The O human B-species gut O microbiota B-taxonomy_domain influences O the O course O of O human B-species development O and O health O , O playing O key O roles O in O immune O stimulation O , O intestinal O cell O proliferation O , O and O metabolic O balance O . O The O ability O to O acquire O energy O from O carbohydrates B-chemical of O dietary O or O host O origin O is O central O to O the O adaptation O of O human B-species gut O bacterial B-taxonomy_domain species O to O their O niche O . O Xyloglucan B-chemical and O the O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ). O ( O A O ) O Representative O structures B-evidence of O common O xyloglucans B-chemical using O the O Consortium O for O Functional O Glycomics O Symbol O Nomenclature O ( O http O :// O www O . O functionalglycomics O . O org O / O static O / O consortium O / O Nomenclature O . O shtml O ). O Whereas O our O previous O study O focused O on O the O characterization O of O the O linkage O specificity O of O these O GHs B-protein_type , O a O key O outstanding O question O regarding O this O locus O is O how O XyG B-chemical recognition O is O mediated O at O the O cell O surface O . O Here O , O the O SGBPs B-protein_type very O likely O work O in O concert O with O the O cell B-protein_type - I-protein_type surface I-protein_type - I-protein_type localized I-protein_type endo I-protein_type - I-protein_type xyloglucanase I-protein_type B B-species . I-species ovatus I-species GH5 B-protein ( O BoGH5 B-protein ) O to O recruit O and O cleave O XyG B-chemical for O subsequent O periplasmic O import O via O the O SusC B-protein_type - I-protein_type like I-protein_type TBDT I-protein_type of O the O XyGUL B-gene ( O Fig O . O 1B O and O C O ). O In O our O initial O study O focused O on O the O functional O characterization O of O the O glycoside B-protein_type hydrolases I-protein_type of O the O XyGUL B-gene , O we O reported O preliminary O affinity B-experimental_method PAGE I-experimental_method and O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ) O data O indicating O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O competent O xyloglucan B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O affinity B-evidence constant I-evidence [ O Ka B-evidence ] O values O of O 3 O . O 74 O × O 105 O M O − O 1 O and O 4 O . O 98 O × O 104 O M O − O 1 O , O respectively O [ O 23 O ]). O Together O , O these O results O highlight O the O high O specificities O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein for O XyG B-chemical , O which O is O concordant O with O their O association O with O XyG B-protein_type - I-protein_type specific I-protein_type GHs I-protein_type in O the O XyGUL B-gene , O as O well O as O transcriptomic O analysis O indicating O that O B B-species . I-species ovatus I-species has O discrete O PUL B-gene for O MLG B-chemical , O GM B-chemical , O and O GGM B-chemical ( O 11 O ). O The O apo B-protein_state structure B-evidence is O color O ramped O from O blue O to O red O . O The O approximate O length O of O each O glycan B-site - I-site binding I-site site I-site is O displayed O , O colored O to O match O the O protein B-evidence structures I-evidence . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein A I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O Potential O hydrogen B-bond_interaction - I-bond_interaction bonding I-bond_interaction interactions I-bond_interaction are O shown O as O dashed O lines O , O and O the O distance O is O shown O in O angstroms O . O Dissection O of O the O individual O contribution O of O these O residues O reveals O that O the O W82A B-mutant mutant B-protein_state displays O a O significant O 4 O . O 9 O - O fold O decrease O in O the O Ka B-evidence value O for O XyG B-chemical , O while O the O W306A B-mutant substitution B-experimental_method completely O abolishes B-protein_state XyG I-protein_state binding I-protein_state . O Prolines B-residue_name between O domains O are O indicated O as O spheres O . O The O backbone O is O flat O , O with O less O of O the O “ O twisted O - O ribbon O ” O geometry O observed O in O some O cello B-chemical - I-chemical and I-chemical xylogluco I-chemical - I-chemical oligosaccharides I-chemical . O Hoping O to O achieve O a O higher O - O resolution O view O of O the O SGBP B-protein - I-protein B I-protein – O xyloglucan B-chemical interaction O , O we O solved B-experimental_method the O crystal B-evidence structure I-evidence of O the O fused B-mutant CD I-mutant domains I-mutant in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 1 O . O 57 O Å O , O Rwork B-evidence = O 15 O . O 6 O %, O Rfree B-evidence = O 17 O . O 1 O %, O residues O 230 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ). O While O this O may O occur O for O a O number O of O reasons O in O crystal B-evidence structures I-evidence , O it O is O likely O that O the O poor O ligand O density O even O at O higher O resolution O is O due O to O movement O or O multiple O orientations O of O the O sugar B-chemical averaged O throughout O the O lattice O . O The O similarity O of O the O glycan B-chemical specificity O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein presents O an O intriguing O conundrum O regarding O their O individual O roles O in O XyG B-chemical utilization O by O B B-species . I-species ovatus I-species . O The O ΔSGBP B-mutant - I-mutant A I-mutant ( O ΔBacova_02651 B-mutant ) O strain O ( O cf O . O The O specific O glycan B-chemical signal O that O upregulates O BoXyGUL B-gene is O currently O unknown O . O From O our O present O data O , O we O cannot O eliminate O the O possibility O that O the O glycan B-chemical binding O by O SGBP B-protein - I-protein A I-protein enhances O transcriptional O activation O of O the O XyGUL B-gene . O Beyond O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O we O speculated O that O the O catalytically B-protein_state feeble I-protein_state endo B-protein_type - I-protein_type xyloglucanase I-protein_type GH9 B-protein , O which O is O expendable O for O growth O in O the O presence O of O GH5 B-protein , O might O also O play O a O role O in O glycan B-chemical binding O to O the O cell O surface O . O We O hypothesize O that O during O exponential O growth O the O essential O role O of O SGBP B-protein - I-protein A I-protein extends O beyond O glycan B-chemical recognition O , O perhaps O due O to O a O critical O interaction O with O the O TBDT B-protein_type . O A O particularly O understudied O aspect O of O glycan B-chemical utilization O is O the O mechanism O of O import O via O TBDTs B-protein_type ( O SusC B-protein homologs O ) O ( O Fig O . O 1 O ), O which O are O ubiquitous O and O defining O components O of O all O PUL B-gene . O Similarly O , O the O deletion O of O BT1762 B-gene encoding O a O fructan B-protein_type - I-protein_type targeting I-protein_type SusD I-protein_type - I-protein_type like I-protein_type protein I-protein_type in O B B-species . I-species thetaiotaomicron I-species did O not O result O in O a O dramatic O loss O of O growth O on O fructans B-chemical . O Furthermore O , O considering O the O broader O distribution O of O TBDTs B-protein_type in O PUL B-gene lacking O SGBPs B-protein_type ( O sometimes O known O as O carbohydrate B-gene utilization I-gene containing I-gene TBDT I-gene [ I-gene CUT I-gene ] I-gene loci I-gene ; O see O reference O and O reviewed O in O reference O ) O across O bacterial B-taxonomy_domain phyla O , O it O appears O that O the O intimate O biophysical O association O of O these O substrate O - O transport O and O - O binding O proteins O is O the O result O of O specific O evolution O within O the O Bacteroidetes B-taxonomy_domain . O Equally O intriguing O is O the O observation O that O while O SusD B-protein_type - I-protein_type like I-protein_type proteins I-protein_type such O as O SGBP B-protein - I-protein A I-protein share O moderate O primary O and O high O tertiary O structural O conservation O , O the O genes O for O the O SGBPs B-protein_type encoded O immediately O downstream O ( O Fig O . O 1B O [ O sometimes O referred O to O as O “ O susE O positioned O ”]) O encode O glycan B-protein_type - I-protein_type binding I-protein_type lipoproteins I-protein_type with O little O or O no O sequence O or O structural O conservation O , O even O among O syntenic O PUL B-gene that O target O the O same O polysaccharide B-chemical . O Because O the O intestinal O ecosystem O is O a O dense O consortium O of O bacteria B-taxonomy_domain that O must O compete O for O their O nutrients O , O these O multimodular O SGBPs B-protein_type may O reflect O ongoing O evolutionary O experiments O to O enhance O glycan B-chemical uptake O efficiency O . O Whether O organisms O that O express O longer O SGBPs B-protein_type , O extending O further O above O the O cell O surface O toward O the O extracellular O environment O , O are O better O equipped O to O compete O for O available O carbohydrates B-chemical is O presently O unknown O . O Monoclonal O antibodies B-protein_type inhibiting O IL B-protein - I-protein 17A I-protein signaling O have O demonstrated O remarkable O efficacy O , O but O an O oral O therapy O is O still O lacking O . O Tested O in O primary O human B-species cells O , O HAP B-chemical blocked O the O production O of O multiple O inflammatory O cytokines B-protein_type . O These O polypeptides O form O covalent B-protein_state homodimers B-oligomeric_state , O and O IL B-protein - I-protein 17A I-protein and O IL B-protein - I-protein 17F I-protein also O form O an O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17F I-complex_assembly hetereodimer B-oligomeric_state . O In O these O structures B-evidence , O both O IL B-protein - I-protein 17A I-protein and O IL B-protein - I-protein 17F I-protein adopt O a O cysteine B-structure_element - I-structure_element knot I-structure_element fold O with O two O intramolecular O disulfides B-ptm and O two O interchain O disulfide B-ptm bonds I-ptm that O covalently O link O two O monomers B-oligomeric_state . O Identification O of O IL B-protein - I-protein 17A I-protein peptide O inhibitors O Peptides O specifically O binding O to O human B-species IL B-protein - I-protein 17A I-protein were O identified O from O phage B-experimental_method panning I-experimental_method using O cyclic B-experimental_method and I-experimental_method linear I-experimental_method peptide I-experimental_method libraries I-experimental_method ( O Supplementary O Figure O S1 O ). O The O positive O binding O supernatants O were O tested O for O the O ability O to O block O biotinylated B-protein_state IL B-protein - I-protein 17A I-protein signaling O through O IL B-protein - I-protein 17RA I-protein in O an O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17RA I-complex_assembly competition B-experimental_method ELISA I-experimental_method assay I-experimental_method where O unlabeled O IL B-protein - I-protein 17A I-protein was O used O as O positive O control O to O inhibit O biotinylated B-protein_state IL B-protein - I-protein 17A I-protein binding O . O An O alanine B-experimental_method scan I-experimental_method of O peptide B-chemical 2 I-chemical , O an O analogue O of O 1 B-chemical with O a O lysine B-residue_name to O arginine B-residue_name substitution B-experimental_method at O position O 14 B-residue_number , O was O initiated O . O Modifications O at O positions O 2 B-residue_number and O 14 B-residue_number were O shown O to O display O improvement O in O binding B-evidence affinity I-evidence ( O data O not O shown O ). O In O this O work O , O 32 B-chemical – I-chemical 34 I-chemical are O capped B-protein_state by O protective O acetyl O group O and O reflect O the O same O inactivity O as O reported O . O Peptide B-chemical 45 I-chemical , O dimerized B-oligomeric_state via O attachment O of O a O PEG21 B-chemical spacer O at O position O 14 B-residue_number ( O Supplementary O Scheme O S1 O and O Figure O S3 O ), O was O the O most O potent O with O cellular O IC50 B-evidence of O 0 O . O 1 O nM O . O This O significant O improvement O in O antagonism O was O not O seen O in O the O peptide O monomer B-oligomeric_state functionalized O with O a O PEG21 B-chemical group O at O position O 14 B-residue_number as O peptide B-chemical 48 I-chemical had O an O IC50 B-evidence of O 21 O nM O ( O Supplementary O Scheme O S2 O ). O To O further O characterize O the O interaction O of O HAP B-chemical with O IL B-protein - I-protein 17A I-protein , O we O set O out O to O determine O its O in O vitro O binding B-evidence affinity I-evidence , O specificity O and O kinetic B-evidence profile I-evidence using O Surface B-experimental_method Plasmon I-experimental_method Resonance I-experimental_method ( O SPR B-experimental_method ) O methods O ( O Fig O . O 1A O ). O HAP B-chemical blocks O IL B-protein - I-protein 17A I-protein signaling O in O a O human B-species primary O cell O assay O In O patients O , O the O concentration O of O IL B-protein - I-protein 17A I-protein in O psoriatic O lesions O is O reported O to O be O 0 O . O 01 O ng O / O ml O , O well O below O the O EC50 O ( O 5 O – O 10ng O / O ml O ) O of O IL B-protein - I-protein 17A I-protein induced O IL B-protein_type - I-protein_type 8 I-protein_type production O in O vitro O . O It O is O known O that O an O antibody B-protein_type antigen B-structure_element - I-structure_element binding I-structure_element fragment I-structure_element ( O Fab B-structure_element ) O can O be O used O as O crystallization O chaperones O in O crystallizing O difficult O targets O . O Furthermore O , O since O it O binds O to O an O area O far O away O from O that O of O HAP B-chemical ( O see O below O ), O this O Fab B-structure_element should O have O minimum O effects O on O HAP B-chemical binding O conformation O . O Crystals B-evidence of O Fab B-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly ternary O complex O were O obtained O readily O in O crystallization B-experimental_method screens I-experimental_method . O Crystallization B-experimental_method of O IL B-protein - I-protein 17A I-protein and O its O binding O partners O was O accomplished O using O two O forms O of O IL B-protein - I-protein 17A I-protein . O Both O structures B-evidence were O solved O by O molecular B-experimental_method replacement I-experimental_method . O The O C O - O terminal O 8 B-residue_range residues I-residue_range of O the O HAP B-chemical that O are O ordered O in O the O structure B-evidence , O 7ADLWDWIN B-chemical , O form O an O amphipathic B-protein_state α B-structure_element - I-structure_element helix I-structure_element interacting O with O the O second O IL B-protein - I-protein 17A I-protein monomer B-oligomeric_state . O Pro6 B-residue_name_number of O HAP B-chemical makes O a O transition O between O the O N O - O terminal O β B-structure_element - I-structure_element strand I-structure_element and O the O C O - O terminal O α B-structure_element - I-structure_element helix I-structure_element of O HAP B-chemical . O Conformational O changes O in O region B-structure_element I I-structure_element induced O by O HAP B-chemical binding O alone O may O allosterically O affect O IL B-protein - I-protein 17RA I-protein binding O , O but O more O importantly O , O the O α B-structure_element - I-structure_element helix I-structure_element of O HAP B-chemical directly O competes O with O IL B-protein - I-protein 17RA I-protein for O binding O to O IL B-protein - I-protein 17A I-protein ( O Fig O . O 3 O ). O However O , O it O mimics O the O β B-structure_element - I-structure_element strand I-structure_element 0 I-structure_element of O IL B-protein - I-protein 17A I-protein . O Conformational O changes O of O IL B-protein - I-protein 17A I-protein are O needed O for O both O HAP B-chemical and O IL B-protein - I-protein 17RA I-protein to O bind O to O that O region O . O During O IL B-protein - I-protein 17A I-protein signaling O , O IL B-protein - I-protein 17A I-protein binds O to O one O copy O of O IL B-protein - I-protein 17RA I-protein and O one O copy O of O IL B-protein - I-protein 17RC I-protein . O HAP B-chemical , O with O only O 15 B-residue_range residues I-residue_range , O can O achieve O almost O the O same O binding B-evidence affinity I-evidence as O the O much O larger O IL B-protein - I-protein 17RA I-protein molecule O , O indicating O a O more O efficient O way O of O binding O to O IL B-protein - I-protein 17A I-protein . O As O demonstrated O by O the O crystal B-evidence structure I-evidence , O binding O of O the O α B-structure_element - I-structure_element helix I-structure_element of O HAP B-chemical should O be O sufficient O for O preventing O IL B-protein - I-protein 17RA I-protein binding O to O IL B-protein - I-protein 17A I-protein . O Theoretically O , O it O is O possible O to O design O chemicals O such O as O stapled O α O - O helical O peptides O to O block O α B-structure_element - I-structure_element helix I-structure_element - O mediated O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17RA I-complex_assembly interactions O . O ( O A O ) O HAP B-chemical binds O at O region B-structure_element I I-structure_element of O IL B-protein - I-protein 17A I-protein . O Polar B-bond_interaction interactions I-bond_interaction are O shown O in O dashes O . O Notice O that O the O Trp B-site binding I-site pocket I-site for O W12 B-residue_name_number of O HAP B-chemical or O W31 B-residue_name_number of O IL B-protein - I-protein 17RA I-protein is O missing O in O the O apo B-protein_state structure B-evidence . O It O is O therefore O important O to O understand O the O mechanisms O which O regulate O nadA B-gene expression O levels O , O which O are O predominantly O controlled O by O the O transcriptional B-protein_type regulator I-protein_type NadR B-protein ( O Neisseria B-protein adhesin I-protein A I-protein Regulator I-protein ) O both O in O vitro O and O in O vivo O . O NadR B-protein binds O the O nadA B-gene promoter O and O represses O gene O transcription O . O Serogroup B-taxonomy_domain B I-taxonomy_domain meningococcus I-taxonomy_domain ( O MenB B-species ) O causes O fatal O sepsis O and O invasive O meningococcal B-taxonomy_domain disease O , O particularly O in O young O children O and O adolescents O , O as O highlighted O by O recent O MenB B-species outbreaks O in O universities O of O the O United O States O and O Canada O . O The O amount O of O NadA B-protein exposed O on O the O meningococcal B-taxonomy_domain