-chemical recognition O . O Our O smFRET B-experimental_method results O agree O with O prior O NMR B-experimental_method / O PRE B-experimental_method evidence O for O multi O - O domain O conformational O selection O as O one O mechanistic O basis O for O U2AF65 B-protein – O RNA B-chemical association O ( O Fig O . O 7b O ). O An O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence is O likely O to O correspond O to O the O U2AF65 B-protein conformation O visualized O in O our O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence , O in O which O the O RRM1 B-structure_element and O RRM2 B-structure_element bind O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state to O the O Py B-chemical - I-chemical tract I-chemical oligonucleotide I-chemical . O As O such O , O the O smFRET B-experimental_method approach O reconciles O prior O inconsistencies O between O two O major O conformations O that O were O detected O by O NMR B-experimental_method / O PRE B-experimental_method experiments O and O a O broad O ensemble O of O diverse O inter B-structure_element - I-structure_element RRM I-structure_element arrangements O that O fit O the O SAXS B-experimental_method data O for O the O apo B-protein_state - O protein B-protein . O Similar O interdisciplinary O structural O approaches O are O likely O to O illuminate O whether O similar O mechanistic O bases O for O RNA O binding O are O widespread O among O other O members O of O the O vast O multi O - O RRM B-structure_element family O . O The O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant nucleotide B-site - I-site binding I-site sites I-site are O given O in O parentheses O ( O site O 4 O ' O interacts O with O dU2AF65 B-mutant RRM1 B-structure_element and O RRM2 B-structure_element by O crystallographic O symmetry O ). O ( O i O ) O Bar O graph O of O apparent O equilibrium B-evidence affinities I-evidence ( O KA B-evidence ) O of O the O wild B-protein_state type I-protein_state ( O blue O ) O and O the O indicated O mutant B-protein_state ( O yellow O ) O U2AF651 B-mutant , I-mutant 2L I-mutant proteins O binding O the O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′). I-chemical The O average O fitted O fluorescence O anisotropy O RNA B-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 4a O – O c O . O Protein B-experimental_method overexpression I-experimental_method and O qRT B-experimental_method - I-experimental_method PCR I-experimental_method results O are O shown O in O Supplementary O Fig O . O 5 O . O ( O c O – O f O , O i O , O j O ) O The O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O was O immobilized O on O the O microscope O slide O via O biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical ( O orange O line O ) O on O a O neutravidin O ( O black O X O )- O biotin O - O PEG O ( O orange O triangle O )- O treated O surface O and O imaged O either O in O the O absence B-protein_state of I-protein_state ligands B-chemical ( O c O , O d O ), O in O the O presence O of O 5 O μM O AdML B-gene Py B-chemical - I-chemical tract I-chemical RNA I-chemical ( O 5 B-chemical ′- I-chemical CCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O e O , O f O ), O or O in O the O presence O of O 10 O μM O adenosine B-residue_name - O interrupted O variant O RNA B-chemical ( O 5 B-chemical ′- I-chemical CUUUUUAAUUUCCA I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O i O , O j O ). O N O is O the O number O of O single O - O molecule O traces B-evidence compiled O for O each O histogram B-evidence . O Schematic O models O of O U2AF65 B-protein recognizing O the O Py B-chemical tract I-chemical . O Alternatively O , O a O conformation O of O U2AF65 B-protein corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence can O directly O bind O to O RNA B-chemical ; O RNA B-chemical binding O stabilizes O the O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O and O thus O shifts O the O U2AF65 B-protein population O towards O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O Specific O damage O manifestations O were O determined O within O the O large O trp B-protein_type RNA I-protein_type - I-protein_type binding I-protein_type attenuation I-protein_type protein I-protein_type ( O TRAP B-complex_assembly ) O bound B-protein_state to I-protein_state a O single O - O stranded O RNA B-chemical that O forms O a O belt O around O the O protein O . O Over O a O large O dose O range O , O the O RNA B-chemical was O found O to O be O far O less O susceptible O to O radiation O - O induced O chemical O changes O than O the O protein O . O The O 11 O - O fold O symmetry O within O each O TRAP B-complex_assembly ring B-structure_element permitted O statistically O significant O analysis O of O the O Glu B-residue_name and O Asp B-residue_name damage O patterns O , O with O RNA B-chemical binding O unexpectedly O being O observed O to O protect O these O otherwise O highly O sensitive O residues O within O the O 11 O RNA B-site - I-site binding I-site pockets I-site distributed O around O the O outside O of O the O protein O molecule O . O Global O radiation O damage O is O observed O within O reciprocal O space O as O the O overall O decay O of O the O summed O intensity O of O reflections O detected O within O the O diffraction B-evidence pattern I-evidence as O dose O increases O ( O Garman O , O 2010 O ; O Murray O & O Garman O , O 2002 O ). O For O instance O , O structure B-experimental_method determination I-experimental_method of O the O purple O membrane O protein O bacterio B-protein_type ­ I-protein_type rhodopsin I-protein_type required O careful O corrections O for O radiation O - O induced O structural O changes O before O the O correct O photosensitive O intermediate O states O could O be O isolated O ( O Matsui O et O al O ., O 2002 O ). O As O of O early O 2016 O , O > O 5400 O nucleoprotein B-complex_assembly complex O structures B-evidence have O been O deposited O within O the O PDB O , O with O 91 O % O solved O by O MX B-experimental_method . O TRAP B-complex_assembly consists O of O 11 O identical O subunits B-structure_element assembled O into O a O ring B-structure_element with O 11 O - O fold O rotational O symmetry O . O The O substrate O Trp B-chemical amino O - O acid O ligands O also O exhibited O disordering O of O the O free O terminal O carboxyl O groups O at O higher O doses O ( O Fig O . O 2 O ▸ O a O ); O however O , O no O clear O Fourier B-evidence difference I-evidence peaks I-evidence could O be O observed O visually O . O The O rate O of O D B-evidence loss I-evidence ( O attributed O to O side O - O chain O decarboxylation O ) O was O consistently O larger O for O Glu B-residue_name compared O with O Asp B-residue_name residues O over O the O large O dose O range O ( O Fig O . O 2 O ▸ O b O and O Supplementary O Fig O . O S3 O ); O this O observation O is O consistent O with O our O calculations O on O model O systems O ( O see O above O ) O that O suggest O that O , O without O considering O differential O hydrogen B-bond_interaction - I-bond_interaction bonding I-bond_interaction environments O , O CO2 B-chemical loss O is O more O exothermic O by O around O 8 O kJ O mol O − O 1 O from O oxidized B-protein_state Glu B-residue_name residues O than O from O their O Asp B-residue_name counterparts O . O For O the O large O number O of O acidic O residues O per O TRAP B-complex_assembly ring B-structure_element ( O four O Asp B-residue_name and O six O Glu B-residue_name residues O per O protein O monomer B-oligomeric_state ), O a O strong O dependence O of O decarboxylation O susceptibility O on O local O environment O was O observed O ( O Fig O . O 4 O ▸). O For O each O Glu B-residue_name Cδ O or O Asp B-residue_name Cγ O atom O , O D B-evidence loss I-evidence provided O a O direct O measure O of O the O rate O of O side O - O chain O carboxyl O - O group O disordering O and O subsequent O decarboxylation O . O For O acidic O residues O with O no O differing O interactions O between O nonbound B-protein_state and O bound B-protein_state TRAP B-complex_assembly ( O Fig O . O 4 O ▸ O a O ), O similar O damage O was O apparent O between O the O two O rings O within O the O asymmetric O unit O , O as O expected O . O However O , O TRAP B-complex_assembly residues O directly O on O the O RNA B-site - I-site binding I-site interfaces I-site exhibited O greater O damage O accumulation O in O nonbound B-protein_state TRAP B-complex_assembly ( O Fig O . O 4 O ▸ O b O ), O and O for O residues O at O the O ring B-site – I-site ring I-site interfaces I-site ( O where O crystal O contacts O were O detected O ) O bound B-protein_state TRAP B-complex_assembly exhibited O enhanced O SRD O accumulation O ( O Fig O . O 4 O ▸ O c O ). O Three O acidic O residues O ( O Glu36 B-residue_name_number , O Asp39 B-residue_name_number and O Glu42 B-residue_name_number ) O are O involved O in O RNA B-chemical interactions O within O each O of O the O 11 O TRAP B-complex_assembly ring B-structure_element subunits B-structure_element , O and O Fig O . O 5 O ▸ O shows O their O density B-evidence changes I-evidence with O increasing O dose O . O Here O , O MX B-experimental_method radiation O - O induced O specific O structural O changes O within O the O large O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly assembly O over O a O large O dose O range O ( O 1 O . O 3 O – O 25 O . O 0 O MGy O ) O have O been O analysed O using O a O high O - O throughput O quantitative O approach O , O providing O a O measure O of O the O electron B-evidence - I-evidence density I-evidence distribution I-evidence for O each O refined O atom O with O increasing O dose O , O D B-evidence loss I-evidence . O Here O , O it O provided O the O precision O required O to O quantify O the O role O of O RNA B-chemical in O the O damage O susceptibilities O of O equivalent O atoms O between O RNA B-protein_state - I-protein_state bound I-protein_state and O nonbound B-protein_state TRAP B-complex_assembly , O but O it O is O applicable O to O any O MX B-experimental_method SRD O study O . O Since O U4 B-residue_name_number is O the O only O refined O nucleotide O not O to O exhibit O significant O base O – O protein O interactions O around O TRAP B-complex_assembly ( O with O a O water B-chemical - O mediated O hydrogen B-bond_interaction bond I-bond_interaction detected O in O only O three O of O the O 11 O subunits B-structure_element and O a O single O Arg58 B-residue_name_number hydrogen B-bond_interaction bond I-bond_interaction suggested O in O a O further O four O subunits B-structure_element ), O this O increased O U4 B-residue_name_number D B-evidence loss I-evidence can O be O explained O owing O to O its O greater O flexibility O . O For O Glu36 B-residue_name_number and O Asp39 B-residue_name_number , O no O direct O quantitative O correlation O could O be O established O between O hydrogen B-bond_interaction - I-bond_interaction bond I-bond_interaction length O and O D B-evidence loss I-evidence ( O linear B-evidence R I-evidence 2 I-evidence of O < O 0 O . O 23 O for O all O doses O ; O Supplementary O Fig O . O S5 O ). O The O Glu36 B-residue_name_number carboxyl O side O chain O also O potentially O forms O hydrogen B-bond_interaction bonds I-bond_interaction to O His34 B-residue_name_number and O Lys56 B-residue_name_number , O but O since O these O interactions O are O conserved B-protein_state irrespective O of O G3 B-residue_name_number nucleotide O binding O , O this O cannot O directly O account O for O the O stabilization O effect O on O Glu36 B-residue_name_number in O RNA B-protein_state - I-protein_state bound I-protein_state TRAP B-complex_assembly . O We O propose O that O with O no O solvent O accessibility O Glu36 B-residue_name_number decarboxylation O is O inhibited O , O since O the O CO2 B-evidence - I-evidence formation I-evidence rate I-evidence K I-evidence 2 I-evidence is O greatly O reduced O , O and O suggest O that O steric O hindrance O prevents O each O radicalized O Glu36 B-residue_name_number CO2 O group O from O achieving O the O planar O conformation O required O for O complete O dissociation O from O TRAP B-complex_assembly . O Such O reduced O radiation O - O sensitivity O in O this O case O ensures O that O the O interacting O protein O remains O bound B-protein_state long O enough O to O the O RNA B-chemical to O complete O its O function O , O even O whilst O exposed O to O ionizing O radiation O . O RNA B-chemical is O shown O is O yellow O . O ( O b O ) O Average O D O loss O for O each O residue O / O nucleotide O type O with O respect O to O the O DWD B-evidence ( O diffraction B-evidence - I-evidence weighted I-evidence dose I-evidence ; O Zeldin O , O Brock O ­ O hauser O et O al O ., O 2013 O ). O Only O a O subset O of O key O TRAP B-complex_assembly residue O types O are O included O . O Mitogen B-protein_type - I-protein_type activated I-protein_type protein I-protein_type kinases I-protein_type ( O MAPKs B-protein_type ), O important O in O a O large O array O of O signalling O pathways O , O are O tightly O controlled O by O a O cascade O of O protein B-protein_type kinases I-protein_type and O by O MAPK B-protein_type phosphatases I-protein_type ( O MKPs B-protein_type ). O Two O types O of O docking O interactions O have O been O identified O : O D B-structure_element - I-structure_element motif I-structure_element - O mediated O interaction O and O FXF B-site - I-site docking I-site interaction I-site . O The O 285FNFL288 B-structure_element segment I-structure_element in O MKP7 B-protein directly O binds O to O a O hydrophobic B-site site I-site on O JNK1 B-protein that O is O near O the O MAPK B-protein_type insertion O and O helix B-structure_element αG B-structure_element . O Biochemical B-experimental_method studies I-experimental_method further O reveal O that O this O highly B-protein_state conserved I-protein_state structural B-structure_element motif I-structure_element is O present O in O all O members O of O the O MKP B-protein_type family I-protein_type , O and