surface O also O influences O the O antibody O - O mediated O serum O bactericidal O response O measured O in O vitro O . O Although O additional O factors O influence O nadA B-gene expression O , O we O focused O on O its O regulation O by O NadR B-protein , O the O major O mediator O of O NadA B-protein phase O variable O expression O . O However O , O the O homologous O archeal B-taxonomy_domain Sulfolobus B-species tokodaii I-species protein O ST1710 B-protein presented O essentially O the O same O structure B-evidence in O ligand B-protein_state - I-protein_state free I-protein_state and O salicylate B-protein_state - I-protein_state bound I-protein_state forms O , O apparently O contrasting O the O mechanism O proposed O for O MTH313 B-protein . O Despite O these O apparent O differences O , O MTH313 B-protein and O ST1710 B-protein bind O salicylate B-chemical in O approximately O the O same O site O , O between O their O dimerization B-structure_element and I-structure_element DNA I-structure_element - I-structure_element binding I-structure_element domains I-structure_element . O We O obtained O detailed O new O insights O into O ligand O specificity O , O how O the O ligand O allosterically O influences O the O DNA O - O binding O ability O of O NadR B-protein , O and O the O regulation O of O nadA B-gene expression O , O thus O also O providing O a O deeper O structural O understanding O of O the O ligand O - O responsive O MarR B-protein_type super O - O family O . O NadR B-protein is O dimeric B-oligomeric_state and O is O stabilized O by O specific O hydroxyphenylacetate B-chemical ligands O Recombinant O NadR B-protein was O produced O in O E B-species . I-species coli I-species using O an O expression B-experimental_method construct I-experimental_method prepared O from O N B-species . I-species meningitidis I-species serogroup I-species B I-species strain I-species MC58 I-species . O Since O ligand O - O binding O often O increases O protein O stability O , O we O also O investigated O the O effect O of O various O HPAs B-chemical ( O Fig O 1A O ) O on O the O melting B-evidence temperature I-evidence ( O Tm B-evidence ) O of O NadR B-protein . O As O a O control O of O specificity O , O we O also O tested O salicylate B-chemical , O a O known O ligand O of O some O MarR B-protein_type proteins O previously O reported O to O increase O the O Tm B-evidence of O ST1710 B-protein and O MTH313 B-protein . O 3 B-chemical - I-chemical HPA I-chemical 70 O . O 0 O ± O 0 O . O 1 O 2 O . O 7 O 2 O . O 7 O ± O 0 O . O 1 O 4 B-chemical - I-chemical HPA I-chemical 70 O . O 7 O ± O 0 O . O 1 O 3 O . O 3 O 1 O . O 5 O ± O 0 O . O 1 O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical 71 O . O 3 O ± O 0 O . O 2 O 3 O . O 9 O 1 O . O 1 O ± O 0 O . O 1 O To O further O investigate O the O binding O of O HPAs B-chemical to O NadR B-protein , O we O used O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method ( O SPR B-experimental_method ). O Data O collection O and O refinement O statistics O for O NadR B-protein structures B-evidence . O In O the O apo B-protein_state - O NadR B-protein crystals B-evidence , O the O two O homodimers B-oligomeric_state were O related O by O a O rotation O of O ~ O 90 O °; O the O observed O association O of O the O two O dimers B-oligomeric_state was O presumably O merely O an O effect O of O crystal O packing O , O since O the O interface B-site between O the O two O homodimers B-oligomeric_state is O small O (< O 550 O Å2 O of O buried O surface O area O ), O and O is O not O predicted O to O be O physiologically O relevant O by O the O PISA O software O . O Helices B-structure_element α3 B-structure_element and O α4 B-structure_element form O a O helix B-structure_element - I-structure_element turn I-structure_element - I-structure_element helix I-structure_element motif I-structure_element , O followed O by O the O “ O wing B-structure_element motif I-structure_element ” O comprised O of O two O short B-structure_element antiparallel I-structure_element β I-structure_element - I-structure_element strands I-structure_element ( O β1 B-structure_element - I-structure_element β2 I-structure_element ) O linked O by O a O relatively O long O and O flexible O loop B-structure_element . O Interestingly O , O in O the O α4 B-structure_element - I-structure_element β2 I-structure_element region I-structure_element , O the O stretch O of O residues O from O R64 B-residue_range - I-residue_range R91 I-residue_range presents O seven O positively O - O charged O side O chains O , O all O available O for O potential O interactions O with O DNA B-chemical . O Using O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method , O a O panel O of O eight O mutant B-protein_state NadR B-protein proteins O was O prepared O ( O including O mutations O H7A B-mutant , O S9A B-mutant , O N11A B-mutant , O D112A B-mutant , O R114A B-mutant , O Y115A B-mutant , O K126A B-mutant , O L130K B-mutant and O L133K B-mutant ), O sufficient O to O explore O the O entire O dimer B-site interface I-site . O It O is O notable O that O L130 B-residue_name_number is O usually O present O as O Leu B-residue_name , O or O an O alternative O bulky O hydrophobic O amino O acid O ( O e O . O g O . O Phe B-residue_name , O Val B-residue_name ), O in O many O MarR B-protein_type family O proteins O , O suggesting O a O conserved B-protein_state role O in O stabilizing O the O dimer B-site interface I-site . O The O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly structure B-evidence revealed O the O ligand B-site - I-site binding I-site site I-site nestled O between O the O dimerization B-structure_element and I-structure_element DNA I-structure_element - I-structure_element binding I-structure_element domains I-structure_element ( O Fig O 2 O ). O The O binding B-site pocket I-site was O almost O entirely O filled O by O 4 B-chemical - I-chemical HPA I-chemical and O one O water B-chemical molecule O , O although O there O also O remained O a O small O tunnel B-site 2 O - O 4Å O in O diameter O and O 5 O - O 6Å O long O leading O from O the O pocket B-site ( O proximal O to O the O 4 O - O hydroxyl O position O ) O to O the O protein O surface O . O Green O and O blue O ribbons O depict O NadR B-protein chains B-structure_element A I-structure_element and I-structure_element B I-structure_element , O respectively O . O Residues O AsnA11 B-residue_name_number and O ArgB18 B-residue_name_number likely O make O indirect O yet O local O contributions O to O ligand O binding O , O mainly O by O stabilizing O the O position O of O AspB36 B-residue_name_number . O List O of O 4 B-chemical - I-chemical HPA I-chemical atoms O bound O to O NadR B-protein via O ionic B-bond_interaction interactions I-bond_interaction and O / O or O H B-bond_interaction - I-bond_interaction bonds I-bond_interaction . O 4 B-chemical - I-chemical HPA I-chemical atom O NadR B-protein residue O / O atom O Distance O ( O Å O ) O O2 O TrpB39 B-residue_name_number / O NE1 O 2 O . O 83 O O2 O ArgB43 B-residue_name_number / O NH1 O 2 O . O 76 O O1 O ArgB43 B-residue_name_number / O NH1 O 3 O . O 84 O O1 O SerA9 B-residue_name_number / O OG O 2 O . O 75 O O1 O TyrB115 B-residue_name_number / O OH O 2 O . O 50 O O2 O Water B-chemical (* O Ser9 B-residue_name_number / O Asn11 B-residue_name_number ) O 2 O . O 88 O OH O AspB36 B-residue_name_number / O OD1 O / O OD2 O 3 O . O 6 O / O 3 O . O 7 O * O Bond O distance O between O the O ligand O carboxylate O group O and O the O water B-chemical molecule O , O which O in O turn O makes O H B-bond_interaction - I-bond_interaction bond I-bond_interaction to O the O SerA9 B-residue_name_number and O AsnA11 B-residue_name_number side O chains O . O In O SPR B-experimental_method , O the O signal O measured O is O proportional O to O the O total O molecular O mass O proximal O to O the O sensor O surface O ; O consequently O , O if O the O molecular O weights O of O the O interactors O are O known O , O then O the O stoichiometry O of O the O resulting O complex O can O be O determined O . O The O stoichiometry O of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O was O determined O using O Eq O 1 O ( O see O Materials O and O Methods O ), O and O revealed O stoichiometries B-evidence of O 1 O . O 13 O for O 4 B-chemical - I-chemical HPA I-chemical , O 1 O . O 02 O for O 3 B-chemical - I-chemical HPA I-chemical , O and O 1 O . O 21 O for O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O strongly O suggesting O that O one O NadR B-protein dimer B-oligomeric_state bound B-protein_state to I-protein_state 1 O HPA B-chemical analyte O molecule O . O To O explore O the O molecular O basis O of O asymmetry O in O holo B-protein_state - O NadR B-protein , O we O superposed B-experimental_method its O ligand B-protein_state - I-protein_state free I-protein_state monomer B-oligomeric_state ( O chain B-structure_element A I-structure_element ) O onto O the O ligand B-protein_state - I-protein_state occupied I-protein_state monomer B-oligomeric_state ( O chain B-structure_element B I-structure_element ). O Indeed O , O we O noted O interesting O differences O in O the O side O chains O of O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O Arg43 B-residue_name_number , O which O in O monomer B-oligomeric_state B B-structure_element are O used O to O contact O the O ligand O while O in O monomer B-oligomeric_state A B-structure_element they O partially O occupied O the O pocket B-site and O collectively O reduced O its O volume O significantly O . O In O contrast O , O the O apo B-protein_state - O form O Met22 B-residue_name_number and O Phe25 B-residue_name_number residues O were O still O encroaching O the O spaces O of O the O 4 O - O hydroxyl O group O and O the O phenyl O ring O of O the O ligand O , O respectively O ( O Fig O 5C O ). O The O ‘ O outward B-protein_state ’ O position O of O Arg43 B-residue_name_number generated O an O open B-protein_state apo B-protein_state - O form O pocket B-site with O volume O approximately O 380Å3 O . O Taken O together O , O these O observations O suggest O that O Arg43 B-residue_name_number is O a O major O determinant O of O ligand O binding O , O and O that O its O ‘ O inward B-protein_state ’ O position O inhibits O the O binding O of O 4 B-chemical - I-chemical HPA I-chemical to O the O empty O pocket B-site of O holo B-protein_state - O NadR B-protein . O The O inner O conformer O is O the O one O that O would O display O major O clashes O if O 4 B-chemical - I-chemical HPA I-chemical were O present O . O ( O C O ) O Comparison O of O the O empty O pocket B-site from O holo B-protein_state - O NadR B-protein ( O green O residues O ) O with O the O four O empty O pockets B-site of O apo B-protein_state - O NadR B-protein ( O grey O residues O ), O shows O that O in O the O absence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical the O Arg43 B-residue_name_number side O chain O is O always O observed O in O the O ‘ O outward B-protein_state ’ O conformation O . O The O broad O spectral O dispersion O and O the O number O of O peaks O observed O , O which O is O close O to O the O number O of O expected O backbone O amide O N O - O H O groups O for O this O polypeptide O , O confirmed O that O apo B-protein_state - O NadR B-protein is O well B-protein_state - I-protein_state folded I-protein_state under O these O conditions O and O exhibits O one O conformation O appreciable O on O the O NMR B-experimental_method timescale O , O i O . O e O . O in O the O NMR B-experimental_method experiments O at O 25 O ° O C O , O two O or O more O distinct O conformations O of O apo B-protein_state - O NadR B-protein monomers B-oligomeric_state were O not O readily O apparent O . O ( O B O , O C O ) O Overlay B-experimental_method of O selected O regions O of O the O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectra B-evidence acquired O at O 25 O ° O C O of O apo B-protein_state - O NadR B-protein ( O cyan O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O red O ) O superimposed B-experimental_method with O the O spectra B-evidence acquired O at O 10 O ° O C O of O apo B-protein_state - O NadR B-protein ( O blue O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ). O Considering O the O small O size O , O fast O diffusion O and O relatively O low O binding B-evidence affinity I-evidence of O 4 B-chemical - I-chemical HPA I-chemical , O it O would O not O be O surprising O if O the O ligand O associates O and O dissociates O rapidly O on O the O NMR B-experimental_method time O scale O , O resulting O in O only O one O set O of O peaks O whose O chemical O shifts O represent O the O average O environment O of O the O bound B-protein_state and O unbound B-protein_state states O . O Interestingly O , O by O cooling O the O samples O to O 10 O ° O C O , O we O observed O that O a O number O of O those O peaks O strongly O affected O by O 4 B-chemical - I-chemical HPA I-chemical ( O and O therefore O likely O to O be O in O the O ligand B-site - I-site binding I-site site I-site ) O demonstrated O evidence O of O peak O splitting O , O i O . O e O . O a O tendency O to O become O two O distinct O peaks O rather O than O one O single O peak O ( O Fig O 6B O and O 6C O ). O Similarly O , O the O entire O holo B-protein_state - O homodimer B-oligomeric_state could O be O closely B-experimental_method superposed I-experimental_method onto O each O of O the O apo B-protein_state - O homodimers B-oligomeric_state , O showing O rmsd B-evidence values O of O 1 O . O 29Å O and O 1 O . O 31Å O , O and O with O more O notable O differences O in O the O α6 B-structure_element helix I-structure_element positions O ( O Fig O 7B O ). O Structural B-experimental_method comparisons I-experimental_method of O NadR B-protein and O modelling O of O interactions O with O DNA B-chemical . O However O , O structural B-experimental_method comparisons I-experimental_method revealed O that O the O shift O of O holo B-protein_state - O NadR B-protein helix B-structure_element α4 B-structure_element induced O by O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical was O also O accompanied O by O several O changes O at O the O holo B-protein_state dimer B-site interface I-site , O while O such O extensive O structural O differences O were O not O observed O in O the O apo B-protein_state dimer B-site interfaces I-site , O particularly O notable O when O comparing O the O α6 B-structure_element helices I-structure_element ( O S3 O Fig O ). O Interestingly O , O OhrR B-protein contacts O ohrA B-gene across O 22 O base O pairs O ( O bp O ), O and O similarly O the O main O NadR B-protein target B-site sites I-site identified O in O the O nadA B-gene promoter O ( O the O operators O Op O I O and O Op O II O ) O both O span O 22 O bp O . O When O aligned B-experimental_method with O OhrR B-protein , O the O apo B-protein_state - O homodimer B-oligomeric_state CD B-structure_element presented O yet O another O different O intermediate O conformation O ( O rmsd B-evidence 2 O . O 9Å O ), O apparently O not O ideally O pre O - O configured O for O DNA B-chemical binding O , O but O which O in O solution O can O presumably O readily O adopt O the O AB B-structure_element conformation O due O to O the O intrinsic O flexibility O described O above O . O Western B-experimental_method blot I-experimental_method analyses O of O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O strain O ( O lanes O 1 O – O 2 O ) O or O isogenic O nadR B-gene knockout O strains O ( O ΔNadR B-mutant ) O complemented O to O express O the O indicated O NadR B-protein WT B-protein_state or O mutant B-protein_state proteins O ( O lanes O 3 O – O 12 O ) O or O not O complemented O ( O lanes O 13 O – O 14 O ), O grown O in O the O presence O ( O even O lanes O ) O or O absence O ( O odd O lanes O ) O of O 5mM O 4 B-chemical - I-chemical HPA I-chemical , O showing O NadA B-protein and O NadR B-protein expression O . O The O H7A B-mutant , O S9A B-mutant and O F25A B-mutant mutants O efficiently O repress O nadA B-gene expression O but O are O less O ligand O - O responsive O than O WT B-protein_state NadR B-protein . O The O N11A B-mutant mutant B-protein_state does O not O efficiently O repress O nadA B-gene expression O either O in O presence O or O absence O of O 4 B-chemical - I-chemical HPA I-chemical . O ( O The O protein O abundance O levels O of O the O meningococcal B-taxonomy_domain factor B-protein H I-protein binding I-protein protein I-protein ( O fHbp B-protein ) O were O used O as O a O gel O loading O control O ). O NadA B-protein is O a O surface O - O exposed O meningococcal B-taxonomy_domain protein O contributing O to O pathogenesis O , O and O is O one O of O three O main O antigens O present O in O the O vaccine O Bexsero O . O We O confirmed O this O stoichiometry O in O solution O using O SPR B-experimental_method methods O . O Structural B-experimental_method analyses I-experimental_method suggested O that O ‘ O inward B-protein_state ’ O side O chain O positions O of O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O especially O Arg43 B-residue_name_number precluded O binding O of O a O second O ligand O molecule O . O In O the O S B-species . I-species tokodaii I-species protein O ST1710 B-protein , O salicylate B-chemical binds O to O the O same O position O in O each O monomer B-oligomeric_state of O the O dimer B-oligomeric_state , O in O a O site O equivalent O to O the O putative O biologically O relevant O site O of O MTH313 B-protein ( O Fig O 10B O ). O Unlike O other O MarR B-protein_type family O proteins O which O revealed O multiple O ligand O binding O interactions O , O we O observed O only O 1 O molecule O of O 4 B-chemical - I-chemical HPA I-chemical bound B-protein_state to I-protein_state NadR B-protein , O suggesting O a O more O specific O and O less O promiscuous O interaction O . O NadR B-protein shows O a O ligand B-site binding I-site site I-site distinct O from O other O MarR B-protein_type homologues O . O ( O B O ) O A O structural B-experimental_method alignment I-experimental_method of O MTH313 B-protein chain B-structure_element A I-structure_element and O ST1710 B-protein ( O pink O ) O ( O Cα O rmsd B-evidence 2 O . O 3Å O ), O shows O that O they O bind O salicylate B-chemical in O equivalent O sites O ( O differing O by O only O ~ O 3Å O ) O and O with O the O same O orientation O . O Alternatively O , O it O is O possible O that O other O MarR B-protein_type homologues O ( O e O . O g O . O NMB1585 B-protein ) O may O have O no O extant O functional O binding B-site pocket I-site and O thus O may O have O lost O the O ability O to O respond O to O a O ligand O , O acting O instead O as O constitutive O DNA B-chemical - O binding O regulatory O proteins O . O The O noted O flexibility O may O also O explain O how O NadR B-protein can O adapt O to O bind O various O DNA B-chemical target O sequences O with O slightly O different O structural O features O . O Like O other O nuclear B-protein_type hormone I-protein_type receptors I-protein_type , O RORγ B-protein ’ O s O helix12 B-structure_element which O makes O up O the O C O - O termini O of O the O LBD B-structure_element is O an O essential O part O of O the O coactivator B-site binding I-site pocket I-site and O is O commonly O referred O to O as O the O activation B-structure_element function I-structure_element helix I-structure_element 2 I-structure_element ( O AF2 B-structure_element ). O FRET B-evidence results I-evidence for O agonist B-protein_state BIO592 B-chemical ( O a O ) O and O Inverse B-protein_state Agonist I-protein_state BIO399 B-chemical ( O b O ) O a O The O ternary B-evidence structure I-evidence of O RORγ518 B-protein BIO592 B-chemical and O EBI96 B-chemical . O b O RORγ B-protein AF2 B-structure_element helix I-structure_element in O the O agonist B-protein_state conformation O . O The O structure B-evidence of O the O ternary O complex O had O features O similar O to O other O ROR B-protein_type agonist B-protein_state coactivator O structures B-evidence in O a O transcriptionally B-protein_state active I-protein_state canonical B-protein_state three I-protein_state layer I-protein_state helix I-protein_state fold I-protein_state with O the O AF2 B-structure_element helix I-structure_element in O the O agonist B-protein_state conformation O . O The O agonist B-protein_state conformation O is O stabilized O by O a O hydrogen B-bond_interaction bond I-bond_interaction between O His479 B-residue_name_number and O Tyr502 B-residue_name_number , O in O addition O to O π B-bond_interaction - I-bond_interaction π I-bond_interaction interactions I-bond_interaction between O His479 B-residue_name_number , O Tyr502 B-residue_name_number and O Phe506 B-residue_name_number ( O Fig O . O 2b O ). O Electron B-evidence density I-evidence for O the O coactivator O peptide O EBI96 B-chemical was O observed O for O residues O EFPYLLSLLG B-structure_element which O formed O a O α B-structure_element - I-structure_element helix I-structure_element stabilized O through O hydrophobic B-bond_interaction interactions I-bond_interaction with O the O coactivator B-site binding I-site pocket I-site on O RORγ B-protein ( O Fig O . O 2c O ). O b O Benzoxazinone B-chemical ring O system O of O agonist B-protein_state BIO592 B-chemical packing O against O His479 B-residue_name_number of O RORγ B-protein stabilizing O agonist B-protein_state conformation O of O the O AF2 B-structure_element helix I-structure_element BIO592 B-chemical bound B-protein_state in I-protein_state a O collapsed B-protein_state conformational O state O in O the O LBS B-site of O RORγ B-protein with O the O xylene B-chemical ring O positioned O at O the O bottom O of O the O pocket B-site making O hydrophobic B-bond_interaction interactions I-bond_interaction with O Val376 B-residue_name_number , O Phe378 B-residue_name_number , O Phe388 B-residue_name_number and O Phe401 B-residue_name_number , O with O the O ethyl B-chemical - I-chemical benzoxazinone I-chemical ring O making O several O hydrophobic B-bond_interaction interactions I-bond_interaction with O Trp317 B-residue_name_number , O Leu324 B-residue_name_number , O Met358 B-residue_name_number , O Leu391 B-residue_name_number , O Ile B-residue_name_number 400 I-residue_name_number and O His479 B-residue_name_number ( O Fig O . O 3a O , O Additional O file O 3 O ). O Hydrophobic B-bond_interaction interaction I-bond_interaction between O the O ethyl O group O of O the O benzoxazinone B-chemical and O His479 B-residue_name_number reinforce O the O His479 B-residue_name_number sidechain O position O for O making O the O hydrogen B-bond_interaction bond I-bond_interaction with O Tyr502 B-residue_name_number thereby O stabilizing O the O agonist B-protein_state conformation O ( O Fig O . O 3b O ). O However O , O in O the O presence B-protein_state of I-protein_state inverse B-protein_state agonist I-protein_state BIO399 B-chemical , O the O proteolytic B-evidence pattern I-evidence showed O significantly O less O protection O , O albeit O the O products O were O more O heterogeneous O ( O majority O ending O at O 494 B-residue_number / O 495 B-residue_number ), O indicating O the O destabilization O of O the O AF2 B-structure_element helix I-structure_element compared O to O either O the O APO B-protein_state or O ternary B-protein_state agonist I-protein_state complex I-protein_state ( O Fig O . O 4 O , O Additional O file O 5 O ). O BIO399 B-chemical binds O to O the O ligand B-site binding I-site site I-site of O RORγ B-protein adopting O a O collapsed B-protein_state conformation O as O seen O with O BIO592 B-chemical where O the O two O compounds O superimpose B-experimental_method with O an O RMSD B-evidence of O 0 O . O 72 O Å O ( O Fig O . O 5b O ). O a O Overlay B-experimental_method of O RORγ B-protein structures B-evidence bound B-protein_state to I-protein_state BIO596 B-chemical ( O Green O ), O BIO399 B-chemical ( O Cyan O ) O and O T0901317 B-chemical ( O Pink O ). O We O hypothesize O that O since O the O Met358 B-residue_name_number sidechain O conformation O in O the O T0901317 B-chemical RORγ B-protein structure B-evidence is O not O in O the O BIO399 B-chemical conformation O , O this O difference O could O account O for O the O 10 O - O fold O reduction O in O the O inverse O agonism O for O T0901317 B-chemical compared O to O BIO399 B-chemical in O the O FRET B-experimental_method assay I-experimental_method . O The O inverse B-protein_state agonist I-protein_state activity O for O these O compounds O has O been O attributed O to O orientating O Trp317 B-residue_name_number to O clash O with O Tyr502 B-residue_name_number or O a O direct O inverse B-protein_state agonist I-protein_state hydrogen B-bond_interaction bonding I-bond_interaction event O with O His479 B-residue_name_number , O both O of O which O would O perturb O the O agonist B-protein_state conformation O of O RORγ B-protein . O GAL4 B-experimental_method cell I-experimental_method assay I-experimental_method selectivity O profile O for O BIO399 B-chemical toward O RORα B-protein and O RORβ B-protein in O GAL4 B-protein Furthermore O , O RORα B-protein contains O two O phenylalanine B-residue_name residues O in O its O LBS B-site whereas O RORβ B-protein and O γ B-protein have O a O leucine B-residue_name in O the O same O position O ( O Fig O . O 6b O ). O In O metabolism O , O molecules O with O “ O high O - O energy O ” O bonds O ( O e O . O g O ., O ATP B-chemical and O Acetyl B-chemical ~ I-chemical CoA I-chemical ) O are O critical O for O both O catabolic O and O anabolic O processes O . O The O facets O of O the O shell B-structure_element are O composed O primarily O of O hexamers B-oligomeric_state that O are O typically O perforated O by O pores B-site lined O with O highly B-protein_state conserved I-protein_state , O polar B-protein_state residues B-structure_element that O presumably O function O as O the O conduits O for O metabolites O into O and O out O of O the O shell B-structure_element . O Substrates O and O cofactors O involving O the O PTAC B-protein_type reaction O are O shown O in O red O ; O other O substrates O and O enzymes O are O shown O in O black O , O and O other O cofactors O are O shown O in O gray O . O The O activities O of O core O enzymes O are O not O confined O to O BMC B-complex_assembly - O associated O functions O : O aldehyde B-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type are O utilized O in O diverse O metabolic O reactions O , O and O PTAC B-protein_type catalyzes O a O key O biochemical O reaction O in O the O process O of O obtaining O energy O during O fermentation O . O This O occurs O , O for O example O , O during O acetoclastic O methanogenesis O in O the O archaeal B-taxonomy_domain Methanosarcina B-taxonomy_domain species I-taxonomy_domain . O Another O distinctive O feature O of O BMC B-protein_state - I-protein_state associated I-protein_state PduL B-protein_type homologs O is O an O N O - O terminal O encapsulation B-structure_element peptide I-structure_element ( O EP B-structure_element ) O that O is O thought O to O “ O target O ” O proteins O for O encapsulation O by O the O BMC B-complex_assembly shell B-structure_element . O EPs B-structure_element are O frequently O found O on O BMC B-protein_type - I-protein_type associated I-protein_type proteins I-protein_type and O have O been O shown O to O interact O with O shell O proteins O . O Here O we O report O high O - O resolution O crystal B-evidence structures I-evidence of O a O PduL B-protein_type - I-protein_type type I-protein_type PTAC I-protein_type in O both O CoA B-protein_state - I-protein_state and O phosphate B-protein_state - I-protein_state bound I-protein_state forms O , O completing O our O understanding O of O the O structural O basis O of O catalysis O by O the O metabolosome B-complex_assembly common O core O enzymes O . O β B-structure_element - I-structure_element Barrel I-structure_element 1 I-structure_element consists O of O the O N O - O terminal O β B-structure_element strand I-structure_element and O β B-structure_element strands I-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O polypeptide O chain O ( O β1 B-structure_element , O β10 B-structure_element - I-structure_element β14 I-structure_element ; O residues O 37 B-residue_range – I-residue_range 46 I-residue_range and O 155 B-residue_range – I-residue_range 224 I-residue_range ). O Primary O structure O conservation O of O the O PduL B-protein_type protein O family O . O Sequence O logo O calculated O from O the O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O PduL B-protein_type homologs O ( O see O Materials O and O Methods O ), O but O not B-protein_state including I-protein_state putative O EP B-structure_element sequences O . O The O sequences O aligning O to O the O PF06130 B-structure_element domain O ( O determined O by O BLAST O ) O are O highlighted O in O red O and O blue O . O The O position O numbers O shown O correspond O to O the O residue O numbering O of O rPduL B-protein ; O note O that O some O positions O in O the O logo O represent O gaps O in O the O rPduL B-protein sequence O . O The O asterisk O and O double O arrow O marks O the O location O of O the O π B-bond_interaction – I-bond_interaction π I-bond_interaction interaction I-bond_interaction between O F116 B-residue_name_number and O the O CoA B-chemical base O of O the O other O dimer B-oligomeric_state chain O . O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PduL B-protein_type homologs O . O ( O a O )–( O c O ): O Chromatograms B-evidence of O sPduL B-protein ( O a O ), O rPduL B-protein ( O b O ), O and O pPduL B-protein ( O c O ) O with O ( O orange O ) O or O without O ( O blue O ) O the O predicted O EP B-structure_element , O post O - O nickel B-experimental_method affinity I-experimental_method purification I-experimental_method , O applied O over O a O preparative O size O exclusion O column O ( O see O Materials O and O Methods O ). O The O second O ( O Zn2 B-chemical ) O is O in O octahedral O coordination O by O three O conserved B-protein_state histidine B-residue_name residues O ( O His157 B-residue_name_number , O His159 B-residue_name_number and O His204 B-residue_name_number ) O as O well O as O three O water B-chemical molecules O ( O Fig O 4a O ). O When O the O crystals B-experimental_method were I-experimental_method soaked I-experimental_method in O a O sodium B-chemical phosphate I-chemical solution O for O 2 O d O prior O to O data O collection O , O the O CoA B-chemical dissociates O , O and O density B-evidence for O a O phosphate B-chemical molecule O is O visible O at O the O active B-site site I-site ( O Table O 2 O , O Fig O 4b O ). O Oligomeric O States O of O PduL B-protein_type Orthologs O Are O Influenced O by O the O EP B-structure_element Given O the O diversity O of O signature O enzymes O ( O Table O 1 O ), O it O is O plausible O that O PduL B-protein_type orthologs O may O adopt O different O oligomeric O states O that O reflect O the O differences O in O the O proteins O being O packaged O with O them O in O the O organelle O lumen O . O pPduLΔEP B-mutant eluted O as O two O smaller O forms O , O possibly O corresponding O to O a O trimer B-oligomeric_state and O a O monomer B-oligomeric_state . O Homologs O of O the O predominant O cofactor O utilizer O ( O aldehyde B-protein_type dehydrogenase I-protein_type ) O and O NAD B-chemical + I-chemical regenerator O ( O alcohol B-protein_type dehydrogenase I-protein_type ) O have O been O structurally O characterized O , O but O until O now O structural O information O was O lacking O for O PduL B-protein_type , O which O recycles O CoA B-chemical in O the O organelle O lumen O . O Refined O domain O assignment O based O on O our O structure B-evidence should O be O able O to O predict O domains O of O PF06130 B-structure_element homologs O much O more O accurately O . O Implications O for O Metabolosome B-complex_assembly Core O Assembly O Free O CoA B-chemical and O NAD B-chemical +/ I-chemical H B-chemical could O potentially O be O bound O to O the O enzymes O as O the O core O assembles O and O is O encapsulated O . O The O free O CoA B-protein_state - I-protein_state bound I-protein_state form O is O presumably O poised O for O attack O upon O an O acyl B-chemical - I-chemical phosphate I-chemical , O indicating O that O the O enzyme O initially O binds O CoA B-chemical as O opposed O to O acyl B-chemical - I-chemical phosphate I-chemical . O The O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence indicates O that O in O the O opposite O reaction O direction O phosphate B-chemical is O bound O first O , O and O then O an O acyl B-chemical - I-chemical CoA I-chemical enters O . O There O could O be O some O intrinsic O biochemical O difference O between O the O two O enzymes O that O renders O PduL B-protein_type a O more O attractive O candidate O for O encapsulation O in O a O BMC B-complex_assembly — O for O example O , O PduL B-protein_type might O be O more O amenable O to O tight O packaging O , O or O is O better O suited O for O the O chemical O microenvironment O formed O within O the O lumen O of O the O BMC B-complex_assembly , O which O can O be O quite O different O from O the O cytosol O . O The O two O crystal B-evidence structures I-evidence that O we O report O here O for O the O ( O Sa B-species ) O EctC B-protein protein O ( O with O resolutions O of O 1 O . O 2 O Å O and O 2 O . O 0 O Å O , O respectively O ), O and O data O derived O from O extensive O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method experiments O targeting O evolutionarily B-protein_state highly I-protein_state conserved I-protein_state residues O within O the O extended O EctC B-protein_type protein I-protein_type family O , O provide O a O first O view O into O the O architecture O of O the O catalytic B-site core I-site of O the O ectoine B-protein_type synthase I-protein_type . O The O ( O Sa B-species ) O EctC B-protein protein O was O overproduced O and O isolated O with O good O yields O ( O 30 O – O 40 O mg O L O - O 1 O of O culture O ) O and O purity O ( O S2a O Fig O ). O Biochemical O properties O of O the O ectoine B-protein_type synthase I-protein_type N B-chemical - I-chemical α I-chemical - I-chemical ADABA I-chemical has O so O far O not O been O considered O as O a O substrate O for O EctC B-protein , O but O microorganisms B-taxonomy_domain that O use O ectoine B-chemical as O a O nutrient O produce O it O as O an O intermediate O during O catabolism O . O The O stimulation O of O EctC B-protein enzyme O activity O by O salts O has O previously O also O been O observed O for O other O ectoine B-protein_type synthases I-protein_type . O Since O variations O of O the O above O - O described O metal B-structure_element - I-structure_element binding I-structure_element motif I-structure_element occur O frequently O , O we O experimentally O investigated O the O presence O and O nature O of O the O metal B-chemical that O might O be O contained O in O the O ( O Sa B-species ) O EctC B-protein protein O by O inductive B-experimental_method - I-experimental_method coupled I-experimental_method plasma I-experimental_method mass I-experimental_method spectrometry I-experimental_method ( O ICP B-experimental_method - I-experimental_method MS I-experimental_method ). O We O note O in O this O context O , O that O the O values O obtained O for O the O iron B-chemical content O of O the O ( O Sa B-species ) O EctC B-protein proteins O varied O by O approximately O 10 O to O 20 O % O between O the O two O methods O . O Dependency O of O the O ectoine B-protein_type synthase I-protein_type activity O on O metals O . O We O then O took O such O an O inactivated B-protein_state enzyme O preparation O , O removed O the O EDTA B-chemical by O dialysis B-experimental_method , O and O added O stoichiometric O amounts O ( O 10 O μM O ) O of O various O metals O to O the O ( O Sa B-species ) O EctC B-protein enzyme O . O Hence O , O N B-chemical - I-chemical α I-chemical - I-chemical ADABA I-chemical is O a O newly O recognized O substrate O for O ectoine B-protein_type synthase I-protein_type . O The O Km B-evidence dropped O fife O - O fold O from O 4 O . O 9 O ± O 0 O . O 5 O mM O to O 25 O . O 4 O ± O 2 O . O 9 O mM O , O and O the O catalytic B-evidence efficiency I-evidence was O reduced O from O 1 O . O 47 O mM O - O 1 O s O - O 1 O to O 0 O . O 02 O mM O - O 1 O s O - O 1 O , O a O 73 O - O fold O decrease O . O Finally O , O a O monomer B-oligomeric_state of O this O structure B-evidence was O used O as O a O template O for O molecular B-experimental_method replacement I-experimental_method to O phase O the O high O - O resolution O ( O 1 O . O 2 O Å O ) O dataset O of O crystal O form O A O , O which O was O subsequently O refined O to O a O final O Rcryst B-evidence of O 12 O . O 4 O % O and O an O Rfree B-evidence of O 14 O . O 9 O % O ( O S1 O Table O ). O This O structure B-evidence adopts O an O open B-protein_state conformation O with O respect O to O the O typical O fold O of O cupin B-structure_element barrels