O the O interaction O mode O is O universal O and O critical O for O the O MKP B-protein_type - O MAPK B-protein_type recognition O and O biological O function O . O The O MAPKs B-protein_type are O activated O by O MAPK B-protein_type kinases I-protein_type that O phosphorylate O the O MAPKs B-protein_type at O conserved B-protein_state threonine B-residue_name and O tyrosine B-residue_name residues O within O their O activation B-structure_element loop I-structure_element . O MAPKs B-protein_type lie O at O the O bottom O of O conserved O three O - O component O phosphorylation O cascades O and O utilize O docking O interactions O to O link O module O components O and O bind O substrates O . O Downregulation O of O MAPK B-protein_type activity O can O be O achieved O through O direct O dephosphorylation O of O the O phospho B-residue_name - I-residue_name threonine I-residue_name and I-residue_name / I-residue_name or I-residue_name tyrosine I-residue_name residues O by O various O serine B-protein_type / I-protein_type threonine I-protein_type phosphatases I-protein_type , O tyrosine B-protein_type phosphatases I-protein_type and O dual B-protein_type - I-protein_type specificity I-protein_type phosphatases I-protein_type ( O DUSPs B-protein_type ) O termed O MKPs B-protein_type . O DUSPs B-protein_type belong O to O the O protein B-protein_type - I-protein_type tyrosine I-protein_type phosphatases I-protein_type ( O PTPase B-protein_type ) O superfamily O , O which O is O defined O by O the O PTPase B-protein_type - O signature O motif O CXXGXXR B-structure_element . O The O KBD B-structure_element is O homologous O to O the O rhodanese B-protein_type family I-protein_type and O contains O an O intervening O cluster O of O basic O amino O acids O , O which O has O been O suggested O to O be O important O for O interacting O with O the O target O MAPKs B-protein_type . O As O shown O in O Fig O . O 2d O , O the O CD B-structure_element of O MKP7 B-protein can O be O pulled O down O by O JNK1 B-protein , O while O the O KBD B-structure_element failed O to O bind O to O the O counterpart O protein O . O In O the O complex O , O JNK1 B-protein has O its O characteristic O bilobal O structure O comprising O an O N B-structure_element - I-structure_element terminal I-structure_element lobe I-structure_element rich O in O β B-structure_element - I-structure_element sheet I-structure_element and O a O C B-structure_element - I-structure_element terminal I-structure_element lobe I-structure_element that O is O mostly O α B-structure_element - I-structure_element helical I-structure_element . O In O an O alignment B-experimental_method of O the O structure B-evidence of O MKP7 B-protein - O CD B-structure_element with O that O of O VHR B-protein , O an O atypical O ‘ O MKP B-protein_type ' O consisting O of O only O a O catalytic B-structure_element domain I-structure_element , O 119 O of O 147 O MKP7 B-protein - O CD B-structure_element residues O could O be O superimposed B-experimental_method with O a O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence ( O root B-evidence mean I-evidence squared I-evidence deviation I-evidence ) O of O 1 O . O 05 O Å O ( O Fig O . O 3c O ). O Since O helix B-structure_element α0 B-structure_element and O the O following O loop B-structure_element α0 B-structure_element – I-structure_element β1 I-structure_element are O known O for O a O substrate B-site - I-site recognition I-site motif I-site of O VHR B-protein and O other O phosphatases B-protein_type , O the O absence O of O these O moieties O implicates O a O different O substrate O - O binding O mode O of O MKP7 B-protein . O We O also O observed O the O binding O of O a O chloride B-chemical ion O in O the O active B-site site I-site of O MKP7 B-protein - O CD B-structure_element . O Thus O this O chloride B-chemical ion O is O a O mimic O for O the O phosphate B-chemical group O of O the O substrate O , O as O revealed O by O a O comparison O with O the O structure B-evidence of O PTP1B B-protein in B-protein_state complex I-protein_state with I-protein_state phosphotyrosine B-residue_name ( O Supplementary O Fig O . O 1d O ). O The O aromatic O ring O of O Phe285 B-residue_name_number on O MKP7 B-protein α5 B-structure_element - I-structure_element helix I-structure_element is O nestled O in O a O hydrophobic B-site pocket I-site on O JNK1 B-protein , O formed O by O side O chains O of O Ile197 B-residue_name_number , O Leu198 B-residue_name_number , O Ile231 B-residue_name_number , O Trp234 B-residue_name_number , O Val256 B-residue_name_number , O Tyr259 B-residue_name_number , O Val260 B-residue_name_number and O the O aliphatic O portion O of O His230 B-residue_name_number ( O Fig O . O 3d O , O f O and O Supplementary O Fig O . O 1g O ). O Interestingly O , O mutation B-experimental_method of O Phe287 B-residue_name_number results O in O a O considerable O loss O of O activity O against O pJNK1 B-protein_state without O altering O the O affinity B-evidence of O MKP7 B-protein - O CD B-structure_element for O JNK1 B-protein ( O Supplementary O Fig O . O 2a O ). O Incubation B-experimental_method of O MKP7 B-protein with O JNK1 B-protein did O not O markedly O stimulate O the O phosphatase B-protein_type activity O , O which O is O consistent O with O previous O results O that O MKP7 B-protein solely O possesses O the O intrinsic O activity O ( O Supplementary O Fig O . O 2b O ). O Biochemical O results O suggested O that O the O affinity O and O specificity O between O KAP B-protein and O CDK2 B-protein results O from O the O recognition B-site site I-site comprising O CDK2 B-protein residues O from O the O αG B-structure_element helix I-structure_element and O L14 B-structure_element loop I-structure_element and O the O N B-structure_element - I-structure_element terminal I-structure_element helical I-structure_element region I-structure_element of O KAP B-protein ( O Fig O . O 5b O ). O There O is O a O hydrogen B-bond_interaction bond I-bond_interaction between O the O main O - O chain O nitrogen O of O Ile183 B-residue_name_number ( O KAP B-protein ) O and O side O chain O oxygen O of O Glu208 B-residue_name_number ( O CDK2 B-protein ), O and O salt O bridges O between O Lys184 B-residue_name_number of O KAP B-protein and O Asp235 B-residue_name_number of O CDK2 B-protein . O JNK B-protein_type is O activated O following O cellular O exposure O to O a O number O of O acute O stimuli O such O as O anisomycin B-chemical , O H2O2 B-chemical , O ultraviolet O light O , O sorbitol B-chemical , O DNA O - O damaging O agents O and O several O strong O apoptosis O inducers O ( O etoposide B-chemical , O cisplatin B-chemical and O taxol B-chemical ). O Expressions B-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state MKP7 B-protein , O MKP7ΔC304 B-mutant and O MKP7 B-protein - O CD B-structure_element significantly O decreased O the O proportion O of O apoptotic O cells O after O ultraviolet O treatment O . O As O in O the O case O of O MKP7 B-protein , O all O the O mutants B-protein_state , O except O F451D B-mutant / I-mutant A I-mutant , O showed O no O pNPPase B-protein_type activity O changes O compared O with O the O wild B-protein_state - I-protein_state type I-protein_state MKP5 B-protein - O CD B-structure_element ( O Fig O . O 7g O ), O and O the O point B-experimental_method mutations I-experimental_method in O JNK1 B-protein also O reduced O the O binding B-evidence affinity I-evidence of O MKP5 B-protein - O CD B-structure_element for O JNK1 B-protein ( O Fig O . O 7h O ). O In O this O model O , O the O MKP5 B-protein - O CD B-structure_element adopts O a O conformation O nearly O identical O to O that O in O its O unbound B-protein_state form O , O suggesting O that O the O conformation O of O the O catalytic B-structure_element domain I-structure_element undergoes O little O change O , O if O any O at O all O , O upon O JNK1 B-protein binding O . O The O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly interaction O is O better O and O more O extensive O . O These O structures B-evidence revealed O that O linear B-structure_element docking I-structure_element motifs I-structure_element in O interacting O proteins O bind O to O a O common O docking B-site site I-site on O MAPKs B-protein_type outside O the O kinase B-protein_type active B-site site I-site . O In O contrast O to O the O canonical O D B-site - I-site motif I-site - I-site binding I-site mode I-site , O separate O helices B-structure_element , O α2 B-structure_element and O α3 B-structure_element ′, I-structure_element in O the O KBD B-structure_element of O MKP5 B-protein engage O the O p38α B-site - I-site docking I-site site I-site . O Sequence B-experimental_method alignment I-experimental_method of O all O MKPs B-protein_type reveals O a O high O degree O of O conservation O of O residues O surrounding O the O interacting B-site region I-site observed O in O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly complex O ( O Supplementary O Fig O . O 5 O ). O In O summary O , O we O have O resolved O the O structure B-evidence of O JNK1 B-protein in B-protein_state complex I-protein_state with I-protein_state the O catalytic B-structure_element domain I-structure_element of O MKP7 B-protein . O In O addition O , O JIP B-protein - I-protein 1 I-protein can O also O associate O with O MKP7 B-protein via O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O MKP7 B-protein ( O ref O .). O When O MKP7 B-protein is O bound B-protein_state to I-protein_state JIP B-protein - I-protein 1 I-protein , O it O reduces O JNK B-protein_type activation O , O leading O to O reduced O phosphorylation O of O the O JNK B-protein_type target O c B-protein_type - I-protein_type Jun I-protein_type . O Thus O , O our O biochemical B-evidence and I-evidence structural I-evidence data I-evidence allow O us O to O present O a O model O for O the O JNK1 B-complex_assembly – I-complex_assembly JIP I-complex_assembly - I-complex_assembly 1 I-complex_assembly – I-complex_assembly MKP7 I-complex_assembly ternary O complex O and O provide O an O important O insight O into O the O assembly O and O function O of O JNK B-protein_type signalling O modules O ( O Supplementary O Fig O . O 6 O ). O The O colour O scheme O is O the O same O in O the O following O figures O unless O indicated O otherwise O . O ( O b O ) O Plots B-evidence of I-evidence initial I-evidence velocity I-evidence of O the O MKP7 B-protein - O catalysed O reaction O versus O phospho B-ptm - O JNK1 B-protein concentration O . O ( O d O ) O GST B-experimental_method - I-experimental_method mediated I-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method for O interaction O of O JNK1 B-protein with O MKP7 B-protein - O CD B-structure_element and O MKP7 B-protein - O KBD B-structure_element . O Structure B-evidence of O JNK1 B-protein in B-protein_state complex I-protein_state with I-protein_state MKP7 B-protein - O CD B-structure_element . O ( O a O ) O Ribbon O diagram O of O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly complex O in O two O views O related O by O a O 45 O ° O rotation O around O a O vertical O axis O . O ( O b O ) O Structure B-evidence of O MKP7 B-protein - O CD B-structure_element with O its O active B-site site I-site highlight O in O cyan O . O The O 2Fo B-evidence − I-evidence Fc I-evidence omit I-evidence map I-evidence ( O contoured O at O 1 O . O 5σ O ) O for O the O P B-structure_element - I-structure_element loop I-structure_element of O MKP7 B-protein - O CD B-structure_element is O shown O at O inset O of O b O . O ( O c O ) O Structure B-evidence of O VHR B-protein with O its O active B-site site I-site highlighted O in O marine O blue O . O ( O d O ) O Close O - O up O view O of O the O JNK1 B-site – I-site MKP7 I-site interface I-site showing O interacting O amino O acids O of O JNK1 B-protein ( O orange O ) O and O MKP7 B-protein - O CD B-structure_element ( O cyan O ). O ( O a O ) O Effects O of O mutations O in O MKP7 B-protein - O CD B-structure_element on O the O JNK1 B-protein dephosphorylation B-ptm ( O mean O ± O s O . O e O . O m O ., O n O = O 3 O ). O However O , O in O contrast O to O the O wild B-protein_state - I-protein_state type I-protein_state MKP7 B-protein - O CD B-structure_element , O mutant B-protein_state F285D B-mutant did O not O co O - O migrate O with O JNK1 B-protein . O ( O f O ) O Effects O of O mutations B-experimental_method in O MKP7 B-protein - O CD B-structure_element on O the O pNPP B-chemical hydrolysis O reaction O ( O mean O ± O s O . O e O . O m O ., O n O = O 3 O ). O FXF B-structure_element - I-structure_element motif I-structure_element is O critical O for O controlling O the O phosphorylation B-ptm of O JNK B-protein_type and O ultraviolet O - O induced O apoptosis O . O After O 36 O h O infection O , O cells O were O untreated O in O a O , O stimulated O with O 30 O μM O etoposide B-chemical for O 3 O h O in O b O or O irradiated O with O 25 O J O m O − O 2 O ultraviolet O light O at O 30 O min O before O lysis O in O c O . O Whole O - O cell O extracts O were O then O immunoblotted O with O antibody O indicated O . O Apoptotic O cells O were O determined O by O Annexin B-chemical - I-chemical V I-chemical - I-chemical APC I-chemical / O PI B-chemical staining O . O Floral O abscission O is O controlled O by O the O leucine B-protein_type - I-protein_type rich I-protein_type repeat I-protein_type receptor I-protein_type kinase I-protein_type ( O LRR B-protein_type - I-protein_type RK I-protein_type ) O HAESA B-protein and O the O peptide B-protein_type hormone I-protein_type IDA B-protein . O Crystal B-evidence structures I-evidence of O HAESA B-protein in B-protein_state complex I-protein_state with I-protein_state IDA B-protein reveal O a O hormone B-site binding I-site pocket I-site that O accommodates O an O active B-protein_state dodecamer B-structure_element peptide B-chemical . O The O HAESA B-protein co B-protein_type - I-protein_type receptor I-protein_type SERK1 B-protein , O a O positive O regulator O of