I-structure_element and O is O therefore O termed O in O the O following O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence ( O Fig O 4b O ). O Interestingly O , O the O three O other O monomers B-oligomeric_state present O in O the O asymmetric O unit O all O range O from O Met B-residue_range - I-residue_range 1 I-residue_range to I-residue_range Glu I-residue_range - I-residue_range 115 I-residue_range and O adopt O a O conformation O similar O to O the O “ O open B-protein_state ” O EctC B-protein structure B-evidence . O The O structure B-evidence of O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein protein O consists O of O 11 O β B-structure_element - I-structure_element strands I-structure_element ( O β1 B-structure_element - I-structure_element β11 I-structure_element ) O and O two O α B-structure_element - I-structure_element helices I-structure_element ( O α B-structure_element - I-structure_element I I-structure_element and O α B-structure_element - I-structure_element II I-structure_element ) O ( O Fig O 4a O ). O Our O data O classify O EctC B-protein , O in O addition O to O the O polyketide B-protein_type cyclase I-protein_type RemF B-protein , O as O the O second O known O cupin B-protein_type - I-protein_type related I-protein_type enzyme O that O catalyze O a O cyclocondensation O reaction O . O Analysis O of O the O EctC B-protein dimer B-site interface I-site as O observed O in O the O ( O Sa B-species ) O EctC B-protein crystal B-evidence structure I-evidence It O is O worth O mentioning O that O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element is O located O next O to O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number , O which O in O all O likelihood O involved O in O metal B-chemical binding O ( O see O below O ). O In O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence , O both O proline B-residue_name residues O are O visible O in O the O electron B-evidence density I-evidence ; O however O , O almost O directly O after O Pro B-residue_name_number - I-residue_name_number 110 I-residue_name_number , O the O electron B-evidence density I-evidence is O drastically O diminished O caused O by O the O flexibility O of O the O carboxy B-structure_element - I-structure_element terminus I-structure_element . O Since O these O proline B-residue_name residues O are O followed O by O the O carboxy B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O ( O Sa B-species ) O EctC B-protein protein O , O the O interaction O of O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number with O Pro B-residue_name_number - I-residue_name_number 109 I-residue_name_number will O likely O play O a O substantial O role O in O spatially O orienting O this O very O flexible O part O of O the O protein O . O The O interaction O between O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number and O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number is O only O visible O in O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O structure B-evidence where O the O partially B-protein_state extended I-protein_state carboxy B-structure_element - I-structure_element terminus I-structure_element is O resolved O in O the O electron B-evidence density I-evidence . O ( O b O ) O An O overlay B-experimental_method of O the O “ O open B-protein_state ” O ( O colored O in O light O blue O ) O and O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O colored O in O green O ) O structure B-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O . O The O putative O iron B-site binding I-site site I-site of O ( O Sa B-species ) O EctC B-protein In O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O structure B-evidence of O ( O Sa B-species ) O EctC B-protein , O each O of O the O four O monomers B-oligomeric_state in O the O asymmetric O unit O contains O a O relative O strong O electron B-evidence density I-evidence positioned O within O the O cupin B-structure_element barrel I-structure_element . O Of O note O is O the O different O spatial O arrangement O of O the O side O - O chain O of O Tyr B-residue_name_number - I-residue_name_number 52 I-residue_name_number ( O located O in O a O loop B-structure_element after O the O end O of O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element ) O in O the O “ O open B-protein_state ” O and O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein structures B-evidence . O It O becomes O apparent O from O an O overlay B-experimental_method of O the O “ O open B-protein_state ” O and O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein crystal B-evidence structures I-evidence that O the O side O - O chain O of O Tyr B-residue_name_number - I-residue_name_number 52 I-residue_name_number rotates O away O from O the O position O of O the O presumptive O iron B-chemical , O whereas O the O side O - O chains O of O those O residues O that O probably O contacting O the O metal B-chemical directly O [ O Glu B-residue_name_number - I-residue_name_number 57 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number , O and O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number ], O remain O in O place O ( O Fig O 6a O and O 6b O ). O We O also O replaced B-experimental_method Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number with O either O a O Phe B-residue_name or O a O Trp B-residue_name residue O and O both O mutant B-protein_state proteins O largely O lost O their O catalytic O activity O and O iron B-chemical content O ( O Table O 1 O ) O despite O the O fact O that O these O substitutions O were O conservative O . O Since O we O used O PEG B-chemical molecules O in O the O crystallization O conditions O , O the O observed O density B-evidence might O stem O from O an O ordered O part O of O a O PEG B-chemical molecule O , O or O low O molecular O weight O PEG B-chemical species O that O might O have O been O present O in O the O PEG B-chemical preparation O used O in O our O experiments O . O Despite O these O notable O limitations O , O we O considered O the O serendipitously O trapped O compound O as O a O mock O ligand O that O might O provide O useful O insights O into O the O spatial O positioning O of O the O true O EctC B-protein substrate O and O those O residues O that O coordinate O it O within O the O ectoine B-protein_type synthase I-protein_type active B-site site I-site . O The O electron B-evidence density I-evidence was O calculated O as O an O omit B-evidence map I-evidence and O contoured O at O 1 O . O 0 O σ O . O We O also O calculated O an O omit B-evidence map I-evidence and O the O electron B-evidence density I-evidence reappeared O ( O Fig O 7b O ). O These O correspond O to O amino O acids O Thr B-residue_name_number - I-residue_name_number 40 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 52 I-residue_name_number , O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number , O Glu B-residue_name_number - I-residue_name_number 57 I-residue_name_number , O Gly B-residue_name_number - I-residue_name_number 64 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number - O Leu B-residue_name_number - I-residue_name_number 87 I-residue_name_number , O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number , O Phe B-residue_name_number - I-residue_name_number 107 I-residue_name_number , O Pro B-residue_name_number - I-residue_name_number 109 I-residue_name_number , O Gly B-residue_name_number - I-residue_name_number 113 I-residue_name_number , O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number , O and O His B-residue_name_number - I-residue_name_number 117 I-residue_name_number in O the O ( O Sa B-species ) O EctC B-protein protein O ( O Fig O 2 O ). O Each O of O these O mutant B-protein_state ( O Sa B-species ) O EctC B-protein proteins O was O overproduced O in O E B-species . I-species coli I-species and O purified O by O affinity B-experimental_method chromatography I-experimental_method ; O they O all O yielded O pure O and O stable O protein O preparations O . O We O replaced B-experimental_method each O of O these O residues O with O an O Ala B-residue_name residue O and O found O that O none O of O them O had O an O influence O on O the O iron B-chemical content O of O the O mutant B-protein_state proteins O . O Each O of O these O residues O is O evolutionarily B-protein_state highly I-protein_state conserved I-protein_state . O His B-residue_name_number - I-residue_name_number 117 I-residue_name_number is O a O strictly B-protein_state conserved I-protein_state residue O and O its O substitution B-experimental_method by O an O Ala B-residue_name residue O results O in O a O drop O of O enzyme O activity O ( O down O to O 44 O %) O and O an O iron B-chemical content O of O 83 O % O ( O Table O 1 O ). O As O an O internal O control O for O our O mutagenesis B-experimental_method experiments I-experimental_method , O we O also O substituted B-experimental_method Thr B-residue_name_number - I-residue_name_number 41 I-residue_name_number and O His B-residue_name_number - I-residue_name_number 51 I-residue_name_number , O two O residues O that O are O not B-protein_state evolutionarily I-protein_state conserved I-protein_state in O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type with O Ala B-residue_name residues O . O Hence O , O the O active B-site site I-site of O ectoine B-protein_type synthase I-protein_type must O possess O a O certain O degree O of O structural O plasticity O , O a O notion O that O is O supported O by O the O report O on O the O EctC B-protein - O catalyzed O formation O of O the O synthetic O compatible O solute O ADPC B-chemical through O the O cyclic O condensation O of O two O glutamine B-chemical molecules O . O We O assumed O that O its O location O and O mode O of O binding O gives O , O in O all O likelihood O , O clues O as O to O the O position O of O the O true O substrate O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical within O the O EctC B-protein active B-site site I-site . O This O probably O worked O to O the O detriment O of O our O efforts O in O solving O crystal B-evidence structures I-evidence of O the O full B-protein_state - I-protein_state length I-protein_state ( O Sa B-species ) O EctC B-protein protein O in B-protein_state complex I-protein_state with I-protein_state either O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical or O ectoine B-chemical . O Finally O , O our O results O provide O a O structural O framework O for O understanding O the O effects O of O ADAR B-protein_type mutations O associated O with O human B-species disease O . O Two O different O enzymes O carry O out O A O to O I O editing O in O humans B-species ; O ADAR1 B-protein and O ADAR2 B-protein . O Furthermore O , O how O an O ADAR B-protein_type deaminase B-structure_element domain I-structure_element contributes O to O editing B-site site I-site selectivity O is O also O unknown O , O since O no O structures B-evidence of O ADAR B-complex_assembly deaminase I-complex_assembly domain I-complex_assembly - I-complex_assembly RNA I-complex_assembly complexes O have O been O reported O . O In O addition O , O an O inositol B-chemical hexakisphosphate I-chemical ( O IHP B-chemical ) O molecule O was O found O buried O in O the O core O of O the O protein O hydrogen B-bond_interaction bonded I-bond_interaction to O numerous O conserved O polar O residues O . O The O 8 B-chemical - I-chemical azanebularine I-chemical is O flipped B-protein_state out I-protein_state of O the O helix B-structure_element and O bound B-protein_state into I-protein_state the O active B-site site I-site as O its O covalent O hydrate O where O it O interacts O with O several O amino O acids O including O V351 B-residue_name_number , O T375 B-residue_name_number , O K376 B-residue_name_number , O E396 B-residue_name_number and O R455 B-residue_name_number ( O Fig O . O 3a O , O Supplementary O Fig O . O 3a O ). O The O R455 B-residue_name_number side O chain O ion B-bond_interaction pairs I-bond_interaction with O the O 5 O ’- O phosphodiester O of O 8 B-chemical - I-chemical azanebularine I-chemical while O the O K376 B-residue_name_number side O chain O contacts O its O 3 O ’- O phosphodiester O . O ADARs B-protein_type use O a O unique O mechanism O to O modify O duplex B-structure_element RNA I-structure_element However O , O unlike O the O case O of O the O DNA B-protein_type MTase I-protein_type that O approaches O the O DNA B-chemical from O the O major B-site groove I-site , O the O ADAR2 B-protein loop B-structure_element approaches O the O duplex B-structure_element from O the O minor B-site groove I-site side O . O The O DNA B-chemical B B-structure_element - I-structure_element form I-structure_element helix I-structure_element has O groove O widths O and O depths O that O would O prevent O productive O interactions O with O ADAR B-protein_type . O ADARs B-protein_type have O a O preference O for O editing O adenosines B-residue_name with O 5 O ’ O nearest O neighbor O U B-residue_name ( O or O A B-residue_name ) O and O 3 O ’ O nearest O neighbor O G B-residue_name . O The O ADAR2 B-protein flipping B-structure_element loop I-structure_element occupies O the O minor B-site groove I-site spanning O the O three O base O pairs O that O include O the O nearest O neighbor O nucleotides O flanking O the O edited O base O ( O Figs O . O 3b O , O 3c O ). O These O observations O suggest O that O hADAR2 B-protein ’ O s O 5 O ’ O nearest O neighbor O preference O for O U B-residue_name ( O or O A B-residue_name ) O is O due O to O a O destabilizing O clash O with O the O protein O backbone O at O G489 B-residue_name_number that O results O from O the O presence O of O an O amino O group O in O the O minor B-site groove I-site at O this O location O for O sequences O with O 5 O ’ O nearest O neighbor O G B-residue_name or O C B-residue_name . O However O , O the O observed O clash O is O not O severe O and O the O enzyme O would O be O able O to O accommodate O G B-residue_name or O C B-residue_name 5 O ’ O nearest O neighbors O by O slight O structural O perturbations O , O explaining O why O this O sequence O preference O is O not O an O absolute O requirement O . O In O addition O , O the O substrate O with O a O 3 O ’ O I B-residue_name displayed O a O reduced B-evidence deamination I-evidence rate I-evidence compared O to O the O substrate O with O a O 3 O ’ O G B-residue_name suggesting O the O observed O H B-bond_interaction - I-bond_interaction bond I-bond_interaction to O the O 2 O - O amino O group O contributes O to O the O 3 O ’ O nearest O neighbor O selectivity O ( O Fig O . O 5f O ). O Mutation B-experimental_method of O any O of O these O residues O to O alanine B-residue_name ( O G593A B-mutant , O K594A B-mutant , O R348A B-mutant ) O substantially O reduces O editing O activity O ( O Fig O . O 6c O ). O Base O flipping O is O a O well O - O characterized O mechanism O by O which O nucleic B-protein_type acid I-protein_type modifying I-protein_type enzymes I-protein_type gain O access O to O sites O of O reaction O that O are O otherwise O buried O in O base O - O paired O structures B-evidence . O However O , O these O nucleotides O are O located O in O a O highly B-protein_state distorted I-protein_state and O dynamic B-protein_state duplex B-structure_element region I-structure_element containing O several O mismatches O and O are O predisposed O to O undergo O this O conformational O change O . O Other O RNA B-protein_type modification I-protein_type enzymes I-protein_type are O known O that O flip O nucleotides O out O of O loops O , O even O from O base O pairs O in O loop O regions O ( O pseudoU B-protein_type synthetase I-protein_type , O tRNA B-protein_type transglycosylase I-protein_type , O and O restrictocin B-protein bound B-protein_state to I-protein_state sarcin B-structure_element / I-structure_element ricin I-structure_element loop I-structure_element of O 28S B-chemical rRNA I-chemical ) O ( O Supplementary O Fig O . O 5b O ). O Our O use O of O 8 B-chemical - I-chemical azanebularine I-chemical , O with O its O high O propensity O to O form O a O covalent O hydrate O , O allowed O us O to O capture O a O true O mimic O of O the O tetrahedral O intermediate O and O reveal O the O interactions O between O the O deaminase B-protein_type active B-site site I-site and O the O reactive O nucleotide O . O Several O other O base B-protein_type - I-protein_type flipping I-protein_type enzymes I-protein_type stabilize O the O altered O nucleic O acid O conformation O by O intercalation O of O an O amino O acid O side O chain O into O the O space O vacated O by O the O flipped B-protein_state out I-protein_state base B-chemical . O The O latter O interaction O requires O E488 B-residue_name_number to O be O protonated B-protein_state . O However O , O since O dsRBDs B-structure_element are O known O to O bind O promiscuously O with O duplex B-structure_element RNA I-structure_element , O it O is O possible O that O the O S258 B-residue_name_number - O 3 O ’ O G B-residue_name interaction O found O in O a O complex O lacking B-protein_state the I-protein_state deaminase B-structure_element domain I-structure_element is O not O relevant O to O catalysis O at O the O editing B-site site I-site . O In O summary O , O the O structures B-evidence described O here O establish O human B-species ADAR2 B-protein as O a O base O - O flipping O enzyme O that O uses O a O unique O mechanism O well O suited O for O modifying O duplex B-structure_element RNA I-structure_element . O b O , O View O of O structure O along O the O dsRNA B-chemical helical O axis O . O Other O ADAR B-protein_type - O induced O changes O in O RNA B-chemical conformation O c O , O Unusual O “ O wobble O ” O A13 B-residue_name_number ’- O U11 B-residue_name_number interaction O in O the O hADAR2d B-complex_assembly WT I-complex_assembly – I-complex_assembly Bdf2 I-complex_assembly - I-complex_assembly U I-complex_assembly complex O shown O in O stick O with O H B-bond_interaction - I-bond_interaction bond I-bond_interaction indicated O with O yellow O dashes O and O distances O shown O in O Å O . O The O position O of O this O base O pair O in O the O hADAR2d B-complex_assembly E488Q I-complex_assembly – I-complex_assembly Bdf2 I-complex_assembly - I-complex_assembly C I-complex_assembly duplex O is O shown O in O wire O with O H B-bond_interaction - I-bond_interaction bonds I-bond_interaction shown O with O gray O dashes O . O f O , O Comparison O of O deamination B-evidence rate I-evidence constants I-evidence by O hADAR2d B-mutant at O the O editing B-site site I-site adenosine B-residue_name ( O red O ) O for O duplexes O bearing O different O 3 O ’ O nearest O neighbors O . O Interestingly O , O mutations B-experimental_method blocking O PIN B-structure_element oligomerization O had O no O RNase B-protein_type activity O , O indicating O that O both O oligomerization O and O NTD B-structure_element binding O are O crucial O for O RNase B-protein_type activity O in O vitro O . O Recently O , O the O crystal B-evidence structure I-evidence of O the O Regnase B-protein - I-protein 1 I-protein PIN B-structure_element domain O derived O from O Homo B-species sapiens I-species was O reported O . O In O addition O , O Regnase B-protein - I-protein 1 I-protein has O been O predicted O to O possess O other O domains O in O the O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element regions I-structure_element . O However O , O the O structure B-evidence and O function O of O the O ZF B-structure_element domain O , O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O NTD B-structure_element ) O and O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element ) O of O Regnase B-protein - I-protein 1 I-protein have O not O been O solved O . O Contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O the O mRNA B-chemical binding O activity O Upon O addition O of O a O larger O amount O of O Regnase B-protein - I-protein 1 I-protein , O the O fluorescence B-evidence of O free B-protein_state RNA B-chemical decreased O , O indicating O that O Regnase B-protein - I-protein 1 I-protein bound B-protein_state to I-protein_state the O RNA B-chemical . O Mutation B-experimental_method of O Arg215 B-residue_name_number , O whose O side O chain O faces O to O the O opposite O side O of O the O oligomeric B-site surface I-site , O to O Glu B-residue_name preserved O the O monomer B-oligomeric_state / O dimer B-oligomeric_state equilibrium O , O similar O to O the O wild B-protein_state type I-protein_state . O These O results O indicate O that O the O PIN B-structure_element domain O forms O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state in O solution O similar O to O the O crystal B-evidence structure I-evidence . O The O side O chains O of O these O residues O point O away O from O the O catalytic B-site center I-site on O the O same O molecule O ( O Fig O . O 2b O ). O Therefore O , O we O concluded O that O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state PIN B-structure_element dimerization O , O together O with O the O NTD B-structure_element , O are O required O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O in O vitro O . O R214 B-residue_name_number is O an O important O residue O for O dimer B-oligomeric_state formation O as O shown O in O Fig O . O 2 O , O therefore O , O R214A B-mutant in O the O secondary B-protein_state PIN B-structure_element cannot O dimerize O . O Although O the O function O of O the O CTD B-structure_element remains O elusive O , O we O revealed O the O functions O of O the O NTD B-structure_element , O PIN B-structure_element , O and O ZF B-structure_element domains O . O Our O NMR B-experimental_method experiments O confirmed O direct O binding O of O the O ZF B-structure_element domain O to O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical with O a O Kd B-evidence of O 10 O ± O 1 O . O 1 O μM O . O Furthermore O , O an O in B-experimental_method vitro I-experimental_method gel I-experimental_method shift I-experimental_method assay I-experimental_method indicated O that O Regnase B-protein - I-protein 1 I-protein containing O the O ZF B-structure_element domain O enhanced O target O mRNA B-chemical - O binding O , O but O the O protein O - O RNA B-chemical complex O remained O in O the O bottom O of O the O well O without O entering O into O the O polyacrylamide O gel O . O Due O to O this O limitation O , O it O is O difficult O to O perform O further O structural B-experimental_method analyses I-experimental_method of O mRNA B-complex_assembly - I-complex_assembly Regnase I-complex_assembly - I-complex_assembly 1 I-complex_assembly complexes O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method or O NMR B-experimental_method . O While O further O analyses O are O necessary O to O prove O this O point O , O our O preliminary O docking B-experimental_method and I-experimental_method molecular I-experimental_method dynamics I-experimental_method simulations I-experimental_method indicate O that O NTD B-structure_element - O binding O rearranges O the O catalytic B-site residues I-site of O the O PIN B-structure_element domain O toward O an O active B-protein_state conformation O suitable O for O binding O Mg2 B-chemical +. I-chemical In O this O context O , O it O is O interesting O that O , O in O response O to O TCR O stimulation O , O Malt1 B-protein cleaves O Regnase B-protein - I-protein 1 I-protein at O R111 B-residue_name_number to O control O immune O responses O in O vivo O . O This O result O is O consistent O with O a O model O in O which O the O NTD B-structure_element acts O as O an O enhancer O , O and O cleavage O of O the O linker B-structure_element lowers O enzymatic O activity O dramatically O . O We O incorporated O information O from O the O cleavage B-site site I-site of O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical in O vitro O is O indicated O by O denaturing O polyacrylamide B-experimental_method gel I-experimental_method electrophoresis I-experimental_method ( O Supplementary O Fig O . O 7a O , O b O ). O The O overall O model O of O regulation O of O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O through O domain O - O domain O interactions O in O vitro O is O summarized O in O Fig O . O 6 O . O A O fully B-protein_state active I-protein_state catalytic B-site center I-site can O be O formed O only O when O the O NTD B-structure_element associates O with O the O oligomer B-oligomeric_state surface O of O the O PIN B-structure_element domain O , O which O terminates O the O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state formation O in O one O direction O ( O primary B-protein_state PIN B-structure_element ), O and O forms O a O functional B-protein_state dimer B-oligomeric_state together O with O the O neighboring O PIN B-structure_element ( O secondary B-protein_state PIN B-structure_element ). O ( O a O ) O Domain O architecture O of O Regnase B-protein - I-protein 1 I-protein . O ( O b O ) O Solution B-evidence structure I-evidence of O the O NTD B-structure_element . O ( O c O ) O Crystal B-evidence structure I-evidence of O the O PIN B-structure_element domain O . O ( O e O ) O Solution B-evidence structure I-evidence of O the O CTD B-structure_element . O ( O g O ) O Binding O of O Regnase B-protein - I-protein 1 I-protein and O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical was O plotted O . O ( O h O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O Regnase B-protein - I-protein 1 I-protein to O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O The O residues O with O significant B-evidence chemical I-evidence shift I-evidence changes I-evidence were O labeled O in O the O overlaid B-experimental_method spectra B-evidence ( O left O ) O and O colored O red O , O yellow O , O or O green O on O the O surface O and O ribbon O structure O of O the O NTD B-structure_element . O Heterodimer O formation O by O combination O of O the O Regnase B-protein - I-protein 1 I-protein basic O residue O mutants B-protein_state and O the O DDNN B-mutant mutant B-protein_state restored O the O RNase B-protein_type activity O . O Structure O ‐ O activity O relationship O of O the O peptide B-structure_element binding I-structure_element ‐ I-structure_element motif I-structure_element mediating O the O BRCA2 B-complex_assembly : I-complex_assembly RAD51 I-complex_assembly protein O – O protein O interaction O We O have O tabulated O the O effects O of O mutation B-experimental_method of O this O sequence O , O across O a O variety O of O experimental O methods O and O from O relevant O mutations O observed O in O the O clinic O . O Both O BRCA2 B-protein and O RAD51 B-protein together O are O vital O for O helping O to O repair O and O maintain O a O high O fidelity O in O DNA O replication O . O However O , O whilst O the O identification O of O highly B-protein_state conserved I-protein_state residues O may O be O a O good O starting O point O for O identifying O hot B-site ‐ I-site spots I-site , O experimental O validation O by O mutation B-experimental_method of O these O sequences O is O vital O . O The O mutation O , O relevant O peptide O context O , O resulting O FxxA B-structure_element motif O sequence O and O experimental O technique O for O each O entry O is O given O . O The O wild B-protein_state ‐ I-protein_state type I-protein_state FxxA B-structure_element sequence O is O indicated O in O parenthesis O . O Wild B-protein_state ‐ I-protein_state type I-protein_state human B-species RAD51 B-protein , O however O , O is O a O heterogeneous O mixture O of O oligomers B-oligomeric_state and O when O monomerised B-oligomeric_state by O mutation B-experimental_method , O is O highly B-protein_state unstable I-protein_state . O One O RAD51 B-protein ( O green O cartoon O ) O interacts O with O another O molecule O of O RAD51 B-protein ( O grey O and O pink O surface O ) O via O the O FxxA B-site pocket I-site indicated O by O the O dashed O blue O box O . O A O summary O of O the O peptide O sequence O , O PDB O codes O and O K B-evidence D I-evidence data O measured O by O ITC B-experimental_method with O the O corresponding O ΔH B-evidence and O TΔS B-evidence values O are O collated O in O Table O 2 O . O Interestingly O , O it O was O found O that O a O proline B-residue_name at O this O position O improved O the O affinity B-evidence almost O threefold O , O to O 113 O μm O ( O Table O 2 O , O entry O 6 O ). O This O beneficial O mutation B-experimental_method was O incorporated O with O another O previously O identified O variant O to O produce O the O peptide O WHPA B-structure_element . O Perhaps O surprisingly O , O it O was O accommodated O and O the O affinity B-evidence dropped O only O by O twofold O as O compared O to O FHTA B-structure_element . O The O effect O of O simply O removing B-experimental_method the O β O ‐ O carbon O of O alanine B-residue_name , O by O mutation B-experimental_method to I-experimental_method glycine B-residue_name ( O FHTG B-structure_element ), O produced O an O approximately O sixfold O drop O in O binding B-evidence affinity I-evidence ( O Table O 2 O , O entry O 8 O ). O This O is O in O line O with O the O observation O that O alanine B-residue_name is O not B-protein_state 100 I-protein_state % I-protein_state conserved I-protein_state and O some O archeal B-taxonomy_domain RadA B-protein_type proteins I-protein_type contain O a O glycine B-residue_name in O the O place O of O alanine B-residue_name 23 O . O Structures B-evidence of O the O key O tetrapeptides B-chemical were O solved O by O soaking B-experimental_method into I-experimental_method crystals B-evidence of O a O humanised B-protein_state form O of O RAD51 B-protein , O HumRadA1 B-mutant , O which O we O have O previously O reported O as O a O convenient O surrogate O system O for O RAD51 B-protein crystallography B-experimental_method 15 O . O All O structures B-evidence are O of O high O resolution O ( O 1 O . O 2 O – O 1 O . O 7 O Å O ) O and O the O electron B-evidence density I-evidence for O the O peptide O was O clearly O visible O after O the O first O refinement O using O unliganded B-protein_state RadA B-protein coordinates O ( O Fig O . O S1 O ). O Some O of O the O SAR O observed O in O the O binding B-experimental_method analysis I-experimental_method can O be O interpreted O in O terms O of O these O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystal B-evidence structures I-evidence . O The O thermodynamic B-evidence data I-evidence of O peptide O binding O are O also O shown O in O Table O 2 O . O Although O we O have O both O thermodynamic B-evidence data I-evidence and O high O ‐ O quality O X B-experimental_method ‐ I-experimental_method ray I-experimental_method structural B-evidence information I-evidence for O some O of O the O mutant B-protein_state peptides B-chemical , O we O do O not O attempt O to O interpret O differences O in O thermodynamic B-evidence profiles I-evidence between O ligands O , O that O is O , O to O analyse O ΔΔH B-evidence and O ΔΔS B-evidence . O As O ΔS B-evidence is O derived O from O ΔG B-evidence by O subtracting O ΔH B-evidence , O errors O in O ΔH B-evidence will O be O correlated O with O errors O in O ΔS B-evidence , O giving O rise O to O a O ‘ O phantom O ’ O enthalpy O – O entropy O compensation O . O Figure O 3A O shows O the O binding O pose O of O BRC4 B-chemical when O bound B-protein_state to I-protein_state RAD51 B-protein and O the O intrapeptide O hydrogen B-bond_interaction bonds I-bond_interaction that O are O made O by O BRC4 B-chemical . O While O Phe1524 B-residue_name_number and O Ala1527 B-residue_name_number are O buried O in O hydrophobic B-site pockets I-site on O the O surface O , O His1525 B-residue_name_number is O close O enough O to O form O a O hydrogen B-bond_interaction bond I-bond_interaction with O the O carbonyl O of O Thr1520 B-residue_name_number , O but O the O rotamer O of O His1525 B-residue_name_number , O supported O by O clearly O positioned O water B-chemical molecules O , O is O not O compatible O with O hydrogen B-bond_interaction bonding I-bond_interaction . O ( O A O ) O Highlight O of O intra O ‐ O BRC4 B-chemical interactions O when O bound B-protein_state to I-protein_state RAD51 B-protein ( O omitted O for O clarity O ) O ( O PDB O : O 1n0w O ), O with O key O residues O shown O in O colour O . O ( O B O ) O Intrapeptide O interactions O from O oligomerisation B-structure_element epitope I-structure_element of O S B-species . I-species cerevisiae I-species RAD51 B-protein when O bound B-protein_state to I-protein_state next O RAD51 B-protein in O the O filament O ( O PDB O : O 1szp O ). O Thr1526 B-residue_name_number makes O no O direct O interactions O with O the O RAD51 B-protein protein O , O but O instead O forms O a O hydrogen B-bond_interaction bond I-bond_interaction network I-bond_interaction with O the O highly B-protein_state conserved I-protein_state S1528 B-residue_name_number and O K1530 B-residue_name_number ( O Fig O . O 1C O ). O The O conserved B-protein_state threonine B-residue_name residue O at O the O third O position O forms O a O hydrogen B-bond_interaction bond I-bond_interaction with O the O peptide O backbone O amide O , O which O forms O the O base O of O an O α B-structure_element ‐ I-structure_element helix I-structure_element . O The O reason O for O this O disconnection O is O suggested O to O be O that O threonine B-residue_name plays O a O role O in O stabilising O the O β B-structure_element ‐ I-structure_element turn I-structure_element in O the O BRC B-structure_element repeats I-structure_element , O which O is O absent O in O the O tetrapeptides B-chemical studied O . O The O differences O in O ΔG B-evidence for O different O peptide O variants O relative O to O FHTA B-structure_element are O shown O in O the O bar O chart O with O colouring O matching O with O the O structural B-experimental_method overlay I-experimental_method below O . O ( O C O ) O Overlay B-experimental_method of O tetrapeptide B-chemical structures B-evidence , O with O wild B-protein_state ‐ I-protein_state type I-protein_state FHTA B-structure_element peptide O across O the O figure O for O reference O and O truncated O segments O of O mutated O residues O shown O in O each O panel O . O Here O , O we O describe O the O first O crystal B-evidence structure I-evidence of O a O C11 B-protein_type protein O from O the O human B-species gut O bacterium B-taxonomy_domain , O Parabacteroides B-species merdae I-species ( O PmC11 B-protein ), O determined O to O 1 O . O 7 O - O Å O resolution O . O Biochemical B-experimental_method and I-experimental_method kinetic I-experimental_method analysis I-experimental_method revealed O Lys147 B-residue_name_number to O be O an O intramolecular B-site processing I-site site I-site at O which O cleavage B-ptm is O required O for O full B-protein_state activation I-protein_state of O the O enzyme B-protein , O suggesting O an O autoinhibitory O mechanism O for O self O - O preservation O . O PmC11 B-protein has O an O acidic B-site binding I-site pocket I-site and O a O preference O for O basic O substrates O , O and O accepts O substrates O with O Arg B-residue_name and O Lys B-residue_name in O P1 B-residue_number and O does O not O require O Ca2 B-chemical + I-chemical for O activity O . O Clan B-protein_type CD I-protein_type families I-protein_type are O typically O described O using O the O name O of O their O archetypal O , O or O founding O , O member O and O also O given O an O identification O number O preceded O by O a O “ O C O ,” O to O denote O cysteine B-protein_type peptidase I-protein_type . O Clostripain B-protein has O been O described O as O an O arginine B-protein_type - I-protein_type specific I-protein_type peptidase I-protein_type with O a O requirement O for O Ca2 B-chemical + I-chemical and O loss O of O an O internal B-structure_element nonapeptide I-structure_element for O full B-protein_state activation I-protein_state ; O lack O of O structural O information O on O the O family O appears O to O have O prohibited O further O investigation O . O A O single B-ptm cleavage I-ptm was O observed O in O the O polypeptide O chain O at O Lys147 B-residue_name_number ( O Fig O . O 1 O , O A O and O B O ), O where O both O ends O of O the O cleavage B-site site I-site are O fully O visible O and O well O ordered O in O the O electron B-evidence density I-evidence . O The O secondary O structure O of O PmC11 B-protein from O the O crystal B-evidence structure I-evidence is O mapped O onto O its O sequence O with O the O position O of O the O PmC11 B-protein catalytic B-site dyad I-site , O autocatalytic B-site cleavage I-site site I-site ( O Lys147 B-residue_name_number ), O and O S1 B-site binding I-site pocket I-site Asp B-residue_name ( O Asp177 B-residue_name_number ) O highlighted O by O a O red O star O , O a O red O downturned O triangle O , O and O a O red O upturned O triangle O , O respectively O . O B O , O topology O diagram O of O PmC11 B-protein colored O as O in O A O except O that O additional O ( O non O - O core O ) O β B-structure_element - I-structure_element