O the O floral O abscission O pathway O , O allows O for O high O - O affinity O sensing O of O the O peptide B-protein_type hormone I-protein_type by O binding O to O an O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O This O sequence O pattern O is O conserved B-protein_state among O diverse O plant B-taxonomy_domain peptides B-chemical , O suggesting O that O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type receptors I-protein_type may O share O a O common O ligand O binding O mode O and O activation O mechanism O . O Another O challenge O will O be O to O find O out O where O IDA B-protein is O produced O in O the O plant B-taxonomy_domain and O what O causes O it O to O accumulate O in O specific O places O in O preparation O for O organ O shedding O . O ( O A O ) O SDS B-experimental_method PAGE I-experimental_method analysis O of O the O purified O Arabidopsis B-species thaliana I-species HAESA B-protein ectodomain B-structure_element ( O residues O 20 B-residue_range – I-residue_range 620 I-residue_range ) O obtained O by O secreted B-experimental_method expression I-experimental_method in I-experimental_method insect I-experimental_method cells I-experimental_method . O Residues O mediating O hydrophobic B-bond_interaction interactions I-bond_interaction with O the O IDA B-chemical peptide I-chemical are O highlighted O in O blue O , O residues O contributing O to O hydrogen B-bond_interaction bond I-bond_interaction interactions I-bond_interaction and O / O or O salt B-bond_interaction bridges I-bond_interaction are O shown O in O red O . O The O alignment O includes O a O secondary O structure O assignment O calculated O with O the O program O DSSP O and O colored O according O to O Figure O 1 O , O with O the O N O - O and O C O - O terminal O caps B-structure_element and O the O 21 O LRR B-structure_element motifs I-structure_element indicated O in O orange O and O blue O , O respectively O . O Cysteine B-residue_name residues O engaged O in O disulphide B-ptm bonds I-ptm are O depicted O in O green O . O HAESA B-protein residues O interacting O with O the O IDA B-chemical peptide I-chemical and O / O or O the O SERK1 B-protein co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type ectodomain B-structure_element are O highlighted O in O blue O and O orange O , O respectively O . O The O PKGV B-structure_element motif I-structure_element present O in O our O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-chemical peptide I-chemical is O highlighted O in O red O . O ( O B O ) O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method of O the O HAESA B-protein ectodomain B-structure_element vs O . O IDA B-protein and O including O the O synthetic B-protein_state peptide B-chemical sequence O . O ( O C O ) O Structure O of O the O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly complex O with O HAESA B-protein shown O in O blue O ( O ribbon O diagram O ). O We O purified B-experimental_method the O HAESA B-protein ectodomain B-structure_element ( O residues O 20 B-residue_range – I-residue_range 620 I-residue_range ) O from O baculovirus B-experimental_method - I-experimental_method infected I-experimental_method insect I-experimental_method cells I-experimental_method ( O Figure O 1 O — O figure O supplement O 1A O , O see O Materials O and O methods O ) O and O quantified O the O interaction O of O the O ~ O 75 O kDa O glycoprotein B-protein_type with O synthetic B-protein_state IDA B-chemical peptides I-chemical using O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O We O obtained O a O structure B-evidence of O HAESA B-protein in B-protein_state complex I-protein_state with I-protein_state a O PKGV B-mutant - I-mutant IDA I-mutant peptide B-chemical at O 1 O . O 94 O Å O resolution O ( O Table O 2 O ). O We O next O tested O if O HAESA B-protein binds O other O IDA B-chemical peptide I-chemical family I-chemical members I-chemical . O We O do O not O detect O interaction O between O HAESA B-protein and O a O synthetic B-protein_state peptide B-chemical missing B-protein_state the I-protein_state C I-protein_state - I-protein_state terminal I-protein_state Asn69IDA B-residue_name_number ( O ΔN69 B-mutant ), O highlighting O the O importance O of O the O polar B-bond_interaction interactions I-bond_interaction between O the O IDA B-protein carboxy O - O terminus O and O Arg407HAESA B-residue_name_number / O Arg409HAESA B-residue_name_number ( O Figures O 1F O , O 2D O ). O We O found O that O the O force O required O to O remove O the O petals O of O serk1 B-gene - I-gene 1 I-gene mutants B-protein_state is O significantly O higher O than O that O needed O for O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain , O as O previously O observed O for O haesa B-gene / O hsl2 B-gene mutants B-protein_state , O and O that O floral O abscission O is O delayed O in O serk1 B-gene - I-gene 1 I-gene ( O Figure O 3A O ). O The O serk2 B-gene - I-gene 2 I-gene , O serk3 B-gene - I-gene 1 I-gene , O serk4 B-gene - I-gene 1 I-gene and O serk5 B-gene - I-gene 1 I-gene mutant B-protein_state lines O showed O a O petal O break O - O strength O profile O not O significantly O different O from O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain . O In O this O case O , O there O was O no O detectable O interaction O between O receptor O and O co O - O receptor O , O while O in O the O presence B-protein_state of I-protein_state IDA B-protein , O SERK1 B-protein strongly O binds O HAESA B-protein with O a O dissociation B-evidence constant I-evidence in O the O mid O - O nanomolar O range O ( O Figure O 3C O ). O SERK1 B-protein senses O a O conserved B-protein_state motif B-structure_element in O IDA B-chemical family I-chemical peptides I-chemical The O conformational O change O in O the O C O - O terminal O LRRs B-structure_element and O capping B-structure_element domain I-structure_element is O indicated O by O an O arrow O . O ( O C O ) O SERK1 B-protein forms O an O integral O part O of O the O receptor O ' O s O peptide B-site binding I-site pocket I-site . O Ribbon O diagrams O of O HAESA B-protein ( O in O blue O ) O and O SERK1 B-protein ( O in O orange O ) O are O shown O with O selected O interface B-site residues I-site ( O in O bonds O representation O ). O To O understand O in O molecular O terms O how O SERK1 B-protein contributes O to O high O - O affinity O IDA B-protein recognition O , O we O solved O a O 2 O . O 43 O Å O crystal B-evidence structure I-evidence of O the O ternary O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O ( O Figure O 4A O , O Table O 2 O ). O SERK1 B-protein LRRs B-structure_element 1 I-structure_element – I-structure_element 5 I-structure_element and O its O C O - O terminal O capping B-structure_element domain I-structure_element form O an O additional O zipper B-structure_element - I-structure_element like I-structure_element interface B-site with O residues O originating O from O HAESA B-protein LRRs B-structure_element 15 I-structure_element – I-structure_element 21 I-structure_element and O from O the O HAESA B-protein C O - O terminal O cap B-structure_element ( O Figure O 4D O ). O Deletion B-experimental_method of O the O buried O Asn69IDA B-residue_name_number completely B-protein_state inhibits I-protein_state receptor O – O co O - O receptor O complex O formation O and O HSL2 O activation O ( O Figure O 5A O , O B O ). O Comparison O of O 35S B-gene :: O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state plants B-taxonomy_domain further O indicates O that O mutation B-experimental_method of O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant may O cause O a O weak O dominant O negative O effect O ( O Figure O 5C O – O E O ). O In O contrast O to O animal B-taxonomy_domain LRR B-protein_type receptors I-protein_type , O plant B-taxonomy_domain LRR B-structure_element - I-structure_element RKs I-structure_element harbor O spiral B-protein_state - I-protein_state shaped I-protein_state ectodomains B-structure_element and O thus O they O require O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptor I-protein_type proteins I-protein_type for O receptor O activation O . O As O serk1 B-gene - I-gene 1 I-gene mutant B-protein_state plants B-taxonomy_domain show O intermediate O abscission O phenotypes O when O compared O to O haesa B-gene / O hsl2 O mutants B-protein_state , O SERK1 B-protein likely O acts O redundantly O with O other O SERKs B-protein_type in O the O abscission O zone O ( O Figure O 3A O ). O Our O comparative B-experimental_method structural I-experimental_method and I-experimental_method biochemical I-experimental_method analysis I-experimental_method further O suggests O that O IDLs B-protein_type share O a O common O receptor O binding O mode O , O but O may O preferably O bind O to O HAESA B-protein , O HSL1 B-protein or O HSL2 B-protein in O different O plant B-taxonomy_domain tissues O and O organs O . O Several O residues O in O the O SERK1 B-protein N O - O terminal O capping B-structure_element domain I-structure_element ( O Thr59SERK1 B-residue_name_number , O Phe61SERK1 B-residue_name_number ) O and O the O LRR B-site inner I-site surface I-site ( O Asp75SERK1 B-residue_name_number , O Tyr101SERK1 B-residue_name_number , O SER121SERK1 B-residue_name_number , O Phe145SERK1 B-residue_name_number ) O contribute O to O the O formation O of O both O complexes O ( O Figures O 4C O , O D O , O 6B O ). O This O fact O together O with O the O largely O overlapping O SERK1 B-site binding I-site surfaces I-site in O HAESA B-protein and O BRI1 B-protein allows O us O to O speculate O that O SERK1 B-protein may O promote O high O - O affinity O peptide B-protein_type hormone I-protein_type and O brassinosteroid O sensing O by O simply O slowing O down O dissociation O of O the O ligand O from O its O cognate O receptor O . O Ensemble O cryo B-experimental_method - I-experimental_method EM I-experimental_method uncovers O inchworm B-protein_state - O like O translocation O of O a O viral B-taxonomy_domain IRES B-site through O the O ribosome B-complex_assembly This O unlocks O 40S B-complex_assembly domains O , O facilitating O head B-structure_element swivel O and O biasing O IRES B-site translocation O via O hitherto O - O elusive O intermediates O with O PKI B-structure_element captured O between O the O A B-site and I-site P I-site sites I-site . O Virus B-taxonomy_domain propagation O relies O on O the O host O translational O apparatus O . O A O recent O demonstration O of O bacterial B-taxonomy_domain translation O initiation B-protein_state by O an O IGR B-structure_element IRES B-site indicates O that O the O IRESs B-site take O advantage O of O conserved O structural O and O dynamic O properties O of O the O ribosome B-complex_assembly . O Nucleotides O C1274 B-residue_name_number , O U1191 B-residue_name_number of O the O 40S B-complex_assembly head B-structure_element and O G904 B-residue_name_number of O the O platform B-structure_element ( O corresponding O to O C1054 B-residue_name_number , O G966 B-residue_name_number and O G693 B-residue_name_number in O E B-species . I-species coli I-species 16S B-chemical rRNA I-chemical ) O are O shown O in O black O to O denote O the O A B-site , I-site P I-site and I-site E I-site sites I-site , O respectively O . O The O extents O of O the O 40S B-complex_assembly subunit B-structure_element rotation O and O head B-structure_element swivel O relative O to O their O positions O in O the O post B-protein_state - I-protein_state translocation I-protein_state structure B-evidence are O shown O with O arrows O . O In O panels O ( O a O - O e O ), O the O maps B-evidence are O segmented O and O colored O as O in O Figure O 1 O . O Cryo B-experimental_method - I-experimental_method EM I-experimental_method structures B-evidence of O the O 80S B-complex_assembly • I-complex_assembly TSV I-complex_assembly IRES I-complex_assembly bound B-protein_state with I-protein_state eEF2 B-complex_assembly • I-complex_assembly GDP I-complex_assembly • I-complex_assembly sordarin I-complex_assembly . O Unsupervised B-experimental_method cryo I-experimental_method - I-experimental_method EM I-experimental_method data I-experimental_method classification I-experimental_method was O combined O with O the O use O of O three B-experimental_method - I-experimental_method dimensional I-experimental_method and I-experimental_method two I-experimental_method - I-experimental_method dimensional I-experimental_method masking I-experimental_method around O the O ribosomal O A B-site site I-site ( O Figure O 1 O — O figure O supplement O 2 O ). O The O views O were O obtained O by O structural B-experimental_method alignment I-experimental_method of O the O 25S B-chemical rRNAs I-chemical ; O the O sarcin B-structure_element - I-structure_element ricin I-structure_element loop I-structure_element ( O SRL B-structure_element ) O of O 25S B-chemical rRNA I-chemical is O shown O in O gray O for O reference O . O Conformation O of O the O non B-protein_state - I-protein_state swiveled I-protein_state 40S B-complex_assembly subunit B-structure_element in O the O S B-species . I-species cerevisiae I-species 80S B-complex_assembly ribosome I-complex_assembly bound B-protein_state with I-protein_state two O tRNAs B-chemical is O shown O for O reference O ( O blue O ). O Structure B-evidence I I-evidence comprises O the O most B-protein_state rotated I-protein_state ribosome B-complex_assembly conformation O (~ O 10 O °), O characteristic O of O pre B-protein_state - I-protein_state translocation I-protein_state hybrid B-protein_state - I-protein_state tRNA I-protein_state states O . O Structure B-evidence IV I-evidence adopts O a O slightly B-protein_state rotated I-protein_state conformation O (~ O 1 O °). O Thus O , O intersubunit O rotation O of O ~ O 9 O ° O from O Structure B-evidence I I-evidence to I-evidence V I-evidence covers O a O nearly O complete O range O of O relative O subunit B-structure_element positions O , O similar O to O what O was O reported O for O tRNA B-protein_state - I-protein_state bound I-protein_state yeast B-taxonomy_domain , O bacterial B-taxonomy_domain and O mammalian B-taxonomy_domain ribosomes B-complex_assembly . O 40S B-complex_assembly head B-structure_element swivel O As O with O the O intersubunit O rotation O , O the O small O head B-structure_element swivel O (~ O 1 O °) O in O the O non B-protein_state - I-protein_state rotated I-protein_state Structure B-evidence V I-evidence is O closest O to O that O in O the O 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly post B-protein_state - I-protein_state translocation I-protein_state ribosome B-complex_assembly . O The O head B-structure_element samples O a O mid B-protein_state - I-protein_state swiveled I-protein_state position O in O Structure B-evidence I I-evidence ( O 12 O °), O then O a O highly B-protein_state - I-protein_state swiveled I-protein_state position O in O Structures B-evidence II I-evidence and I-evidence III I-evidence ( O 17 O °) O and O a O less B-protein_state swiveled I-protein_state position O in O Structure B-evidence IV I-evidence ( O 14 O °). O Superpositions O were O obtained O by O structural B-experimental_method alignments I-experimental_method of O the O 18S B-chemical rRNAs I-chemical excluding O the O head B-structure_element domains O ( O nt O 1150 B-residue_range – I-residue_range 1620 I-residue_range ). O Interactions O of O the O stem B-structure_element loops I-structure_element 4 I-structure_element and I-structure_element 5 I-structure_element of O the O TSV B-species with O proteins O uS7 B-protein and O eS25 B-protein . O Position O and O interactions O of O loop B-structure_element 3 I-structure_element ( O variable B-structure_element loop I-structure_element region I-structure_element ) O of O the O PKI B-structure_element domain O in O Structure B-evidence V I-evidence ( O this O work O ) O resembles O those O of O the O anticodon B-structure_element stem I-structure_element loop I-structure_element of O the O E B-site - I-site site I-site tRNA B-chemical ( O blue O ) O in O the O 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly complex O . O Positions O of O tRNAs B-chemical and O the O TSV B-species IRES B-site relative O to O the O A B-structure_element - I-structure_element site I-structure_element finger I-structure_element ( O blue O , O nt O 1008 B-residue_range – I-residue_range 1043 I-residue_range of O 25S B-chemical rRNA I-chemical ) O and O the O P B-site site I-site of O the O large B-structure_element subunit I-structure_element , O comprising O helix B-structure_element 84 I-structure_element of O 25S B-chemical rRNA I-chemical ( O nt O . O Interactions O of O the O TSV B-species IRES B-site with O uL5 B-protein and O eL42 B-protein . O Structures B-evidence of O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly complexes O in O the O absence B-protein_state of I-protein_state eEF2 B-protein ( O INIT B-complex_assembly ; O PDB O 3J6Y O ,) O and O in O the O presence B-protein_state of I-protein_state eEF2 B-protein ( O this O work O ) O are O shown O in O the O upper O row O and O labeled O . O 6758 B-residue_range – I-residue_range 6888 I-residue_range ) O binds O near O the O E B-site site I-site , O contacting O the O ribosome B-complex_assembly mostly O by O means O of O three O protruding O structural O elements O : O the O L1 B-structure_element . I-structure_element 1 I-structure_element region I-structure_element and O stem B-structure_element loops I-structure_element 4 I-structure_element and I-structure_element 5 I-structure_element ( O SL4 B-structure_element and O SL5 B-structure_element ). O The O minor B-site groove I-site of O SL5 B-structure_element ( O at O nt O 6862 B-residue_range – I-residue_range 6868 I-residue_range ) O contacts O the O positively O charged O region O of O eS25 B-protein ( O R49 B-residue_name_number , O R58 B-residue_name_number and O R68 B-residue_name_number ) O ( O Figure O 3 O — O figure O supplement O 4 O ). O Conformations O and O positions O of O the O IRES B-site in O the O initiation B-protein_state state O and O in O Structures B-evidence I I-evidence - I-evidence V I-evidence are O shown O relative O to O those O of O the O A B-site -, I-site P I-site - I-site and I-site E I-site - I-site site I-site tRNAs B-chemical . O In O Structure B-evidence I I-evidence , O SL3 B-structure_element of O the O PKI B-structure_element domain O is O positioned O between O the O A B-structure_element - I-structure_element site I-structure_element finger I-structure_element ( O nt O 1008 B-residue_range – I-residue_range 1043 I-residue_range of O 25S B-chemical rRNA I-chemical ) O and O the O P B-site site I-site of O the O 60S B-complex_assembly subunit B-structure_element , O comprising O helix B-structure_element 84 I-structure_element of O 25S B-chemical rRNA I-chemical ( O nt O . O In O Structure B-evidence V I-evidence , O loop B-structure_element 3 I-structure_element is O bound B-protein_state in I-protein_state the O 40S B-complex_assembly E B-site site I-site and O the O backbone O of O loop B-structure_element 3 I-structure_element near O the O codon B-structure_element - I-structure_element like I-structure_element part I-structure_element of O PKI B-structure_element ( O at O nt O . O The O interaction O of O loop B-structure_element 3 I-structure_element backbone O with O uS7 B-protein resembles O that O of O the O anticodon B-structure_element - I-structure_element stem I-structure_element loop I-structure_element of O E B-site - I-site site I-site tRNA B-chemical in O the O post B-protein_state - I-protein_state translocation I-protein_state 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly structure B-evidence ( O Figure O 3 O — O figure O supplement O 5 O ). O Ordering O of O loop B-structure_element 3 I-structure_element suggests O that O this O flexible O region O contributes O to O the O stabilization O of O the O PKI B-structure_element domain O in O the O post B-protein_state - I-protein_state translocation I-protein_state state O . O Colors O for O the O ribosome B-complex_assembly and O eEF2 B-protein are O as O in O Figure O 1 O . O Switch B-structure_element loop I-structure_element I I-structure_element ( O SWI B-structure_element ) O in O Structure B-evidence I I-evidence is O in O blue O ; O dashed O line O shows O the O putative O location O of O unresolved O switch B-structure_element loop I-structure_element I I-structure_element in O Structure B-evidence II I-evidence . O Elongation B-protein_type factor I-protein_type eEF2 B-protein in O all O five O structures B-evidence is O bound B-protein_state with I-protein_state GDP B-chemical and O sordarin B-chemical ( O Figure O 5 O ). O GDP B-chemical in O our O structures B-evidence is O bound B-protein_state in I-protein_state the O GTPase B-site center I-site ( O Figures O 5d O , O e O and O f O ) O and O sordarin B-chemical is O sandwiched O between O the O β B-structure_element - I-structure_element platforms I-structure_element of O domains O III B-structure_element and O V B-structure_element ( O Figures O 5g O and O h O ), O as O in O the O structure B-evidence of O free B-protein_state eEF2 B-complex_assembly • I-complex_assembly sordarin I-complex_assembly complex O . O From O Structure B-evidence I I-evidence to I-evidence V I-evidence , O eEF2 B-protein is O rigidly O attached O to O the O GTPase B-site - I-site associated I-site center I-site of O the O 60S B-complex_assembly subunit B-structure_element . O The O tips O of O 25S B-chemical rRNA I-chemical helices B-structure_element 43 I-structure_element and I-structure_element 44 I-structure_element of O the O P B-structure_element stalk I-structure_element ( O nucleotides O G1242 B-residue_name_number and O A1270 B-residue_name_number , O respectively O ) O stack B-bond_interaction on O V754 B-residue_name_number and O Y744 B-residue_name_number of O domain O V B-structure_element . O An O αββ B-structure_element motif I-structure_element of O the O eukaryote B-taxonomy_domain - O specific O protein O P0 B-protein ( O aa O 126 B-residue_range – I-residue_range 154 I-residue_range ) O packs O in O the O crevice O between O the O long B-structure_element α I-structure_element - I-structure_element helix I-structure_element D I-structure_element ( O aa O 172 B-residue_range – I-residue_range 188 I-residue_range ) O of O the O GTPase B-structure_element domain I-structure_element and O the O β B-structure_element - I-structure_element sheet I-structure_element region I-structure_element ( O aa O 246 B-residue_range – I-residue_range 263 I-residue_range ) O of O the O GTPase B-structure_element domain I-structure_element insert I-structure_element ( O or O G B-structure_element ’ I-structure_element insert I-structure_element ) O of O eEF2 B-protein ( O secondary O - O structure O nomenclatures O for O eEF2 B-protein and O EF B-protein - I-protein G I-protein are O the O same O ). O While O the O overall O mode O of O this O interaction O is O similar O to O that O seen O in O 70S B-complex_assembly • I-complex_assembly EF I-complex_assembly - I-complex_assembly G I-complex_assembly crystal B-evidence structures I-evidence , O there O is O an O important O local O difference O between O Structure B-evidence I I-evidence and O Structures B-evidence II I-evidence - I-evidence V I-evidence in O switch B-structure_element loop I-structure_element I I-structure_element , O as O discussed O below O . O Structures B-evidence I I-evidence through I-evidence V I-evidence are O shown O . O The O view O was O obtained O by O superpositions B-experimental_method of O the O body B-structure_element domains O of O 18S B-chemical rRNAs I-chemical . O At O the O head B-structure_element , O C1274 B-residue_name_number of O the O 18S B-chemical rRNA I-chemical ( O C1054 B-residue_name_number in O E B-species . I-species coli I-species ) O base O pairs O with O the O first O nucleotide O of O the O ORF B-structure_element immediately O downstream O of O PKI B-structure_element . O Key O elements O of O the O decoding B-site center I-site of O the O ' O locked B-protein_state ' O initiation B-protein_state structure B-evidence , O ' O unlocked B-protein_state ' O Structure B-evidence I I-evidence , O and O post B-protein_state - I-protein_state translocation I-protein_state Structure B-evidence V I-evidence ( O this O work O ) O are O shown O . O The O codon B-structure_element - I-structure_element anticodon I-structure_element - I-structure_element like I-structure_element helix I-structure_element of O PKI B-structure_element is O shown O in O red O , O the O downstream O first O codon O of O the O ORF B-structure_element in O magenta O . O Nucleotides O of O the O 18S B-chemical rRNA I-chemical body B-structure_element are O in O orange O and O head B-structure_element in O yellow O ; O 25S B-chemical rRNA I-chemical nucleotide O A2256 B-residue_name_number is O blue O . O In O the O latter O , O PKI B-structure_element is O stabilized O by O interactions O with O the O universally B-protein_state conserved I-protein_state decoding B-site - I-site center I-site nucleotides O G577 B-residue_name_number , O A1755 B-residue_name_number and O A1756 B-residue_name_number (' O body B-structure_element A B-site site I-site '), O as O in O the O A B-site - I-site site I-site tRNA B-protein_state bound I-protein_state complexes O . O Histidines B-residue_name_number 583 I-residue_name_number and I-residue_name_number 694 I-residue_name_number interact O with O the O phosphate O backbone O of O the O anticodon B-structure_element - I-structure_element like I-structure_element strand I-structure_element ( O at O G6907 B-residue_name_number and O C6908 B-residue_name_number ). O The O N O - O terminal O part O of O the O loop B-structure_element ( O aa O 50 B-residue_range – I-residue_range 60 I-residue_range ) O is O sandwiched O between O the O tip O of O helix B-structure_element 14 I-structure_element ( O 415CAAA418 B-structure_element ) O of O the O 18S B-chemical rRNA I-chemical of O the O 40S B-complex_assembly subunit B-structure_element and O helix B-structure_element A I-structure_element ( O aa O 32 B-residue_range – I-residue_range 42 I-residue_range ) O of O eEF2 B-protein ( O Figure O 5d O ). O Among O the O five O structures B-evidence , O the O PKI B-structure_element domain O is O least O ordered O in O Structure B-evidence III I-evidence and O lacks O density B-evidence for O SL3 B-structure_element . O Thus O , O in O Structure B-evidence III I-evidence , O PKI B-structure_element has O translocated O along O the O 40S B-complex_assembly body B-structure_element , O but O the O head B-structure_element remains O fully B-protein_state swiveled I-protein_state so O that O PKI B-structure_element is O between O the O head B-structure_element A B-site and I-site P I-site sites I-site . O The O position O of O eEF2 B-protein is O similar O to O that O in O Structure B-evidence II I-evidence . O To O this O end O , O the O head B-site - I-site interacting I-site interface I-site of O domain O IV B-structure_element slides O along O the O surface O of O the O head B-structure_element by O 5 O Å O . O Helix B-structure_element A I-structure_element of O domain O IV B-structure_element is O positioned O next O to O the O backbone O of O h34 B-structure_element , O with O positively O charged O residues O K613 B-residue_name_number , O R617 B-residue_name_number and O R631 B-residue_name_number rearranged O from O the O backbone O of O h33 B-structure_element ( O Figure O 6c O ; O see O also O Figure O 6 O — O figure O supplement O 1 O ). O In O the O nearly B-protein_state non I-protein_state - I-protein_state rotated I-protein_state and O non B-protein_state - I-protein_state swiveled I-protein_state ribosome B-complex_assembly conformation O in O Structure B-evidence V I-evidence closely O resembling O that O of O the O post B-protein_state - I-protein_state translocation I-protein_state 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly complex O , O PKI B-structure_element is