strands I-structure_element are O in O yellow O . O Helices O found O on O either O side O of O the O central O β B-structure_element - I-structure_element sheet I-structure_element are O shown O above O and O below O the O sheet B-structure_element , O respectively O . O His133 B-residue_name_number and O Cys179 B-residue_name_number were O found O at O locations O structurally O homologous O to O the O caspase B-protein_type catalytic B-site dyad I-site , O and O other O clan B-protein_type CD I-protein_type structures B-evidence , O at O the O C O termini O of O strands B-structure_element β5 B-structure_element and O β6 B-structure_element , O respectively O ( O Figs O . O 1 O , O A O and O B O , O and O 2A O ). O Summary O of O PDBeFOLD B-experimental_method superposition I-experimental_method of O structures O found O to O be O most O similar O to O PmC11 B-protein in O the O PBD O based O on O DaliLite B-experimental_method The O overall O structure B-evidence of O PmC11 B-protein is O shown O in O gray O , O looking O down O into O the O catalytic B-site site I-site with O the O catalytic B-site dyad I-site in O red O . O A O single O lane O of O 20 O μg O of O active B-protein_state PmC11 B-protein ( O labeled O 20 O ) O is O shown O for O comparison O . O The O two O ends O of O the O cleavage B-site site I-site are O remarkably O well O ordered O in O the O crystal B-evidence structure I-evidence and O displaced O from O one O another O by O 19 O . O 5 O Å O ( O Fig O . O 2A O ). O Consequently O , O it O appears O feasible O that O the O helix B-structure_element attached O to O Lys147 B-residue_name_number ( O α3 B-structure_element ) O could O be O responsible O for O steric O autoinhibition O of O PmC11 B-protein when O Lys147 B-residue_name_number is O covalently O bonded O to O Ala148 B-residue_name_number . O These O studies O revealed O that O there O was O no O apparent O cleavage O of O PmC11C179A B-mutant by O the O active B-protein_state enzyme O at B-experimental_method low I-experimental_method concentrations I-experimental_method of O PmC11 B-protein and O that O only O limited O cleavage O was O observed O when O the O ratio O of O active B-protein_state enzyme O ( O PmC11 B-protein : O PmC11C179A B-mutant ) O was O increased B-experimental_method to I-experimental_method ∼ I-experimental_method 1 I-experimental_method : I-experimental_method 10 I-experimental_method and I-experimental_method 1 I-experimental_method : I-experimental_method 4 I-experimental_method , O with O complete O cleavage O observed O at O a O ratio B-experimental_method of I-experimental_method 1 I-experimental_method : I-experimental_method 1 I-experimental_method ( O Fig O . O 2E O ). O This O cleavage B-ptm subsequently O allows O movement O of O the O region O containing O Lys147 B-residue_name_number and O the O active B-site site I-site to O open B-protein_state up O for O substrate O access O . O The O cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O the O presence O of O the O cations O Ca2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Cu2 B-chemical +, I-chemical Mg2 B-chemical +, I-chemical and O Fe3 B-chemical + I-chemical with O EGTA B-chemical as O a O negative O control O , O and O relative B-experimental_method fluorescence I-experimental_method measured I-experimental_method against I-experimental_method time I-experimental_method ( O min O ). O The O addition B-experimental_method of I-experimental_method cations I-experimental_method produced O no O improvement O in O activity O of O PmC11 B-protein when O compared O in O the O presence O of O EGTA B-chemical , O suggesting O that O PmC11 B-protein does O not O require O metal O ions O for O proteolytic O activity O . O A O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method revealed O that O most O of O the O secondary B-structure_element structural I-structure_element elements I-structure_element are O conserved B-protein_state between O the O two O enzymes O , O although O they O are O only O ∼ O 23 O % O identical O ( O Fig O . O 1A O ). O Nevertheless O , O PmC11 B-protein may O be O a O good O model O for O the O core O structure O of O clostripain B-protein . O The O primary B-experimental_method structural I-experimental_method alignment I-experimental_method also O shows O that O the O catalytic B-site dyad I-site in O PmC11 B-protein is O structurally B-protein_state conserved I-protein_state in O clostripain B-protein ( O Fig O . O 1A O ). O Interestingly O , O Arg190 B-residue_name_number was O found O to O align O with O Lys147 B-residue_name_number in O PmC11 B-protein . O The O caspases B-protein_type and O gingipain B-protein - I-protein R I-protein both O undergo O intermolecular B-ptm ( I-ptm trans I-ptm ) I-ptm cleavage I-ptm and O legumain B-protein and O MARTX B-protein - I-protein CPD I-protein are O reported O to O perform O intramolecular B-ptm ( I-ptm cis I-ptm ) I-ptm cleavage I-ptm . O Eukaryotic B-taxonomy_domain ribosome O biogenesis O is O highly O complex O and O requires O a O large O number O of O non O - O ribosomal O proteins O and O small B-chemical non I-chemical - I-chemical coding I-chemical RNAs I-chemical in O addition O to O ribosomal B-chemical RNAs I-chemical ( O rRNAs B-chemical ) O and O proteins O . O While O in O humans B-species the O 18S B-chemical rRNA I-chemical base O modifications O are O highly B-protein_state conserved I-protein_state , O only O three O of O the O yeast B-taxonomy_domain base O modifications O catalyzed O by O ScRrp8 B-protein / O HsNML B-protein , O ScRcm1 B-protein / O HsNSUN5 B-protein and O ScNop2 B-protein / O HsNSUN1 B-protein are O preserved O in O the O corresponding O human B-species 28S B-chemical rRNA I-chemical . O Tsr3 B-protein is O necessary O for O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical in O yeast B-taxonomy_domain and O human B-species . O ( O A O ) O Hypermodified B-protein_state nucleotide B-chemical m1acp3Ψ B-chemical is O synthesized O in O three O steps O : O pseudouridylation B-ptm catalyzed O by O snoRNP35 B-complex_assembly , O N1 B-ptm - I-ptm methylation I-ptm catalyzed O by O methyltransferase B-protein_type Nep1 B-protein and O N3 O - O acp B-chemical modification O catalyzed O by O Tsr3 B-protein . O ( O C O ) O 14C B-chemical - I-chemical acp I-chemical labeling O of O 18S B-chemical rRNAs I-chemical . O In O a O recent O bioinformatic O study O , O the O uncharacterized O yeast B-taxonomy_domain gene O YOR006c B-gene was O predicted O to O be O involved O in O ribosome O biogenesis O . O The O S B-species . I-species cerevisiae I-species 18S B-protein_type rRNA I-protein_type acp I-protein_type transferase I-protein_type was O identified O in O a O systematic O genetic O screen O where O numerous O deletion O mutants O from O the O EUROSCARF O strain O collection O ( O www O . O euroscarf O . O de O ) O were O analyzed O by O HPLC B-experimental_method for O alterations O in O 18S B-chemical rRNA I-chemical base O modifications O . O No O radioactive O labeling O was O detected O in O the O 18S B-mutant U1191A I-mutant mutant B-protein_state which O served O as O a O control O for O the O specificity O of O the O 14C B-chemical - I-chemical aminocarboxypropyl I-chemical incorporation O . O The O Tsr3 B-protein protein O is O highly B-protein_state conserved I-protein_state in O yeast B-taxonomy_domain and O humans B-species ( O 50 O % O identity O ). O Similar O to O yeast B-taxonomy_domain , O siRNA B-experimental_method - I-experimental_method mediated I-experimental_method depletion I-experimental_method of O the O Ψ1248 B-protein_type N1 I-protein_type - I-protein_type methyltransferase I-protein_type Nep1 B-protein / O Emg1 B-protein had O no O influence O on O the O primer B-evidence extension I-evidence arrest I-evidence ( O Figure O 1E O ). O Although O the O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical is O highly B-protein_state conserved I-protein_state in O eukaryotes B-taxonomy_domain , O yeast B-taxonomy_domain Δtsr3 B-mutant mutants O showed O only O a O minor O growth O defect O . O In O polysome B-evidence profiles I-evidence , O a O reduced O level O of O 80S B-complex_assembly ribosomes I-complex_assembly and O a O strong O signal O for O free O 60S B-complex_assembly subunits O was O observed O in O line O with O the O 40S B-complex_assembly subunit O deficiency O ( O Supplementary O Figure O S2G O ). O Structure B-evidence of O Tsr3 B-protein N O - O terminal O truncations B-experimental_method of O up O to O 45 B-residue_range aa I-residue_range and O C O - O terminal O truncations B-experimental_method of O up O to O 76 B-residue_range aa I-residue_range mediated O acp B-chemical modification O as O efficiently O as O the O full B-protein_state - I-protein_state length I-protein_state protein O and O no O significant O increased O levels O of O 20S B-chemical pre I-chemical - I-chemical RNA I-chemical were O detected O . O The O loop B-structure_element connecting O β2 B-structure_element and O β3 B-structure_element contains O a O single O turn O of O a O 310 B-structure_element - I-structure_element helix I-structure_element . O Helices B-structure_element α1 B-structure_element and O α2 B-structure_element are O located O on O one O side O of O the O five B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element while O α3 B-structure_element packs O against O the O opposite O β B-structure_element - I-structure_element sheet I-structure_element surface O . O Structure B-experimental_method predictions I-experimental_method suggested O that O Tsr3 B-protein might O contain O a O so O - O called O RLI B-structure_element domain I-structure_element which O contains O a O ‘ O bacterial B-structure_element like I-structure_element ’ I-structure_element ferredoxin I-structure_element fold I-structure_element and O binds O two O iron O - O sulfur O clusters O through O eight O conserved B-protein_state cysteine B-residue_name residues O . O The O closest O structural O homolog O identified O in O a O DALI B-experimental_method search I-experimental_method is O the O tRNA B-protein_type methyltransferase I-protein_type Trm10 B-protein ( O DALI B-evidence Z I-evidence - I-evidence score I-evidence 6 O . O 8 O ) O which O methylates O the O N1 O nitrogen O of O G9 B-residue_name_number / O A9 B-residue_name_number in O many O archaeal B-taxonomy_domain and O eukaryotic B-taxonomy_domain tRNAs B-chemical by O using O SAM B-chemical as O the O methyl O group O donor O . O A O notable O exception O is O Trm10 B-protein . O Gel B-experimental_method filtration I-experimental_method experiments O with O both O VdTsr3 B-protein and O SsTsr3 B-protein ( O Figure O 4E O ) O showed O that O both O proteins O are O monomeric B-oligomeric_state in O solution O thereby O extending O the O structural O similarities O to O Trm10 B-protein . O This O enzyme O , O Tyw2 B-protein , O is O part O of O the O biosynthesis O pathway O of O wybutosine B-chemical nucleotides I-chemical in O tRNAs B-chemical . O Instead O , O Tyw2 B-protein has O a O fold O typical O for O the O class B-protein_type - I-protein_type I I-protein_type - I-protein_type or I-protein_type Rossmann I-protein_type - I-protein_type fold I-protein_type class I-protein_type of I-protein_type methyltransferases I-protein_type ( O Supplementary O Figure O S5B O ). O A O W66A B-mutant - O mutant B-protein_state of O SsTsr3 B-protein ( O W73 B-residue_name_number in O VdTsr3 B-protein ) O does O not O bind O SAM B-chemical . O ( O F O ) O Primer B-experimental_method extension I-experimental_method ( O upper O left O ) O shows O a O strongly O reduced O acp B-chemical modification O of O yeast B-taxonomy_domain 18S B-chemical rRNA I-chemical in O Δtsr3 B-mutant cells O expressing O Tsr3 B-mutant - I-mutant S62D I-mutant , O - B-mutant E111A I-mutant or O – B-mutant W114A I-mutant . O S B-chemical - I-chemical adenosylhomocysteine I-chemical which O lacks O the O methyl O group O of O SAM B-chemical binds O with O significantly O lower O affinity B-evidence ( O KD B-evidence = O 55 O . O 5 O μM O ) O ( O Figure O 5D O ). O However O , O the O mutation B-experimental_method of O the O corresponding O residue O of O ScTsr3 B-protein ( O E111A B-mutant ) O leads O to O a O significant O decrease O of O the O acp B-protein_type transferase I-protein_type activity O in O vivo O ( O Figure O 5F O ). O In O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O the O surface O exposed O α B-structure_element - I-structure_element helices I-structure_element α5 B-structure_element and O α7 B-structure_element carry O a O significant O amount O of O positively O charged O amino O acids O . O The O m1acp3Ψ B-chemical base O is O located O at O the O tip O of O helix B-structure_element 31 I-structure_element on O the O 18S B-chemical rRNA I-chemical ( O Supplementary O Figure O S1B O ) O which O , O together O with O helices B-structure_element 18 I-structure_element , I-structure_element 24 I-structure_element , I-structure_element 34 I-structure_element and I-structure_element 44 I-structure_element , O contribute O to O building O the O decoding O center O of O the O small O ribosomal O subunit O . O This O suggests O that O enzymes O with O a O SAM B-protein_type - I-protein_type dependent I-protein_type acp I-protein_type transferase I-protein_type activity O might O have O evolved O from O SAM B-protein_type - I-protein_type dependent I-protein_type methyltransferases I-protein_type by O slight O modifications O of O the O SAM B-site - I-site binding I-site pocket I-site . O In O contrast O , O for O several O Tsr3 B-protein mutants O ( O SAM B-protein_state - I-protein_state binding I-protein_state and O cysteine B-protein_state mutations I-protein_state ) O we O found O a O systematic O correlation O between O the O loss O of O acp B-chemical modification O and O the O efficiency O of O 18S B-chemical rRNA I-chemical maturation O . O After O structural O changes O , O possibly O driven O by O GTP B-chemical hydrolysis O , O which O go O together O with O the O formation O of O the O decoding B-site site I-site , O the O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical becomes O accessible O for O Nob1 B-protein cleavage O at O site B-site D I-site . O This O also O involves O joining O of O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly and O 60S B-complex_assembly subunits I-complex_assembly to O 80S B-complex_assembly - I-complex_assembly like I-complex_assembly particles I-complex_assembly in O a O translation O - O like O cycle O promoted O by O eIF5B B-protein . O Finally O , O termination B-protein_type factor I-protein_type Rli1 B-protein , O an O ATPase B-protein_type , O promotes O the O dissociation O of O assembly O factors O and O the O 80S B-complex_assembly - I-complex_assembly like I-complex_assembly complex I-complex_assembly dissociates O and O releases O the O mature B-protein_state 40S B-complex_assembly subunit I-complex_assembly . O Early O cytoplasmic O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly still O containing O the O ribosome B-protein_type assembly I-protein_type factors I-protein_type Tsr1 B-protein , O Ltv1 B-protein , O Enp1 B-protein and O Rio2 B-protein were O not O or O only O partially O acp B-protein_state modified I-protein_state . O Therefore O , O Rio2 B-protein either O blocks O the O access O of O Tsr3 B-protein to O helix B-structure_element 31 I-structure_element , O and O acp B-chemical modification O can O only O occur O after O Rio2 B-protein is O released O , O or O the O acp B-chemical modification O of O m1Ψ1191 B-residue_name_number and O putative O subsequent O conformational O changes O of O 20S B-chemical rRNA I-chemical weaken O the O binding O of O Rio2 B-protein to O helix B-structure_element 31 I-structure_element and O support O its O release O from O the O pre B-chemical - I-chemical rRNA I-chemical . O Structural B-experimental_method analyses I-experimental_method revealed O that O in O contrast O to O the O compact B-protein_state conformation I-protein_state of O the O dimeric B-oligomeric_state YfiB B-protein alone B-protein_state , O YfiBL43P B-mutant adopts O a O stretched B-protein_state conformation I-protein_state allowing O activated B-protein_state YfiB B-protein to O penetrate O the O peptidoglycan B-chemical ( O PG B-chemical ) O layer O and O access O YfiR B-protein . O YfiBL43P B-mutant shows O a O more O compact O PG B-site - I-site binding I-site pocket I-site and O much O higher O PG B-evidence binding I-evidence affinity I-evidence than O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein , O suggesting O a O tight O correlation O between O PG O binding O and O YfiB B-protein activation O . O Bis B-chemical -( I-chemical 3 I-chemical ’- I-chemical 5 I-chemical ’)- I-chemical cyclic I-chemical dimeric I-chemical GMP I-chemical ( O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ) O is O a O ubiquitous O second O messenger O that O bacteria B-taxonomy_domain use O to O facilitate O behavioral O adaptations O to O their O ever O - O changing O environment O . O Intriguingly O , O studies O in O diverse O species O have O revealed O that O a O single O bacterium B-taxonomy_domain can O have O dozens O of O DGCs B-protein_type and O PDEs B-protein_type ( O Hickman O et O al O .,; O Kirillina O et O al O .,; O Kulasakara O et O al O .,; O Tamayo O et O al O .,). O After O the O sequestration O of O YfiR B-protein by O YfiB B-protein , O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical produced O by O activated B-protein_state YfiN B-protein increases O the O biosynthesis O of O the O Pel B-chemical and O Psl B-chemical EPSs B-chemical , O resulting O in O the O appearance O of O the O SCV O phenotype O , O which O indicates O enhanced O biofilm O formation O ( O Malone O et O al O .,). O In O the O present O study O , O we O solved O the O crystal B-evidence structures I-evidence of O an O N O - O terminal O truncated B-protein_state form O of O YfiB B-protein ( O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant . O Moreover O , O we O found O that O Vitamin B-chemical B6 I-chemical ( O VB6 B-chemical ) O or O L B-chemical - I-chemical Trp I-chemical can O bind O YfiR B-protein with O an O affinity B-evidence in O the O ten O millimolar O range O . O We O obtained O two O crystal B-evidence forms I-evidence of O YfiB B-protein ( O residues O 34 B-residue_range – I-residue_range 168 I-residue_range , O lacking B-protein_state the O signal B-structure_element peptide I-structure_element from O residues O 1 B-residue_range – I-residue_range 26 I-residue_range and O periplasmic O residues O 27 B-residue_range – I-residue_range 33 I-residue_range ), O crystal O forms O I O and O II O , O belonging O to O space O groups O P21 O and O P41 O , O respectively O . O Two O dimeric B-oligomeric_state types O of O YfiB B-protein dimer B-oligomeric_state . O ( O A O – O C O ) O The O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state . O ( O A O ) O and O ( O E O ) O indicate O the O front O views O of O the O two O dimers B-oligomeric_state , O ( O B O ) O and O ( O F O ) O indicate O the O top O views O of O the O two O dimers B-oligomeric_state , O and O ( O C O ) O and O ( O D O ) O indicate O the O details O of O the O two O dimeric B-site interfaces I-site The O crystal B-evidence structure I-evidence of O YfiB B-protein monomer B-oligomeric_state consists O of O a O five B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O β1 B-structure_element - I-structure_element 2 I-structure_element - I-structure_element 5 I-structure_element - I-structure_element 3 I-structure_element - I-structure_element 4 I-structure_element ) O flanked O by O five B-structure_element α I-structure_element - I-structure_element helices I-structure_element ( O α1 B-structure_element – I-structure_element 5 I-structure_element ) O on O one O side O . O The O dimeric B-oligomeric_state interaction B-bond_interaction is I-bond_interaction mainly I-bond_interaction hydrophilic I-bond_interaction , O occurring O among O the O main O - O chain O and O side O - O chain O atoms O of O N68 B-residue_name_number , O L69 B-residue_name_number , O D70 B-residue_name_number and O R71 B-residue_name_number on O the O α2 B-structure_element - I-structure_element α3 I-structure_element loops I-structure_element and O R116 B-residue_name_number and O S120 B-residue_name_number on O the O α4 B-structure_element helices I-structure_element of O both O molecules O , O resulting O in O a O complex O hydrogen B-site bond I-site network I-site ( O Fig O . O 2D O – O F O ). O The O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O The O YfiR B-protein molecules O are O shown O in O green O and O magenta O . O It O is O likely O that O these O residues O may O be O involved O in O the O conformational O changes O of O YfiB B-protein that O are O related O to O YfiR B-protein sequestration O ( O Fig O . O 3C O ). O Additionally O , O three O hydrophobic B-site anchoring I-site sites I-site exist O in O region B-structure_element I I-structure_element . O The O residues O F48 B-residue_name_number and O W55 B-residue_name_number of O YfiB B-protein are O inserted O into O the O hydrophobic B-site cores I-site mainly O formed O by O the O main O chain O and O side O chain O carbon O atoms O of O residues O S57 B-residue_name_number / O Q88 B-residue_name_number / O A89 B-residue_name_number / O N90 B-residue_name_number and O R60 B-residue_name_number / O R175 B-residue_name_number / O H177 B-residue_name_number of O YfiR B-protein , O respectively O ; O and O F57 B-residue_name_number of O YfiB B-protein is O inserted O into O the O hydrophobic B-site pocket I-site formed O by O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number of O YfiR B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O For O simplicity O , O we O only O discuss O the O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state in O the O following O text O . O PG B-protein_type - I-protein_type associated I-protein_type lipoprotein I-protein_type ( O Pal B-protein_type ) O is O highly B-protein_state conserved I-protein_state in O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain and O anchors O to O the O outer O membrane O through O an O N O - O terminal O lipid O attachment O and O to O PG B-chemical layer O through O its O periplasmic B-structure_element domain I-structure_element , O which O is O implicated O in O maintaining O outer O membrane O integrity O . O Interestingly O , O superposition B-experimental_method of O apo B-protein_state YfiB B-protein with O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant revealed O that O the O PG B-site - I-site binding I-site region I-site is O largely O altered O mainly O due O to O different B-protein_state conformation I-protein_state of O the O N68 B-residue_name_number containing O loop B-structure_element . O The O results O indicated O that O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiBL43P B-mutant is O 65 O . O 5 O μmol O / O L O , O which O is O about O 16 O - O fold O stronger O than O that O of O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein ( O Kd B-evidence = O 1 O . O 1 O mmol O / O L O ) O ( O Fig O . O 4E O – O F O ). O Calculation O using O the O ConSurf B-experimental_method Server I-experimental_method ( O http O :// O consurf O . O tau O . O ac O . O il O /), O which O estimates O the O evolutionary B-evidence conservation I-evidence of O amino O acid O positions O and O visualizes O information O on O the O structure B-site surface I-site , O revealed O a O conserved B-site surface I-site on O YfiR B-protein that O contributes O to O the O interaction O with O YfiB B-protein ( O Fig O . O 3E O and O 3F O ). O Previous O studies O indicated O that O YfiR B-protein constitutes O a O YfiB B-protein - O independent O sensing O device O that O can O activate O YfiN B-protein in O response O to O the O redox O status O of O the O periplasm O , O and O we O have O reported O YfiR B-protein structures B-evidence in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O earlier O , O revealing O that O the O Cys145 B-residue_name_number - O Cys152 B-residue_name_number disulfide B-ptm bond I-ptm plays O an O essential O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O Interestingly O , O at O a O concentration O higher O than O 8 O mmol O / O L O , O VB6 B-chemical lost O its O ability O to O inhibit O biofilm O formation O , O implying O that O the O VB6 B-chemical - O involving O regulatory O mechanism O is O highly O complicated O and O remains O to O be O further O investigated O . O Of O note O , O both O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical have O been O reported O to O correlate O with O biofilm O formation O in O certain O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain ( O Grubman O et O al O .,; O Shimazaki O et O al O .,). O Based O on O our O results O , O we O concluded O that O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical can O bind O to O YfiR B-protein , O however O , O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical alone B-protein_state may O have O little O effects O in O interrupting O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O the O mechanism O by O which O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical inhibits O biofilm O formation O remains O unclear O and O requires O further O investigation O . O Our O structural B-experimental_method data I-experimental_method analysis I-experimental_method shows O that O the O activated B-protein_state YfiB B-protein has O an O N B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element that O is O largely O altered O , O adopting O a O stretched B-protein_state conformation I-protein_state compared O with O the O compact B-protein_state conformation I-protein_state of O the O apo B-protein_state YfiB B-protein . O The O apo B-protein_state YfiB B-protein structure B-evidence constructed O beginning O at O residue O 34 B-residue_number has O a O compact B-protein_state conformation I-protein_state of O approximately O 45 O Å O in O length O . O The O loop B-structure_element connecting O Cys26 B-residue_name_number and O Gly34 B-residue_name_number of O YfiB B-protein is O modeled O . O This O allows O the O C B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O reach O , O bind O and O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state . O Our O study O reveals O the O mechanism O for O regulation O of O H3K9me3 B-protein_type and O hm B-chemical - I-chemical DNA I-chemical recognition O by O URHF1 B-protein . O However O , O how O UHRF1 B-protein regulates O the O recognition O of O these O two O repressive O epigenetic O marks O and O recruits O DNMT1 B-protein for O chromatin O localization O remain O largely O unknown O . O Therefore O , O UHRF1 B-protein may O engage O in O a O sophisticated O regulation O for O its O chromatin O localization O and O recruitment O of O DNMT1 B-protein through O a O mechanism O yet O to O be O fully O elucidated O . O To O test O above O hypothesis O , O we O performed O glutathione B-experimental_method S I-experimental_method - I-experimental_method transferase I-experimental_method ( I-experimental_method GST I-experimental_method ) I-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method using O various O truncations B-experimental_method of O UHRF1 B-protein . O The O presence B-protein_state of I-protein_state the O Spacer B-structure_element markedly O impaired O the O interaction O between O TTD B-structure_element – I-structure_element PHD I-structure_element and O H3K9me3 B-protein_type ( O Fig O . O 2c O ). O The O results O indicate O that O the O Spacer B-structure_element directly O binds B-protein_state to I-protein_state the O TTD B-structure_element and O inhibits O its O interaction O with O H3K9me3 B-protein_type . O Pre B-experimental_method - I-experimental_method incubation I-experimental_method of O the O SRA B-structure_element also O modestly O impaired O PHD B-structure_element – O H3K9me0 B-protein_type interaction O . O SpacerΔ642 B-mutant – I-mutant 651 I-mutant , O SpacerΔ650 B-mutant – I-mutant 654 I-mutant and O SpacerΔ655 B-mutant – I-mutant 659 I-mutant also O decreased O binding B-evidence affinities I-evidence , O indicating O that O residues O 642 B-residue_range – I-residue_range 674 I-residue_range are O important O for O TTD B-structure_element – I-structure_element Spacer I-structure_element interaction O . O Mutations B-experimental_method K648D B-mutant and O S651D B-mutant of O the O Spacer B-structure_element decreased O their O binding B-evidence affinities I-evidence to O the O TTD B-structure_element , O and O mutation B-experimental_method R649A B-mutant of O the O Spacer B-structure_element showed O more O significant O decrease O (∼ O 13 O - O fold O ) O in O the O binding B-evidence affinity I-evidence ( O Fig O . O 3f O ). O Thus O , O the O Spacer B-structure_element may O disrupt O the O TTD B-structure_element – I-structure_element Linker I-structure_element interaction O and O inhibits O the O recognition O of O H3K9me3 B-protein_type by O TTD B-structure_element – I-structure_element PHD I-structure_element . O Notably O , O although O the O Linker B-structure_element ( O in O the O context O of O TTD B-structure_element - I-structure_element PHD I-structure_element ) O impairs O the O TTD B-structure_element – I-structure_element Spacer I-structure_element interaction O to O some O extent O , O the O isolated O Spacer B-structure_element could O still O bind O to O TTD B-structure_element – I-structure_element PHD I-structure_element with O moderate O binding B-evidence affinity I-evidence ( O KD B-evidence = O 10 O . O 68 O μM O ), O supporting O the O existence O of O the O intramolecular O interaction O within O UHRF1 B-protein . O To O test O whether O TTD B-structure_element – I-structure_element Spacer I-structure_element association O exists O in O the O context O of O full B-protein_state - I-protein_state length I-protein_state UHRF1 B-protein , O we O used O various O truncations B-experimental_method of O UHRF1 B-protein in O the O GST B-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method . O Taken O together O , O UHRF1 B-protein adopts O a O closed B-protein_state conformation O , O in O which O the O Spacer B-structure_element binds B-protein_state to I-protein_state the O TTD B-structure_element through O competing O with O the O Linker B-structure_element , O and O therefore O inhibits O H3K9me3 B-protein_type recognition O by O UHRF1 B-protein . O Because O the O TTD B-structure_element is O always O associated O with O the O PHD B-structure_element , O whether O the O pattern O of O TTD B-complex_assembly – I-complex_assembly H3K9me3 I-complex_assembly interaction O exists O in O vivo O remains O unknown O . O Nevertheless O , O comparison B-experimental_method of O TTD B-complex_assembly – I-complex_assembly H3K9me3 I-complex_assembly and O TTD B-structure_element – I-structure_element Spacer I-structure_element structures B-evidence indicates O that O H3K9me3 B-protein_type and O the O Spacer B-structure_element overlap O on O the O surface O of O the O TTD B-structure_element ( O Supplementary O Fig O . O 4d O ), O suggesting O that O the O Spacer B-structure_element might O block O the O H3K9me3 B-protein_type recognition O by O the O isolated O TTD B-structure_element . O We O next O tested O whether O such O inhibition O also O occurs O in O the O context O of O full B-protein_state - I-protein_state length I-protein_state UHRF1 B-protein . O Taken O together O , O the O Spacer B-structure_element binds B-protein_state to I-protein_state the O TTD B-structure_element and O inhibits O H3K9me3 B-protein_type recognition O by O UHRF1 B-protein through O ( O i O ) O disrupting O TTD B-structure_element – I-structure_element Linker I-structure_element interaction O , O which O is O essential O for O H3K9me3 B-protein_type recognition O by O TTD B-structure_element – I-structure_element PHD I-structure_element , O ( O ii O ) O prohibiting O H3K9me3 B-protein_type binding O to O the O isolated O TTD B-structure_element . O Residues O N228 B-residue_name_number / O R235 B-residue_name_number from O the O TTD B-structure_element and O G653 B-residue_name_number / O G654 B-residue_name_number from O the O Spacer B-structure_element were O chosen O according O to O the O TTD B-structure_element – I-structure_element Spacer I-structure_element complex O structure B-evidence ( O Supplementary O Fig O . O 5c O ) O so O that O the O replaced O Cysteine B-residue_name residues O ( O one O from O the O TTD B-structure_element and O one O from O the O Spacer B-structure_element ) O are O physically O close O enough O to O each O other O to O form O a O disulphide B-ptm bond I-ptm in O the O absence B-protein_state of I-protein_state reducing O reagent O ( O dithiothreitol B-chemical , O DTT B-chemical ). O These O results O indicate O that O the O Spacer B-structure_element not O only O binds B-protein_state to I-protein_state the O TTD B-structure_element and O inhibits O H3K9me3 B-protein_type recognition O when O UHRF1 B-protein adopts O closed B-protein_state conformation O , O but O also O facilitates O hm B-chemical - I-chemical DNA I-chemical recognition O by O the O SRA B-structure_element when O UHRF1 B-protein binds B-protein_state to I-protein_state hm B-chemical - I-chemical DNA I-chemical . O The O structure B-evidence shows O that O the O SRA B-structure_element binds B-protein_state to I-protein_state hm B-chemical - I-chemical DNA I-chemical in O a O manner O similar O to O that O observed O in O the O previously O reported O SRA B-complex_assembly - I-complex_assembly hm I-complex_assembly - I-complex_assembly DNA I-complex_assembly structures B-evidence . O To O investigate O the O role O of O the O Spacer B-structure_element in O the O regulation O of O UHRF1 B-protein function O , O we O transiently B-experimental_method overexpressed I-experimental_method GFP B-protein_state - I-protein_state tagged I-protein_state wild B-protein_state type I-protein_state or O mutants B-protein_state of O UHRF1 B-protein in O NIH3T3 O cells O to O determine O their O subcellular O localization O . O For O example O , O UHRF1 B-protein mutant B-protein_state ( O within O TTD B-structure_element domain O ) O lacking B-protein_state H3K9me3 B-evidence - I-evidence binding I-evidence affinity I-evidence largely O reduces O its O co O - O localization O with O heterochromatin O . O In O the O absence B-protein_state of I-protein_state hm B-chemical - I-chemical DNA I-chemical , O only O UHRF1ΔTTD B-mutant bound B-protein_state to I-protein_state RFTSDNMT1 B-protein , O whereas O full B-protein_state - I-protein_state length I-protein_state UHRF1 B-protein , O UHRF1ΔSRA B-mutant and O UHRF1Δ627 B-mutant – I-mutant 674 I-mutant showed O undetectable O interaction O ( O Fig O . O 5e O ). O In O addition O , O this O regulatory O process O should O be O further O characterized O using O advanced O techniques O , O such O as O single B-experimental_method molecular I-experimental_method measurement I-experimental_method . O Intriguingly O , O UHRF2 B-protein ( O the O only O mammalian B-taxonomy_domain homologue O of O UHRF1 B-protein ) O and O UHRF1 B-protein show O very O high O sequence O similarities O for O all O the O domains O but O very O low O similarity O for O the O Spacer B-structure_element ( O Supplementary O Fig O . O 7c O ). O One O of O the O key O questions O in O the O field O of O DNA B-chemical methylation B-ptm is O why O UHRF1 B-protein contains O modules O recognizing O two O repressive O epigenetic O marks O : O H3K9me3 B-protein_type ( O by O TTD B-structure_element – I-structure_element PHD I-structure_element ) O and O hm B-chemical - I-chemical DNA I-chemical ( O by O the O SRA B-structure_element ). O Previous O studies O show O that O chromatin O localization O of O UHRF1 B-protein is O dependent O on O hm B-chemical - I-chemical DNA I-chemical , O whereas O other O studies O indicate O that O histone B-protein_type H3K9me3 B-protein_type recognition O and O hm B-chemical - I-chemical DNA I-chemical association O are O both O required O for O UHRF1 B-protein - O mediated O maintenance O DNA B-chemical methylation B-ptm . O Therefore O , O genomic O localization O of O UHRF1 B-protein is O primarily O determined O by O its O recognition O of O hm B-chemical - I-chemical DNA I-chemical , O which O allows O UHRF1 B-protein to O adopt O an O open B-protein_state form O and O promotes O its O histone B-protein_type tail O recognition O for O proper O genomic O localization O and O function O . O Recent O study O indicates O that O histone B-protein_type tail O association O of O UHRF1 B-protein ( O by O the O PHD B-structure_element domain O ) O is O required O for O histone B-protein_type H3 B-protein_type ubiquitylation B-ptm , O which O is O dependent O on O ubiquitin B-protein_type ligase I-protein_type activity O of O the O RING B-structure_element domain O of O UHRF1 B-protein ( O ref O .). O Moreover O , O structural B-experimental_method