O fully O accommodated O in O the O P B-site site I-site . O In O this O position O , O uS12 B-protein forms O extensive O interactions O with O eEF2 B-protein domains O II B-structure_element and O III B-structure_element . O Domain O IV B-structure_element of O eEF2 B-protein is O fully O accommodated O in O the O A B-site site I-site . O The O first O codon O of O the O open B-structure_element reading I-structure_element frame I-structure_element is O also O positioned O in O the O A B-site site I-site , O with O bases O exposed O toward O eEF2 B-protein ( O Figure O 7 O ), O resembling O the O conformations O of O the O A B-site - I-site site I-site codons O in O EF B-protein_state - I-protein_state G I-protein_state - I-protein_state bound I-protein_state 70S B-complex_assembly complexes O . O Diph699 B-ptm slightly O rearranges O , O relative O to O that O in O Structure B-evidence I I-evidence ( O Figure O 7 O ), O and O interacts O with O four O out O of O six O codon O - O anticodon O nucleotides O . O The O imidazole O moiety O stacks O on O G6907 B-residue_name_number ( O corresponding O to O nt O 36 O in O the O tRNA B-chemical anticodon O ) O and O hydrogen B-bond_interaction bonds I-bond_interaction with O O2 O ’ O of O G6906 B-residue_name_number ( O nt O 35 O of O tRNA B-chemical ). O In O scenes O 1 O , O 2 O and O 3 O , O nucleotides O C1274 B-residue_name_number , O U1191 B-residue_name_number of O the O 40S B-complex_assembly head B-structure_element and O G904 B-residue_name_number of O the O 40S B-site platform I-site are O shown O in O black O to O denote O the O A B-site , I-site P I-site and I-site E I-site sites I-site , O respectively O . O Translocation O of O the O TSV B-species IRES B-site on O the O 40S B-complex_assembly subunit B-structure_element globally O resembles O a O step O of O an O inchworm B-protein_state ( O Figure O 4 O ; O see O also O Figure O 3 O — O figure O supplement O 2 O ). O Finally O ( O Structures B-evidence IV I-evidence to I-evidence V I-evidence ), O as O the O hind B-structure_element end I-structure_element is O accommodated O in O the O P B-site site I-site , O the O front B-structure_element ' I-structure_element legs I-structure_element ' I-structure_element advance O by O departing O from O their O initial B-site binding I-site sites I-site . O This O converts O the O IRES B-site into O an O extended B-protein_state conformation O , O rendering O the O inchworm B-protein_state prepared O for O the O next O translocation O step O . O Recent O studies O have O shown O that O in O some O cases O a O fraction O of O IGR B-structure_element IRES B-site - O driven O translation O results O from O an O alternative O reading O frame O , O which O is O shifted O by O one O nucleotide O relative O to O the O normal O ORF B-structure_element . O Specifically O , O biochemical B-experimental_method toe I-experimental_method - I-experimental_method printing I-experimental_method studies I-experimental_method in O the O presence B-protein_state of I-protein_state eEF2 B-complex_assembly • I-complex_assembly GTP I-complex_assembly identified O IRES B-site in O a O non B-protein_state - I-protein_state translocated I-protein_state position O unless O eEF1a B-complex_assembly • I-complex_assembly aa I-complex_assembly - I-complex_assembly tRNA I-complex_assembly is O also O present O . O Thus O , O the O meta O - O stability O of O the O post B-protein_state - I-protein_state translocation I-protein_state IRES B-site is O likely O due O to O the O absence B-protein_state of I-protein_state stabilizing O structural O features O present O in O the O 2tRNA B-complex_assembly • I-complex_assembly mRNA I-complex_assembly complex O . O Reverse O intersubunit O rotation O from O Structure B-evidence I I-evidence to I-evidence V I-evidence shifts O the O translocation B-site tunnel I-site ( O the O tunnel B-site between O the O A B-site , I-site P I-site and I-site E I-site sites I-site ) O toward O eEF2 B-protein , O which O is O rigidly O attached O to O the O 60S B-complex_assembly subunit B-structure_element . O The O head B-structure_element swivel O allows O gradual O translocation O of O PKI B-structure_element to O the O P B-site site I-site , O first O with O respect O to O the O body B-structure_element and O then O to O the O head B-structure_element . O The O bulky O ADP B-chemical - O ribosyl O moiety O at O this O position O would O disrupt O the O interaction O , O rendering O eEF2 B-protein unable O to O bind O to O the O A B-site site I-site and O / O or O stalled O on O ribosomes B-complex_assembly in O a O non O - O productive O conformation O . O However O , O the O structural O and O mechanistic O definitions O of O the O locked B-protein_state and O unlocked B-protein_state states O have O remained O unclear O , O ranging O from O the O globally O distinct O ribosome B-complex_assembly conformations O to O unknown O local O rearrangements O , O e O . O g O . O those O in O the O decoding B-site center I-site . O Structure B-evidence I I-evidence demonstrates O that O at O an O early O pre B-protein_state - I-protein_state translocation I-protein_state step O , O the O histidine B-site - I-site diphthamide I-site tip I-site of O eEF2 B-protein is O wedged O between O A1755 B-residue_name_number and O A1756 B-residue_name_number and O PKI B-structure_element . O This O destabilization O allows O PKI B-structure_element to O detach O from O the O body B-structure_element A B-site site I-site upon O spontaneous O reverse O 40S B-complex_assembly body B-structure_element rotation O , O while O maintaining O interactions O with O the O head B-structure_element A B-site site I-site . O Destabilization O of O the O head B-protein_state - I-protein_state bound I-protein_state PKI B-structure_element at O the O body B-structure_element A B-site site I-site thus O allows O mobility O of O the O head B-structure_element relative O to O the O body B-structure_element . O Here O , O switch B-structure_element loop I-structure_element I I-structure_element interacts O with O helix B-structure_element 14 I-structure_element ( O 415CAAA418 B-structure_element ) O of O the O 18S B-chemical rRNA I-chemical . O This O stabilization O renders O the O GTPase B-site center I-site to O adopt O a O GTP B-protein_state - I-protein_state bound I-protein_state conformation O , O similar O to O those O observed O in O other O translational B-protein_type GTPases I-protein_type in O the O presence B-protein_state of I-protein_state GTP B-chemical analogs O and O in O the O 80S B-complex_assembly • I-complex_assembly eEF2 I-complex_assembly complex O bound B-protein_state with I-protein_state a O transition O - O state O mimic O GDP B-complex_assembly • I-complex_assembly AlF4 I-complex_assembly –. I-complex_assembly The O switch B-structure_element loop I-structure_element contacts O the O base O of O A416 B-residue_name_number ( O invariable B-protein_state A344 B-residue_name_number in O E B-species . I-species coli I-species and O A463 B-residue_name_number in O H B-species . I-species sapiens I-species ). O Mutations B-experimental_method of O residues O flanking O A344 B-residue_name_number in O E B-species . I-species coli I-species 16S B-chemical rRNA I-chemical modestly O inhibit O translation O but O do O not O specifically O affect O EF B-protein - I-protein G I-protein - O mediated O translocation O . O However O , O the O effect O of O A344 B-residue_name_number mutation B-experimental_method on O translation O was O not O addressed O in O that O study O , O leaving O the O question O open O whether O this O residue O is O critical O for O eEF2 B-protein / O EF B-protein - I-protein G I-protein function O . O Based O on O biochemical B-experimental_method experiments I-experimental_method , O two O alternative O mechanisms O of O action O were O proposed O : O sordarin B-chemical either O prevents O eEF2 B-protein departure O by O inhibiting O GTP B-chemical hydrolysis O or O acts O after O GTP B-chemical hydrolysis O . O The O mechanism O of O stalling O is O suggested O by O comparison O of O pre B-protein_state - I-protein_state translocation I-protein_state and O post B-protein_state - I-protein_state translocation I-protein_state structures B-evidence in O our O ensemble O . O We O note O that O Structure B-evidence V I-evidence is O slightly O more O rotated O than O the O 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly complex O in O the O absence B-protein_state of I-protein_state eEF2 B-complex_assembly • I-complex_assembly sordarin I-complex_assembly , O implying O that O sordarin B-chemical interferes O with O the O final O stages O of O reverse O rotation O of O the O post B-protein_state - I-protein_state translocation I-protein_state ribosome B-complex_assembly . O The O structural O understanding O of O ribosome B-complex_assembly and O tRNA B-chemical dynamics O has O been O greatly O aided O by O a O wealth O of O X B-experimental_method - I-experimental_method ray I-experimental_method and O cryo B-experimental_method - I-experimental_method EM I-experimental_method structures B-evidence ( O reviewed O in O ). O Our O study O provides O new O insights O into O the O structural O understanding O of O tRNA B-chemical translocation O . O These O interactions O are O maintained O for O the O classical B-protein_state - O and O hybrid B-protein_state - O state O tRNAs B-chemical in O the O spontaneously O sampled O non B-protein_state - I-protein_state rotated I-protein_state and O rotated B-protein_state ribosomes B-complex_assembly , O respectively O . O This O unlatches O the O head B-structure_element , O allowing O creation O of O hitherto O elusive O intermediate O tRNA B-chemical positions O during O spontaneous O reverse O body B-structure_element rotation O . O For O example O , O Förster B-experimental_method resonance I-experimental_method energy I-experimental_method transfer I-experimental_method can O provide O insight O into O the O macromolecular O dynamics O of O an O assembly O at O the O single O - O molecule O level O but O is O limited O to O specifically O labeled O locations O within O the O assembly O . O A O unified O mechanism O for O proteolysis O and O autocatalytic B-ptm activation I-ptm in O the O 20S B-complex_assembly proteasome I-complex_assembly Biogenesis O of O the O 20S B-complex_assembly proteasome I-complex_assembly is O tightly O regulated O . O This O work O provides O insights O into O the O basic O mechanism O of O proteolysis O and O propeptide B-ptm autolysis I-ptm , O as O well O as O the O evolutionary O pressures O that O drove O the O proteasome B-complex_assembly to O become O a O threonine B-protein_type protease I-protein_type . O This O mechanism O , O however O , O cannot O explain O autocatalytic B-ptm precursor I-ptm processing I-ptm because O in O the O immature B-protein_state active B-site sites I-site , O Thr1N B-residue_name_number is O part O of O the O peptide O bond O with O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ), I-residue_name_number the O bond O that O needs O to O be O hydrolysed O . O Inactivation O of O proteasome B-complex_assembly subunits B-protein by O T1A B-mutant mutations B-experimental_method Yeast B-taxonomy_domain strains O carrying O the O single O mutations O β1 B-mutant - I-mutant T1A I-mutant or O β2 B-mutant - I-mutant T1A I-mutant , O or O both O , O are O viable O , O even O though O one O or O two O of O the O three O distinct O catalytic B-protein_state β B-protein subunits I-protein are O disabled B-protein_state and O carry B-protein_state remnants I-protein_state of I-protein_state their O N O - O terminal O propeptides B-structure_element ( O Table O 1 O ). O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number positions O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O via O hydrogen B-bond_interaction bonding I-bond_interaction (∼ O 2 O . O 8 O Å O ) O in O a O perfect O trajectory O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 1b O and O Supplementary O Fig O . O 2b O ). O Next O , O we O examined O the O position O of O the O β5 B-protein propeptide B-structure_element in O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state . O Processing O of O β O - O subunit O precursors O requires O deprotonation O of O Thr1OH B-residue_name_number ; O however O , O the O general O base O initiating O autolysis B-ptm is O unknown O . O Structural B-experimental_method analyses I-experimental_method revealed O that O the O propeptides B-structure_element of O all O mutant B-protein_state yCPs B-complex_assembly shared O residual O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence densities I-evidence . O Although O we O observed O fragments O of O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence density I-evidence in O the O β1 B-protein active B-site site I-site , O the O data O were O not O interpretable O . O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence displays O a O different O orientation O for O the O β2 B-protein propeptide B-structure_element than O has O been O observed O for O the O β2 B-mutant - I-mutant T1A I-mutant proteasome B-complex_assembly . O The O active B-site site I-site of O the O proteasome B-complex_assembly Mutation B-experimental_method of O β5 B-protein - O Lys33 B-residue_name_number to O Ala B-residue_name causes O a O strongly O deleterious O phenotype O , O and O previous O structural B-experimental_method and I-experimental_method biochemical I-experimental_method analyses I-experimental_method confirmed O that O this O is O caused O by O failure O of O propeptide B-ptm cleavage I-ptm , O and O consequently O , O lack O of O ChT O - O L O activity O ( O Fig O . O 4a O , O Supplementary O Fig O . O 3b O and O Table O 1 O ; O for O details O see O Supplementary O Note O 1 O ). O The O phenotype O of O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state was O however O less O pronounced O than O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant yeast B-taxonomy_domain ( O Fig O . O 4a O ). O Structural B-experimental_method comparison I-experimental_method of O the O β5 B-mutant - I-mutant L I-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant - I-mutant K33A I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant active B-site sites I-site revealed O that O mutation B-experimental_method of O Lys33 B-residue_name_number to O Ala B-residue_name creates O a O cavity O that O is O filled O with O Thr1 B-residue_name_number and O the O remnant O propeptide B-structure_element . O Furthermore O , O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state without B-protein_state inhibitor I-protein_state revealed O that O Thr1Oγ B-residue_name_number strongly O coordinates B-bond_interaction a O well O - O defined O water B-chemical molecule O (∼ O 2 O Å O ; O Fig O . O 3c O and O Supplementary O Fig O . O 5c O , O d O ). O This O water B-chemical hydrogen B-bond_interaction bonds I-bond_interaction also O to O Arg19O B-residue_name_number (∼ O 3 O . O 0 O Å O ) O and O Asp17Oδ B-residue_name_number (∼ O 3 O . O 0 O Å O ), O and O thereby O presumably O enables O residual O activity O of O the O mutant B-protein_state . O Even O though O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical trans B-protein_state yCP B-complex_assembly crystal B-evidence structure I-evidence appeared O identical O to O the O WT B-protein_state yCP B-complex_assembly ( O Supplementary O Fig O . O 7b O ), O the O co B-evidence - I-evidence crystal I-evidence structure I-evidence with O the O α B-chemical ′, I-chemical β I-chemical ′ I-chemical epoxyketone I-chemical inhibitor O carfilzomib B-chemical visualized O only O partial O occupancy O of O the O ligand O in O the O β5 B-protein active B-site site I-site ( O Supplementary O Fig O . O 7a O ). O In O agreement O , O an O E17A B-mutant mutant B-protein_state in O the O proteasomal O β B-protein - I-protein subunit I-protein of O the O archaeon B-taxonomy_domain Thermoplasma B-species acidophilum I-species prevents O autolysis B-ptm and O catalysis O . O The O β5 B-mutant - I-mutant D166N I-mutant pp B-chemical cis B-protein_state yeast B-taxonomy_domain mutant B-protein_state is O significantly O impaired O in O growth O and O its O ChT O - O L O activity O is O drastically O reduced O ( O Supplementary O Fig O . O 6a O , O b O and O Table O 1 O ). O X B-evidence - I-evidence ray I-evidence data I-evidence on O the O β5 B-mutant - I-mutant D166N I-mutant mutant B-protein_state indicate O that O the O β5 B-protein propeptide B-structure_element is O hydrolysed O , O but O due O to O reorientation O of O Ser129OH B-residue_name_number , O the O interaction O with O Asn166Oδ B-residue_name_number is O disrupted O ( O Supplementary O Fig O . O 8a O ). O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S2 B-site pocket I-site like O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state , O but O in O contrast O to O the O latter O , O the O propeptide B-structure_element in O the O T1C B-mutant mutant B-protein_state adopts O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element conformation O as O known O from O inhibitors O like O MG132 B-chemical ( O Fig O . O 4c O – O e O and O Supplementary O Fig O . O 9b O ). O Owing O to O the O unequal O positions O of O the O two O β5 B-protein subunits O within O the O CP B-complex_assembly in O the O crystal O lattice O , O maturation O and O propeptide B-structure_element displacement O may O occur O at O different O timescales O in O the O two O subunits O . O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence of O the O T1C B-mutant mutant B-protein_state also O indicates O that O Lys33NH2 B-residue_name_number is O disordered B-protein_state . O However O , O the O apo B-protein_state crystal B-evidence structure I-evidence revealed O that O Ser1Oγ B-residue_name_number is O turned O away O from O the O substrate B-site - I-site binding I-site channel I-site ( O Fig O . O 4g O ). O The O 20S B-complex_assembly proteasome I-complex_assembly CP B-complex_assembly is O the O major O non B-protein_type - I-protein_type lysosomal I-protein_type protease I-protein_type in O eukaryotic B-taxonomy_domain cells O , O and O its O assembly O is O highly O organized O . O By O contrast O , O the O prosegments B-structure_element of O β B-protein subunits I-protein are O dispensable O for O archaeal B-taxonomy_domain proteasome B-complex_assembly assembly O , O at O least O when O heterologously B-experimental_method expressed I-experimental_method in O Escherichia B-species coli I-species . O Here O we O have O described O the O atomic B-evidence structures I-evidence of O various O β5 B-mutant - I-mutant T1A I-mutant mutants O , O which O allowed O for O the O first O time O visualization O of O the O residual O β5 B-protein propeptide B-structure_element . O From O these O data O we O conclude O that O only O the O positioning O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Thr1 B-residue_name_number as O well O as O the O integrity O of O the O proteasomal O active B-site site I-site are O required O for O autolysis B-ptm . O The O propeptide B-structure_element needs O some O anchoring O in O the O substrate B-site - I-site binding I-site channel I-site to O properly O position O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ), I-residue_name_number but O this O seems O to O be O independent O of O the O orientation O of O residue O (- B-residue_number 2 I-residue_number ). I-residue_number Lys33NH2 B-residue_name_number is O expected O to O act O as O the O proton O acceptor O during O autocatalytic B-ptm removal I-ptm of O the O propeptides B-structure_element , O as O well O as O during O substrate O proteolysis O , O while O Asp17Oδ B-residue_name_number orients O Lys33NH2 B-residue_name_number and O makes O it O more O prone O to O protonation O by O raising O its O pKa O ( O hydrogen B-bond_interaction bond I-bond_interaction distance O : O Lys33NH3 B-residue_name_number +– O Asp17Oδ B-residue_name_number : O 2 O . O 9 O Å O ). O Furthermore O , O opening O of O the O β O - O lactone O compound O omuralide B-chemical by O Thr1 B-residue_name_number creates O a O C3 O - O hydroxyl O group O , O whose O proton O originates O from O Thr1NH3 B-residue_name_number +. O By O acting O as O a O proton O donor O during O catalysis O , O the O Thr1 B-residue_name_number N O terminus O may O also O favour O cleavage O of O substrate O peptide O bonds O ( O Fig O . O 3d O ). O During O autolysis B-ptm the O Thr1 B-residue_name_number N O terminus O is O engaged O in O a O hydroxyoxazolidine O ring O intermediate O ( O Fig O . O 3d O ), O which O is O unstable O and O short O - O lived O . O The O mutation B-experimental_method D166N B-mutant lowers O the O pKa O of O Thr1N B-residue_name_number , O which O is O thus O more O likely O to O exist O in O the O uncharged O deprotonated O state O ( O Thr1NH2 B-residue_name_number ). O We O also O observed O slightly O lower O affinity O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state yCP B-complex_assembly for O the O Food O and O Drug O Administration O - O approved O proteasome B-complex_assembly inhibitors O bortezomib B-chemical and O carfilzomib B-chemical . O Thr1 B-residue_name_number is O well O anchored O in O the O active B-site site I-site by O hydrophobic B-bond_interaction interactions I-bond_interaction of O its O Cγ O methyl O group O with O Ala46 B-residue_name_number ( O Cβ O ), O Lys33 B-residue_name_number ( O carbon O side O chain O ) O and O Thr3 B-residue_name_number ( O Cγ O ). O In O contrast O to O Thr1 B-residue_name_number , O the O hydroxyl O group O of O Ser1 B-residue_name_number occupies O the O position O of O the O Thr1 B-residue_name_number methyl O side O chain O in O the O WT B-protein_state enzyme B-complex_assembly , O which O requires O its O reorientation O relative O to O the O substrate O to O allow O cleavage O ( O Fig O . O 4g O , O h O ). O Notably O , O in O the O threonine B-protein_type aspartase I-protein_type Taspase1 B-protein , O mutation B-experimental_method of O the O active B-site - I-site site I-site Thr234 B-residue_name_number to O Ser B-residue_name also O places O the O side O chain O in O the O position O of O the O methyl O group O of O Thr234 B-residue_name_number in O the O WT B-protein_state , O thereby O reducing O catalytic O activity O . O Only O the O residues O (- B-residue_range 5 I-residue_range ) I-residue_range to I-residue_range (- I-residue_range 1 I-residue_range ) I-residue_range of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element are O displayed O . O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O is O hydrogen B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O (∼ O 2 O . O 8 O Å O ; O black O dashed O line O ). O Mutations B-experimental_method of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number and O their O influence O on O propeptide B-structure_element conformation O and O autolysis B-ptm . O ( O a O ) O Hydrogen B-site - I-site bonding I-site network I-site at O the O mature B-protein_state WT B-protein_state β5 B-protein proteasomal O active B-site site I-site ( O dotted O lines O ). O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state active B-site site I-site . O Note O , O the O strong O interaction O with O the O water B-chemical molecule O causes O a O minor O shift O of O Thr1 B-residue_name_number , O while O all O other O active B-site - I-site site I-site residues I-site remain O in O place O . O Notably O , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number does O not O occupy O the O S1 B-site pocket I-site formed O by O Met45 B-residue_name_number , O similar O to O what O was O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state . O ( O f O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state active B-site sites I-site illustrates O the O different O orientations O of O the O hydroxyl O group O of O Thr1 B-residue_name_number and O the O thiol O side O chain O of O Cys1 B-residue_name_number . O ( O g O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state active B-site sites I-site reveals O different O orientations O of O the O hydroxyl O groups O of O Thr1 B-residue_name_number and O Ser1 B-residue_name_number , O respectively O . O A O recent O survey O of O bromodomains B-structure_element ( O BDs B-structure_element ) O demonstrates O that O only O one O BD B-structure_element associates O very O weakly O with O a O crotonylated B-protein_state peptide O , O however O it O binds O more O tightly O to O acetylated B-protein_state peptides O , O inferring O that O bromodomains B-structure_element do O not O possess O physiologically O relevant O crotonyllysine B-residue_name binding O activity O . O To O elucidate O the O molecular O basis O for O recognition O of O the O H3K9cr B-protein_type mark O , O we O obtained O a O crystal B-evidence structure I-evidence of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element in B-protein_state complex I-protein_state with I-protein_state H3K9cr5 B-chemical - I-chemical 13 I-chemical ( O residues O 5 B-residue_range – I-residue_range 13 I-residue_range of O H3 B-protein_type ) O peptide O ( O Fig O . O 1 O , O Supplementary O Results O , O Supplementary O Fig O . O 1 O and O Supplementary O Table O 1 O ). O The O H3K9cr B-protein_type peptide O lays O in O an O extended B-protein_state conformation I-protein_state in O an O orientation O orthogonal O to O the O β B-structure_element strands I-structure_element and O is O stabilized O through O an O extensive O network O of O direct O and O water B-chemical - O mediated O hydrogen B-bond_interaction bonds I-bond_interaction and O a O salt B-bond_interaction bridge I-bond_interaction ( O Fig O . O 1c O ). O The O hydroxyl O group O of O Thr61 B-residue_name_number also O participates O in O a O hydrogen B-bond_interaction bond I-bond_interaction with O the O amide O nitrogen O of O the O K9cr B-ptm side O chain O ( O Fig O . O 1d O ). O To O determine O whether O H3K9cr B-protein_type is O present O in O yeast B-taxonomy_domain , O we O generated O whole B-experimental_method cell I-experimental_method extracts I-experimental_method from O logarithmically O growing O yeast B-taxonomy_domain cells O and O subjected O them O to O Western B-experimental_method blot I-experimental_method analysis I-experimental_method using O antibodies O directed O towards O H3K9cr B-protein_type , O H3K9ac B-protein_type and O H3 B-protein_type ( O Fig O . O 2a O , O b O , O Supplementary O Fig O . O 3 O and O Supplementary O Table O 2 O ). O We O next O asked O if O H3K9cr B-protein_type is O regulated O by O the O actions O of O histone B-protein_type acetyltransferases I-protein_type ( O HATs B-protein_type ) O and O histone B-protein_type deacetylases I-protein_type ( O HDACs B-protein_type ). O Unlike O the O YEATS B-structure_element domain I-structure_element , O a O known O acetyllysine B-protein_type reader I-protein_type , O bromodomain B-structure_element , O does O not O recognize O crotonyllysine B-residue_name . O The O unique O and O previously O unobserved O aromatic O - O amide O / O aliphatic O - O aromatic O π B-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction stacking I-bond_interaction mechanism O facilitates O the O specific O recognition O of O the O crotonyl B-chemical moiety O . O ( O d O ) O The O π B-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction π I-bond_interaction stacking I-bond_interaction mechanism O involving O the O alkene O moiety O of O crotonyllysine B-residue_name . O H3K9cr B-protein_type is O a O selective O target O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element ( O a O , O b O ) O Western B-experimental_method blot I-experimental_method analysis O comparing O the O levels O of O H3K9cr B-protein_type and O H3K9ac B-protein_type in O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O HAT B-protein_type deletion O , O or O HDAC B-protein_type deletion B-experimental_method yeast B-taxonomy_domain strains O . O Structure B-evidence of O the O GAT B-structure_element domain O of O the O endosomal O adapter B-protein_type protein I-protein_type Tom1 B-protein Analyzed O by O CS B-experimental_method - I-experimental_method Rosetta I-experimental_method , O Protein B-experimental_method Structure I-experimental_method Validation I-experimental_method Server I-experimental_method ( O PSVS B-experimental_method ), O NMRPipe B-experimental_method , O NMRDraw B-experimental_method , O and O PyMol O Experimental O factors O Recombinant O human B-species Tom1 B-protein GAT B-structure_element domain O was O purified O to O homogeneity O before O use O Experimental O features O Solution B-evidence structure I-evidence of O Tom1 B-protein GAT B-structure_element was O determined O from O NMR B-experimental_method chemical B-evidence shift I-evidence data O Data O source O location O Virginia O and O Colorado O , O United O States O . O The O Tom1 B-protein GAT B-structure_element structural B-evidence restraints I-evidence yielded O ten O helical O structures B-evidence ( O Fig O . O 2A O , O B O ) O with O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O of O 0 O . O 9 O Å O for O backbone O and O 1 O . O 3 O Å O for O all O heavy O atoms O ( O Table O 1 O ) O and O estimated O the O presence O of O three O helices O spanning O residues O Q216 B-residue_range - I-residue_range E240 I-residue_range ( O α B-structure_element - I-structure_element helix I-structure_element 1 I-structure_element ), O P248 B-residue_range - I-residue_range Q274 I-residue_range ( O α B-structure_element - I-structure_element helix I-structure_element 2 I-structure_element ), O and O E278 B-residue_range - I-residue_range T306 I-residue_range ( O α B-structure_element - I-structure_element helix I-structure_element 3 I-structure_element ). O Unlike O ubiquitin B-chemical binding O , O data O suggest O that O conformational O changes O of O the O Tom1 B-protein GAT B-structure_element α B-structure_element - I-structure_element helices I-structure_element 1 I-structure_element and I-structure_element 2 I-structure_element occur O upon O Tollip B-protein TBD B-structure_element binding O ( O Fig O . O 3A O , O B O ). O NMR B-experimental_method structural B-evidence statistics I-evidence for O lowest O energy O conformers O of O Tom1 B-protein GAT B-structure_element using O PSVS B-experimental_method . O The O dimer B-oligomeric_state is O dissociated O to O monomers B-oligomeric_state by O physiological O levels O of O CO B-chemical , O suggesting O that O PGRMC1 B-protein serves O as O a O CO B-chemical - O sensitive O molecular O switch O regulating O cancer O cell O proliferation O . O While O the O overall O fold O of O PGRMC1 B-protein is O similar O to O that O of O canonical O cytochrome B-protein_type b5 I-protein_type , O their O haem B-chemical irons O are O coordinated O differently O . O Our O structural B-evidence data I-evidence revealed O that O Tyr164 B-residue_name_number and O a O few O other O residues O such O as O Tyr107 B-residue_name_number and O Lys163 B-residue_name_number are O in O fact O hydrogen B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O haem B-chemical propionates O . O When O chemical B-evidence shifts I-evidence of O apo B-protein_state - O and O haem B-protein_state - I-protein_state bound I-protein_state forms O of O PGMRC1 B-protein were O compared O , O some O amino O acid O residues O close O to O those O which O disappeared O because O of O the O paramagnetic O relaxation O effect O of O haem B-chemical exhibit O notable O chemical O shifts O ( O Supplementary O Fig O . O 6a O , O b O ; O dark O yellow O ). O Similarly O , O the O C129S B-mutant mutant B-protein_state of O PGRMC1 B-protein converted O from O monomer B-oligomeric_state to O dimer B-oligomeric_state by O binding O to O haem B-chemical ( O Fig O . O 2b O ). O SV B-experimental_method - I-experimental_method AUC I-experimental_method analyses O also O allowed O us O to O examine O the O stability O of O haem B-chemical / O PGRMC1 B-protein dimer B-oligomeric_state . O To O this O end O , O we O used O different O concentrations O ( O 3 O . O 5 O – O 147 O μmol O l O − O 1 O ) O of O haem B-protein_state - I-protein_state bound I-protein_state PGRMC1 B-protein protein O ( O a O . O a O . O 72 B-residue_range – I-residue_range 195 I-residue_range ), O which O were O identical O to O that O used O in O the O crystallographic B-experimental_method analysis I-experimental_method . O We O also O showed O by O haem B-experimental_method titration I-experimental_method experiments I-experimental_method that O haem B-chemical binding O to O PGRMC1 B-protein was O of O low O affinity O with O a O Kd B-evidence value O of O 50 O nmol O l O − O 1 O ; O this O is O comparable O with O that O of O iron B-protein regulatory I-protein protein I-protein 2 I-protein , O which O is O known O to O be O regulated O by O intracellular O levels O of O haem B-chemical ( O Fig O . O 2c O and O Supplementary O Table O 1 O ). O Under O these O circumstances O , O CO B-chemical application O induced O dissociation O of O the O haem B-chemical - O mediated O dimers B-oligomeric_state of O PGRMC1 B-protein to O generate O a O peak O of O monomers B-oligomeric_state ( O Supplementary O Fig O . O 15 O , O lower O panel O ). O This O interaction O was O disrupted O by O the O ruthenium B-chemical - O based O CO B-chemical - O releasing O molecule O , O CORM3 B-chemical , O but O not O by O RuCl3 B-chemical as O a O control O reagent O ( O Fig O . O 4b O ). O To O further O investigate O the O role O of O the O dimerized B-protein_state form O of O PGRMC1 B-protein in O cancer O proliferation O , O we O performed O PGRMC1 B-protein knockdown B-experimental_method - I-experimental_method rescue I-experimental_method experiments I-experimental_method using O FLAG B-protein_state - I-protein_state tagged I-protein_state wild B-protein_state - I-protein_state type I-protein_state and O Y113F B-mutant PGRMC1 B-protein expression B-experimental_method vectors I-experimental_method , O in O which O silent B-experimental_method mutations I-experimental_method were O introduced B-experimental_method into O the O nucleotide O sequence O targeted O by O shRNA B-chemical ( O Fig O . O 5a O ). O While O proliferation O of O HCT116 O cells O was O not O affected O by O knocking B-experimental_method down I-experimental_method PGRMC1 B-protein , O PGRMC1 B-mutant - I-mutant KD I-mutant cells O were O more O sensitive O to O the O EGFR B-protein_type inhibitor O erlotinib B-chemical than O control O HCT116 O cells O , O and O the O knockdown O effect O was O reversed O by O co B-experimental_method - I-experimental_method expression I-experimental_method of O shRNA B-protein_state - I-protein_state resistant I-protein_state wild B-protein_state - I-protein_state type I-protein_state PGRMC1 B-protein but O not O of O the O Y113F B-mutant mutant B-protein_state ( O Fig O . O 5b O ). O Interaction O of O PGRMC1 B-protein dimer B-oligomeric_state with O cytochromes B-protein_type P450 I-protein_type We O showed O that O the O haem B-chemical - O mediated O dimer B-oligomeric_state of O PGRMC1 B-protein enables O interaction O with O different O subclasses O of O cytochromes B-protein_type P450 I-protein_type ( O CYP B-protein_type ) O ( O Fig O . O 6 O ). O Thus O , O HO B-protein - I-protein 1 I-protein induction O in O cancer O cells O may O inhibit O the O haem B-chemical - O mediated O dimerization B-oligomeric_state of O PGRMC1 B-protein through O the O production O of O CO B-chemical and O thereby O suppress O tumour O progression O . O ( O b O ) O Haem B-chemical coordination B-bond_interaction of O PGRMC1 B-protein with O Tyr113 B-residue_name_number . O ( O a O ) O UV B-evidence - I-evidence visible I-evidence absorption I-evidence spectra I-evidence of O PGRMC1 B-protein ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ). O Measurements O were O performed O in O the O presence B-protein_state of I-protein_state the O oxidized B-protein_state form O of O haem B-chemical ( O ferric B-protein_state ), O the O reduced B-protein_state form O of O haem B-chemical ( O ferrous B-protein_state ) O and O the O reduced B-protein_state form O of O haem B-chemical plus O CO B-chemical gas O ( O ferrous B-protein_state + O CO B-chemical ). O ( O c O ) O Gel B-experimental_method - I-experimental_method filtration I-experimental_method chromatography I-experimental_method analyses O of O PGRMC1 B-protein ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ) O wild B-protein_state - I-protein_state type I-protein_state ( O wt B-protein_state ) O and O the O Y113F B-mutant or O C129S B-mutant mutant B-protein_state in O the O presence B-protein_state or O absence B-protein_state of I-protein_state haem B-chemical , O dithionite B-chemical and O / O or O CO B-chemical . O ( O d O ) O Transition O model O for O structural O regulation O of O PGRMC1 B-protein in O response O to O haem B-chemical and O CO B-chemical . O Input O and O bound O proteins O were O detected O by O Western B-experimental_method blotting I-experimental_method . O ( O b O ) O In B-experimental_method vitro I-experimental_method binding I-experimental_method assay I-experimental_method was O performed O as O in O ( O a O ) O using O haem B-protein_state - I-protein_state bound I-protein_state FLAG O - O PGRMC1 B-protein wt B-protein_state ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ) O and O purified O EGFR B-protein_type with O or O without O treatment O of O RuCl3 B-chemical and O CORM3 B-chemical . O Co B-experimental_method - I-experimental_method immunoprecipitated I-experimental_method proteins O ( O FLAG O - O PGRMC1 B-protein , O endogenous B-protein_state PGRMC1 B-protein and O EGFR B-protein_type ) O were O detected O with O Western B-experimental_method blotting I-experimental_method by O using O anti O - O PGRMC1 B-protein or O anti O - O EGFR B-protein_type antibody O . O ( O f O ) O HCT116 O cells O expressing O control O shRNA B-chemical or O those O knocking B-experimental_method down I-experimental_method PGRMC1 B-protein ( O PGRMC1 B-mutant - I-mutant KD I-mutant ) O were O treated O with O EGF B-protein_type or O left O untreated O , O and O components O of O the O EGFR B-protein_type signaling O pathway O were O detected O by O Western B-experimental_method blotting I-experimental_method . O Haem B-chemical - O dependent O PGRMC1 B-protein dimerization B-oligomeric_state enhances O tumour O chemoresistance O through O interaction O with O cytochromes B-protein_type P450 I-protein_type . O Doxorubicin B-chemical was O incubated B-experimental_method with O HCT116 O cells O expressing O control O shRNA B-chemical or O shPGRMC1 B-chemical ( O PGRMC1 B-mutant - I-mutant KD I-mutant ), O and O the O doxorubicinol B-chemical / O doxorubicin B-chemical ratios O in O cell O pellets O were O determined O using O LC B-experimental_method - I-experimental_method MS I-experimental_method . O of O four O separate O experiments O . O ** O P B-evidence < O 0 O . O 01 O versus O control O using O unpaired O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method - I-experimental_method test I-experimental_method . O ( O e O ) O Indicated O amounts O of O doxorubicin B-chemical were O added O to O HCT116 O ( O control O ) O cells O , O PGRMC1 B-mutant - I-mutant KD I-mutant cells O , O or O PGRMC1 B-mutant - I-mutant KD I-mutant cells O expressing O shRNA B-protein_state - I-protein_state resistant I-protein_state full B-protein_state - I-protein_state length I-protein_state PGRMC1 B-protein wt B-protein_state or O Y113F B-mutant , O and O cell O viability O was O examined O by O MTT B-experimental_method assay I-experimental_method . O PGRMC1 O proteins O exhibit O haem O - O dependent O dimerization B-oligomeric_state in O solution O . O T O cells O perform O an O essential O role O in O adaptive O immunity O by O interrogating O the O host O proteome O for O anomalies O , O classically O by O recognizing O peptides O bound O in O major B-complex_assembly histocompatibility I-complex_assembly ( O MHC B-complex_assembly ) O molecules O at O the O cell O surface O . O Structures B-evidence of O unligated B-protein_state and O ligated B-protein_state TCRs B-complex_assembly have O shown O that O the O TCR B-complex_assembly complementarity B-structure_element determining I-structure_element region I-structure_element ( O CDR B-structure_element ) O loops B-structure_element can O be O flexible O , O perhaps O enabling O peptide O binding O using O different O loop B-structure_element conformations O . O Here O , O the O A2 B-chemical - I-chemical RQFGPDFPTI I-chemical tetramer B-oligomeric_state stained O 1E6 O with O the O greatest O MFI O , O gradually O decreasing O to O the O weakest O tetramers B-oligomeric_state : O A2 B-chemical - I-chemical MVWGPDPLYV I-chemical and O - O YLGGPDFPTI B-chemical . O The O range O of O Tm B-evidence was O between O 49 O . O 4 O ° O C O ( O RQFGPDWIVA B-chemical ) O and O 60 O . O 3 O ° O C O ( O YQFGPDFPIA B-chemical ), O with O an O average O approximately O 55 O ° O C O , O similar O to O our O previous O findings O . O In O accordance O with O this O trend O , O the O 1E6 B-complex_assembly TCR I-complex_assembly bound B-protein_state the O natural O preproinsulin B-protein peptide O , O ALWGPDPAAA B-chemical , O with O the O weakest O affinity B-evidence currently O published O for O a O human B-species CD8 O + O T O cell O – O derived O TCR B-complex_assembly with O a O biologically O relevant O ligand O ( O KD B-evidence > O 200 O μM O ; O KD B-evidence , O equilibrium B-evidence binding I-evidence constant I-evidence ). O Surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method ( O SPR B-experimental_method ) O analysis O of O the O 1E6 B-complex_assembly TCR I-complex_assembly – O pMHC B-complex_assembly interaction O for O all O 7 O APLs B-chemical ( O Figure O 2 O , O A O – O H O ) O demonstrated O that O stronger O binding B-evidence affinity I-evidence ( O represented O as O ΔG B-evidence °, I-evidence kcal O / O mol O ) O correlated O well O with O the O EC50 B-evidence values O ( O peptide O concentration O required O to O reach O half O - O maximal O 1E6 O T O cell O killing O ) O for O each O ligand O , O demonstrated O by O a O Pearson B-experimental_method ’ I-experimental_method s I-experimental_method correlation I-experimental_method analysis I-experimental_method value O of O 0 O . O 8 O ( O P O = O 0 O . O 01 O ) O ( O Figure O 2I O ). O It O should O be O noted O that O this O correlation O , O although O consistent O with O the O T O cell O killing O experiments O , O uses O only O approximate O affinities B-evidence calculated O for O the O 2 O weakest O ligands O . O Finally O , O these O data O demonstrate O the O largest O range O of O binding B-evidence affinities I-evidence reported O for O a O natural O , O endogenous B-protein_state human B-species TCR B-complex_assembly of O more O than O 3 O logs O of O magnitude O ( O A2 B-chemical - I-chemical MVWGPDPLYV I-chemical vs O . O A2 B-chemical - I-chemical RQFGPDFPTI I-chemical ). O The O 1E6 B-complex_assembly TCR I-complex_assembly uses O a O consensus O binding O mode O to O engage O multiple O APLs B-chemical . O Our O previous O structure B-evidence of O the O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly ALWGPDPAAA I-complex_assembly complex O demonstrated O a O limited O binding B-site footprint I-site between O the O TCR B-complex_assembly and O pMHC B-complex_assembly . O The O surface B-evidence complementarity I-evidence values I-evidence ( O 0 O . O 52 O – O 0 O . O 7 O ) O correlated O slightly O with O affinity B-evidence ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence = O 0 O . O 7 O , O P B-evidence = O 0 O . O 05 O ) O but O could O not O explain O all O differences O in O binding O ( O Figure O 3A O and O Table O 2 O ). O The O TCR B-complex_assembly CDR B-structure_element loops I-structure_element were O in O a O very O similar O position O in O all O complexes O , O apart O from O some O slight O deviations O in O the O TCR B-complex_assembly β B-structure_element - I-structure_element chain I-structure_element ( O Figure O 3B O ); O the O peptides O were O all O presented O in O a O similar O conformation O ( O Figure O 3C O ); O and O there O was O minimal O variation O in O crossing O angles O of O the O TCR B-complex_assembly ( O 42 O . O 3 O °– O 45 O . O 6 O °) O ( O Figure O 3D O ). O Focused O hotspot O binding O around O a O conserved B-protein_state GPD B-structure_element motif I-structure_element enables O the O 1E6 B-complex_assembly TCR I-complex_assembly to O tolerate O peptide O degeneracy O . O In O addition O to O changes O between O the O TCR B-complex_assembly and O peptide O component O , O we O also O observed O that O different O APLs B-chemical had O different O knock O - O on O effects O between O the O TCR B-complex_assembly and O MHC B-complex_assembly . O Generally O , O the O weaker O - O affinity B-evidence APLs B-chemical made O fewer O contacts O with O the O MHC B-complex_assembly surface O ( O 27 O – O 29 O interactions O ) O compared O with O the O stronger O - O affinity B-evidence APLs B-chemical ( O 29 O – O 35 O contacts O ), O consistent O with O a O better O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence value I-evidence ( O 0 O . O 55 O ) O compared O with O TCR B-complex_assembly - O peptide O interactions O versus O affinity B-evidence ( O 0 O . O 045 O ). O For O example O , O the O 1E6 B-complex_assembly TCR I-complex_assembly bound B-protein_state to I-protein_state A2 B-chemical - I-chemical RQWGPDPAAV I-chemical with O the O third O strongest O affinity B-evidence ( O KD B-evidence = O 7 O . O 8 O μM O ) O but O made O fewer O contacts O than O with O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical ( O KD B-evidence = O ~ O 208 O μM O ) O ( O Table O 2 O ). O Thus O , O we O performed O an O in O - O depth O thermodynamic B-experimental_method analysis I-experimental_method of O 6 O of O the O ligands O under O investigation O ( O Figure O 8 O and O Supplemental O Table O 3 O ). O However O , O there O was O a O clear O switch O in O entropy B-evidence between O the O weaker O - O affinity B-evidence and O stronger O - O affinity B-evidence ligands O , O indicated O by O a O strong O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence value I-evidence between O entropy B-evidence and O affinity B-evidence ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence value I-evidence 0 O . O 93 O , O P B-evidence = O 0 O . O 007 O ). O Conversely O , O the O stronger O - O affinity B-evidence ligands O A2 B-chemical - I-chemical RQWGPDPAAV I-chemical ( O KD B-evidence = O 7 O . O 8 O μM O ), O A2 B-chemical - I-chemical YQFGPDFPIA I-chemical ( O KD B-evidence = O 7 O . O 4 O μM O ), O and O A2 B-chemical - I-chemical RQFGPDFPTI I-chemical ( O KD B-evidence = O 0 O . O 5 O μM O ) O exhibited O favorable O entropy B-evidence ( O TΔS B-evidence ° I-evidence = O 2 O . O 2 O to O 14 O . O 9 O kcal O / O mol O ), O indicating O an O order O - O to O - O disorder O change O during O binding O , O possibly O through O the O expulsion O of O ordered O water O molecules O . O The O binding B-evidence affinity I-evidence of O the O 1E6 B-complex_assembly TCR I-complex_assembly interaction O with O A2 B-chemical - I-chemical RQFGPDWIVA I-chemical is O considerably O higher O than O with O the O disease O - O implicated O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical sequence O ( O KD B-evidence = O 44 O . O 4 O μM O and O KD B-evidence > O 200 O μM O , O respectively O ), O highlighting O how O a O pathogen O - O derived O sequence O might O be O capable O of O priming O a O 1E6 O - O like O T O cell O . O Focused O binding O around O a O minimal O peptide O motif O has O also O been O implicated O as O an O alternative O mechanism O enabling O TCR B-complex_assembly cross O - O reactivity O . O Ligand O engagement O is O dominated O by O peptide O interactions O , O but O hotspot O - O like O interactions O with O the O central O GPD B-structure_element motif I-structure_element enable O the O 1E6 B-complex_assembly TCR I-complex_assembly to O tolerate O peptide O residues O that O vary O outside O of O this O region O , O explaining O how O T O cells O expressing O this O TCR B-complex_assembly may O cross O - O react O with O a O large O number O of O different O peptides O . O These O data O also O explain O our O previous O findings O that O alteration O of O the O anchor B-structure_element residue I-structure_element at O peptide O position O 2 B-residue_number ( O Leu B-mutant - I-mutant Gln I-mutant ) O has O a O direct O effect O on O 1E6 B-evidence TCR I-evidence binding I-evidence affinity I-evidence because O our O structural B-experimental_method analysis I-experimental_method demonstrated O that O 1E6 O made O 3 O additional O bonds O with O A2 B-chemical - I-chemical AQWGPDPAAA I-chemical compared O with O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical , O consistent O with O the O > O 3 O - O fold O stronger O binding B-evidence affinity I-evidence . O Further O experiments O will O be O required O to O determine O whether O any O naturally O presented O , O human B-species pathogen O – O derived O peptides O act O as O active O ligands O for O 1E6 O , O but O our O work O presented O here O demonstrates O that O it O is O at O least O feasible O for O an O autoimmune O TCR B-complex_assembly to O bind O to O a O different O peptide O sequence O that O could O be O present O in O a O pathogen O proteome O with O substantially O higher O affinity B-evidence and O potency O than O the O interaction O it O might O use O to O attack O self O - O tissue O . O 3D B-experimental_method and I-experimental_method 2D I-experimental_method binding I-experimental_method analysis I-experimental_method of O the O 1E6 B-complex_assembly TCR I-complex_assembly with O A2 B-chemical - I-chemical ALW I-chemical and O the O APLs B-chemical . O The O equilibrium B-evidence binding I-evidence constant I-evidence ( O KD B-evidence ) O values O were O calculated O using O a O nonlinear B-experimental_method curve I-experimental_method fit I-experimental_method ( O y O = O [ O P1x O ]/[ O P2 O + O X O ]). O All O unligated B-protein_state pMHCs B-complex_assembly are O shown O as O light O green O illustrations O . O Boxes O show O total O contacts O between O the O 1E6 B-complex_assembly TCR I-complex_assembly and O these O key O residues O ( O green O boxes O are O MHC B-complex_assembly residues O ; O white O boxes O are O TCR B-complex_assembly residues O ). O We O determined B-experimental_method the O crystal B-evidence structure I-evidence of O an O oligomerization B-protein_state - I-protein_state impaired I-protein_state Irga6 B-protein mutant B-protein_state bound B-protein_state to I-protein_state a O non O - O hydrolyzable O GTP B-chemical analog O . O This O study O contributes O important O insights O into O the O assembly O and O catalytic O mechanisms O of O IRG B-protein_type proteins O as O prerequisite O to O understand O their O anti O - O microbial O action O . O Mutagenesis B-experimental_method of O the O contact B-site surfaces I-site suggests O that O this O """" O backside B-site """" O interface B-site is O not O required O for O GTP B-chemical - O dependent O oligomerization O or O cooperative O hydrolysis O , O despite O an O earlier O suggestion O to O the O contrary O . O For O several O of O these O proteins O , O formation O of O the O G B-site interface I-site was O shown O to O trigger O GTP B-chemical hydrolysis O by O inducing O rearrangements O of O catalytic O residues O in O cis O . O However O , O the O crystal B-evidence structure I-evidence of O Irga6 B-protein in O the O presence B-protein_state of I-protein_state the O non O - O hydrolyzable O GTP B-chemical analogue O 5 B-chemical '- I-chemical guanylyl I-chemical imidodiphosphate I-chemical ( O GMPPNP B-chemical ) O showed O only O subtle O differences O relative O to O the O apo B-protein_state or O GDP B-protein_state - I-protein_state bound I-protein_state protein O and O did O not O reveal O a O new O dimer B-site interface I-site associated O with O the O GTPase B-structure_element domain I-structure_element . O Structure B-evidence of O the O Irga6 B-protein dimer B-oligomeric_state . O b O Ribbon O - O type O representation O of O the O Irga6 B-protein dimer B-oligomeric_state . O Irga6 B-protein immunity B-protein - I-protein related I-protein GTPase I-protein 6 I-protein Within O the O asymmetric O unit O , O six O molecules O dimerize B-oligomeric_state via O the O symmetric O backside B-site dimer I-site interface I-site ( O buried O surface O area O 930 O Å2 O ), O and O the O remaining O seventh O molecule O forms O the O same O type O of O interaction O with O its O symmetry O mate O of O the O adjacent O asymmetric O unit O ( O Additional O file O 1 O : O Figure O S2a O , O b O , O Figure O S3 O ). O In O turn O , O E106 B-residue_name_number of O switch B-site I I-site reorients O towards O the O nucleotide B-chemical and O now O participates O in O the O coordination B-bond_interaction of I-bond_interaction the O Mg2 B-chemical + I-chemical ion O ( O Fig O . O 1e O , O Additional O file O 1 O : O Figure O S4 O ). O The O following O structures B-evidence are O shown O in O cylinder O representations O , O in O similar O orientations O of O their O GTPase B-structure_element domains I-structure_element : O a O the O GMPPNP B-protein_state - I-protein_state bound I-protein_state Irga6 B-protein dimer B-oligomeric_state , O b O the O GDP O - O AlF4 O -- O bound O dynamin B-protein 1 I-protein GTPase B-structure_element - I-structure_element minimal I-structure_element BSE O construct O [ O pdb O 2X2E O ], O c O the O GDP B-protein_state - I-protein_state bound I-protein_state atlastin B-protein 1 I-protein dimer B-oligomeric_state [ O pdb O 3Q5E O ], O d O the O GDP B-protein_state - I-protein_state AlF3 I-protein_state - I-protein_state bound I-protein_state GBP1 B-protein GTPase B-structure_element domain I-structure_element dimer B-oligomeric_state [ O pdb O 2B92 O ], O e O the O BDLP B-protein_type dimer B-oligomeric_state bound B-protein_state to I-protein_state GDP B-chemical [ O pdb O 2J68 O ] O and O f O the O GTP B-protein_state - I-protein_state bound I-protein_state GIMAP2 B-protein dimer B-oligomeric_state [ O pdb O 2XTN O ]. O Nucleotide O , O Mg2 B-chemical + I-chemical ( O green O ) O and O AlF4 O - O are O shown O in O sphere O representation O , O the O buried O interface B-site sizes O per O molecule O are O indicated O on O the O right O . O For O example O , O for O dynamin B-protein_type and O atlastin B-protein_type , O it O was O shown O that O GTP B-chemical binding O and O / O or O hydrolysis O leads O to O dimerization O of O the O GTPase B-structure_element domains I-structure_element and O to O the O reorientation O of O the O adjacent O helical B-structure_element domains I-structure_element . O Only O one O of O the O seven O Irga6 B-protein molecules O in O the O asymmetric O unit O formed O this O contact O pointing O to O a O low O affinity O interaction O via O the O G B-site interface I-site , O which O is O in O agreement O with O its O small O size O . O Based O on O phylogenetic B-experimental_method and I-experimental_method structural I-experimental_method analysis I-experimental_method , O these O observations O suggest O that O dynamin B-protein_type and O septin B-protein_type superfamilies O are O derived O from O a O common O ancestral O membrane B-protein_type - I-protein_type associated I-protein_type GTPase I-protein_type that O featured O a O GTP B-chemical - O dependent O parallel B-protein_state dimerization O mode O . O During O dimerization O of O GBP1 B-protein , O an O arginine B-structure_element finger I-structure_element from O the O P B-structure_element loop I-structure_element reorients O towards O the O nucleotide B-chemical in O cis O to O trigger O GTP B-chemical hydrolysis O . O