analyses I-experimental_method of O DNMT1 B-complex_assembly – I-complex_assembly DNA I-complex_assembly and O SRA B-complex_assembly – I-complex_assembly DNA I-complex_assembly complexes O also O indicate O that O it O is O impossible O for O DNMT1 B-protein to O methylate O the O hm B-chemical - I-chemical DNA I-chemical that O UHRF1 B-protein binds B-protein_state to I-protein_state because O of O steric O hindrance O . O The O S O phase O - O dependent O interaction O between O UHRF1 B-protein and O DNMT1 B-protein ( O refs O ) O suggest O that O DNMT1 B-protein may O also O undergo O conformation O changes O so O that O RFTSDNMT1 B-protein binds B-protein_state to I-protein_state UHRF1 B-protein and O the O catalytic B-structure_element domain I-structure_element of O DNMT1 B-protein binds B-protein_state to I-protein_state hm B-chemical - I-chemical DNA I-chemical for O reaction O . O The O bound O proteins O were O analysed O in O SDS B-experimental_method – I-experimental_method PAGE I-experimental_method followed O by O Coomassie O blue O staining O . O Sequences O of O the O peptides O are O indicated O in O Supplementary O Table O 1 O . O ( O c O ) O Histone B-protein_type peptides O do O not O affect O hm B-evidence - I-evidence DNA I-evidence - I-evidence binding I-evidence affinity I-evidence of O UHRF1 B-protein . O Intramolecular O interactions O inhibit O histone B-protein_type recognition O by O UHRF1 B-protein . O The O estimated O binding B-evidence affinities I-evidence ( O KD B-evidence ) O were O listed O . O TTD B-complex_assembly – I-complex_assembly PHD I-complex_assembly – I-complex_assembly H3K9me3 I-complex_assembly complex O is O coloured O in O grey O , O and O the O PHD B-structure_element and O H3K9me3 B-protein_type are O omitted O for O simplicity O . O The O bound O proteins O were O analysed O in O SDS B-experimental_method – I-experimental_method PAGE I-experimental_method and O Coomassie B-experimental_method blue I-experimental_method staining I-experimental_method ( O left O ) O and O quantified O by O band B-experimental_method densitometry I-experimental_method ( O right O ). O ( O d O ) O Histone B-experimental_method peptide I-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method using O UHRF1 B-protein mutants B-protein_state as O indicated O . O The O estimated O binding B-evidence affinities I-evidence ( O KD B-evidence ) O are O listed O above O . O ( O d O ) O Subcellular O localization O of O GFP B-protein_state - I-protein_state tagged I-protein_state wild B-protein_state - I-protein_state type I-protein_state or O indicated O mutants B-protein_state of O UHRF1 B-protein in O NIH3T3 O cells O . O The O percentages O of O cells O showing O co O - O localization O with O DAPI B-chemical foci O were O counted O from O at O least O 100 O cells O and O shown O on O the O left O of O the O corresponding O representative O confocal B-experimental_method microscopy I-experimental_method . O This O paper O presents O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structures I-evidence of O oligomers B-oligomeric_state formed O by O a O 20 B-residue_range - I-residue_range residue I-residue_range peptide I-residue_range segment I-residue_range derived O from O Aβ B-protein . O The O development O of O a O peptide O in O which O Aβ17 B-protein – B-residue_range 36 I-residue_range is O stabilized O as O a O β B-structure_element - I-structure_element hairpin I-structure_element is O described O , O and O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structures I-evidence of O oligomers B-oligomeric_state it O forms O are O reported O . O An O N O - O methyl O group O at O position O 33 B-residue_number blocks O uncontrolled O aggregation O . O The O peptide O readily B-evidence crystallizes I-evidence as O a O folded B-protein_state β B-structure_element - I-structure_element hairpin I-structure_element , O which O assembles O hierarchically O in O the O crystal B-evidence lattice I-evidence . O Treatment O of O the O mixture O of O low O molecular O weight O oligomers B-oligomeric_state with O hexafluoroisopropanol B-chemical resulted O in O the O dissociation O of O the O putative O dodecamers B-oligomeric_state , O nonamers B-oligomeric_state , O and O hexamers B-oligomeric_state into O trimers B-oligomeric_state and O monomers B-oligomeric_state , O suggesting O that O trimers B-oligomeric_state may O be O the O building O block O of O the O dodecamers B-oligomeric_state , O nonamers B-oligomeric_state , O and O hexamers B-oligomeric_state . O The O sizes O of O APFs B-complex_assembly prepared O in O vitro O vary O among O different O studies O . O Quist O et O al O . O observed O APFs B-complex_assembly with O an O outer O diameter O of O 16 O nm O embedded O in O a O lipid O bilayer O . O This O Aβ B-protein β B-structure_element - I-structure_element hairpin I-structure_element encompasses O residues O 17 B-residue_range – I-residue_range 37 I-residue_range and O contains O two O β B-structure_element - I-structure_element strands I-structure_element comprising O Aβ17 B-protein – B-residue_range 24 I-residue_range and O Aβ30 B-protein – B-residue_range 37 I-residue_range connected O by O an O Aβ25 B-protein – B-residue_range 29 I-residue_range loop B-structure_element . O Locking O Aβ B-protein into O a O β B-structure_element - I-structure_element hairpin I-structure_element structure O resulted O in O the O formation O Aβ B-protein oligomers B-oligomeric_state , O which O were O observed O by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method ( O SEC B-experimental_method ) O and O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method . O We O mutated B-experimental_method these O residues O because O they O occupy O the O same O position O as O the O δOrn B-structure_element that O connects O D23 B-residue_name_number and O A30 B-residue_name_number in O peptide B-mutant 1 I-mutant . O After O determining O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structure I-evidence of O peptide B-mutant 4 I-mutant we O reintroduced B-experimental_method the O native O phenylalanine B-residue_name at O position O 19 B-residue_number and O the O methionine B-residue_name at O position O 35 B-residue_number to O afford O peptide B-mutant 2 I-mutant . O Peptides B-mutant 2 I-mutant – I-mutant 4 I-mutant were O purified O by O RP B-experimental_method - I-experimental_method HPLC I-experimental_method . O The O optimized O conditions O consist O of O 0 O . O 1 O M O HEPES B-chemical at O pH O 6 O . O 4 O with O 31 O % O Jeffamine B-chemical M I-chemical - I-chemical 600 I-chemical for O peptide B-mutant 4 I-mutant and O 0 O . O 1 O M O HEPES B-chemical pH O 7 O . O 1 O with O 29 O % O Jeffamine B-chemical M I-chemical - I-chemical 600 I-chemical for O peptide B-mutant 2 I-mutant . O The O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structure I-evidence of O peptide B-mutant 2 I-mutant reveals O that O it O folds O to O form O a O twisted B-structure_element β I-structure_element - I-structure_element hairpin I-structure_element comprising O two O β B-structure_element - I-structure_element strands I-structure_element connected O by O a O loop B-structure_element ( O Figure O 2A O ). O The O disulfide B-ptm linkages I-ptm suffered O radiation O damage O under O synchrotron O radiation O . O Two O crystallographically O distinct O trimers B-oligomeric_state comprise O the O peptide B-chemical portion O of O the O asymmetric O unit O . O A O network O of O 18 O intermolecular O hydrogen B-bond_interaction bonds I-bond_interaction helps O stabilize O the O trimer B-oligomeric_state . O Hydrophobic B-bond_interaction contacts I-bond_interaction between O residues O at O the O three O corners O of O the O trimer B-oligomeric_state , O where O the O β B-structure_element - I-structure_element hairpins I-structure_element meet O , O further O stabilize O the O trimer B-oligomeric_state . O Each O of O the O 12 O β B-structure_element - I-structure_element hairpins I-structure_element constitutes O an O edge O of O the O octahedron B-protein_state , O and O the O triangular B-protein_state trimers B-oligomeric_state occupy O four O of O the O eight O faces O of O the O octahedron B-protein_state . O Residues O L17 B-residue_name_number , O L34 B-residue_name_number , O and O V36 B-residue_name_number are O shown O as O spheres O , O illustrating O the O hydrophobic B-bond_interaction packing I-bond_interaction that O occurs O at O the O six O vertices O of O the O dodecamer B-oligomeric_state . O ( O D O ) O Detailed O view O of O one O of O the O six O vertices O of O the O dodecamer B-oligomeric_state . O The O exterior O of O the O dodecamer B-oligomeric_state displays O four O F20 B-residue_name_number faces O ( O Figure O S3 O ). O Two O morphologically O distinct O interactions O between O trimers B-oligomeric_state occur O at O the O interfaces B-site of O the O five O dodecamers B-oligomeric_state : O one O in O which O the O trimers B-oligomeric_state are O eclipsed B-protein_state ( O Figure O 5B O ), O and O one O in O which O the O trimers B-oligomeric_state are O staggered B-protein_state ( O Figure O 5C O ). O The O annular B-site pore I-site contains O three O eclipsed B-protein_state interfaces B-site and O two O staggered B-protein_state interfaces B-site . O Ten O Aβ25 B-protein – B-residue_range 28 I-residue_range loops B-structure_element from O the O vertices O of O the O five O dodecamers B-oligomeric_state line O the O hole O in O the O center O of O the O pore B-site . O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structure I-evidence of O the O annular B-site pore I-site formed O by O peptide B-mutant 2 I-mutant . O ( O A O ) O Annular B-structure_element porelike I-structure_element structure B-evidence illustrating O the O relationship O of O the O five O dodecamers B-oligomeric_state that O form O the O pore B-site ( O top O view O ). O The O same O staggered B-site interface I-site also O occurs O between O dodecamers O 4 O and O 5 O . O ( O D O ) O Eclipsed B-site interface I-site between O dodecamers B-structure_element 1 I-structure_element and I-structure_element 5 I-structure_element ( O top O view O ). O Rather O , O the O crystal B-evidence lattice I-evidence is O composed O of O conjoined O annular B-site pores I-site in O which O all O four O F20 B-residue_name_number faces O on O the O surface O of O each O dodecamer B-oligomeric_state contact O F20 B-residue_name_number faces O on O other O dodecamers B-oligomeric_state ( O Figure O S4 O ). O In O this O model O Aβ B-protein folds O to O form O a O β B-structure_element - I-structure_element hairpin I-structure_element comprising O the O hydrophobic O central B-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element regions I-structure_element . O Three O β B-structure_element - I-structure_element hairpins I-structure_element assemble O to O form O a O trimer B-oligomeric_state , O and O four O trimers B-oligomeric_state assemble O to O form O a O dodecamer B-oligomeric_state . O Three O β B-structure_element - I-structure_element hairpin I-structure_element monomers B-oligomeric_state assemble O to O form O a O triangular B-protein_state trimer B-oligomeric_state . O Four O triangular B-protein_state trimers B-oligomeric_state assemble O to O form O a O dodecamer B-oligomeric_state . O The O molecular O weights O shown O correspond O to O an O Aβ42 B-protein monomer B-oligomeric_state (∼ O 4 O . O 5 O kDa O ), O an O Aβ42 B-protein trimer B-oligomeric_state (∼ O 13 O . O 5 O kDa O ), O an O Aβ42 B-protein dodecamer B-oligomeric_state (∼ O 54 O kDa O ), O and O an O Aβ42 B-protein annular B-site pore I-site composed O of O five O dodecamers B-oligomeric_state (∼ O 270 O kDa O ). O Fibrillar B-protein_state and O nonfibrillar B-protein_state oligomers B-oligomeric_state have O structurally O distinct O characteristics O , O which O are O reflected O in O their O reactivity O with O the O fibril O - O specific O OC O antibody O and O the O oligomer B-oligomeric_state - O specific O A11 O antibody O . O The O varying O sizes O of O APFs B-complex_assembly formed O by O full B-protein_state - I-protein_state length I-protein_state Aβ B-protein might O result O from O differences O in O the O number O of O oligomer B-oligomeric_state subunits B-structure_element comprising O each O APF B-complex_assembly . O Although O the O annular B-site pore I-site formed O by O peptide B-mutant 2 I-mutant contains O five O dodecamer B-oligomeric_state subunits B-structure_element , O pores B-site containing O fewer O or O more O subunits B-structure_element can O easily O be O envisioned O . O Surface O views O of O the O annular B-site pore I-site formed O by O peptide B-mutant 2 I-mutant . O ( O A O ) O Top O view O . O This O reactivity O suggests O that O peptide B-mutant 2 I-mutant forms O oligomers B-oligomeric_state in O solution O that O share O structural O similarities O to O the O nonfibrillar B-protein_state oligomers B-oligomeric_state formed O by O full B-protein_state - I-protein_state length I-protein_state Aβ B-protein . O To O identify O biophysical O determinants O of O cell O ‐ O specific O signaling O and O breast O cancer O cell O proliferation O , O we O synthesized B-experimental_method 241 O ERα B-protein ligands O based O on O 19 O chemical O scaffolds O , O and O compared O ligand O response O using O quantitative B-experimental_method bioassays I-experimental_method for O canonical O ERα B-protein activities O and O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method . O Many O drugs O are O small O ‐ O molecule O ligands O of O allosteric O signaling O proteins O , O including O G B-protein_type protein I-protein_type ‐ I-protein_type coupled I-protein_type receptors I-protein_type ( O GPCRs B-protein_type ) O and O nuclear B-protein_type receptors I-protein_type such O as O ERα B-protein . O Chemical O structures O of O some O common O ERα B-protein ligands O . O AF B-structure_element ‐ I-structure_element 1 I-structure_element binds O a O separate O surface O on O these O coactivators O ( O Webb O et O al O , O 1998 O ; O Yi O et O al O , O 2015 O ). O We O also O generated O four O direct O modulator O series O with O side O chains O designed O to O directly O dislocate O h12 B-structure_element and O thereby O completely O occlude O the O AF B-site ‐ I-site 2 I-site surface I-site ( O Fig O 2C O and O E O ; O Dataset O EV1 O ) O ( O Kieser O et O al O , O 2010 O ). O ERα B-protein ligands O induced O a O range O of O agonist O activity O profiles O Correlation O analysis O of O OBHS B-chemical versus O OBHS B-chemical ‐ I-chemical BSC I-chemical activity O across O cell O types O . O These O results O suggest O that O addition O of O an O extended O side O chain O to O an O ERα B-protein ligand O scaffold O is O sufficient O to O induce O cell O ‐ O specific O signaling O , O where O the O relative O activity O profiles O of O the O individual O ligands O change O between O cell O types O . O Modulation O of O signaling O specificity O by O AF B-structure_element ‐ I-structure_element 1 I-structure_element The O positive O correlation O between O the O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O or O GREB1 B-protein levels O induced O by O scaffolds O in O cluster O 1 O was O generally O retained O without O the O AB B-structure_element domain O , O or O the O F B-structure_element domain O ( O Fig O 3D O lanes O 1 O – O 4 O ). O OBHS B-chemical analogs O showed O an O average O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-mutant ‐ I-mutant ΔAB I-mutant activity O of O 3 O . O 2 O % O ± O 3 O ( O mean O + O SEM O ) O relative O to O E2 B-chemical . O These O similar O patterns O of O ligand O activity O in O the O wild B-protein_state ‐ I-protein_state type I-protein_state and O deletion O mutants B-protein_state suggest O that O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O the O F B-structure_element domain O purely O amplify O the O AF B-structure_element ‐ I-structure_element 2 I-structure_element activities O of O ligands O in O cluster O 1 O . O In O contrast O , O AF B-structure_element ‐ I-structure_element 1 I-structure_element was O a O determinant O of O signaling O specificity O for O scaffolds O in O cluster O 2 O . O Comparing O Fig O 3C O and O D O , O the O + O and O − O signs O indicate O where O the O deletion B-experimental_method mutant I-experimental_method assays I-experimental_method led O to O a O gain O or O loss O of O statically O significant O correlation O , O respectively O . O These O results O suggest O that O compounds O that O show O cell O ‐ O specific O signaling O do O not O activate O GREB1 B-protein , O or O use O coactivators O other O than O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein to O control O GREB1 B-protein expression O ( O Fig O 1E O ). O Out O of O 15 O ligand O series O in O these O clusters O , O only O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O induced O a O proliferative O response O that O was O predicted O by O GREB1 B-protein levels O , O which O were O not O determined O by O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O ( O Fig O 3E O and O F O lane O 10 O ). O However O , O the O ChIP B-experimental_method assays I-experimental_method for O WAY B-chemical ‐ I-chemical C I-chemical ‐ O induced O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein promoter O did O not O correlate O with O any O of O the O other O WAY B-chemical ‐ I-chemical C I-chemical activity O profiles O ( O Fig O 4D O ), O although O the O positive O correlation O between O ChIP B-experimental_method assays I-experimental_method and O NCOA3 B-protein recruitment O via O M2H B-experimental_method assay I-experimental_method showed O a O trend O toward O significance O with O r B-evidence 2 I-evidence = O 0 O . O 36 O and O P B-evidence = O 0 O . O 09 O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O ). O For O most O scaffolds O , O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERβ O and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O were O not O correlated O , O except O for O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O , O which O showed O moderate O but O significant O correlations O ( O Fig O EV4A O ). O Triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O induce O variance O of O ERα B-protein conformations O at O the O C O ‐ O terminal O region O of O h11 B-structure_element . O ERα B-protein LBDs B-structure_element in B-protein_state complex I-protein_state with I-protein_state diethylstilbestrol B-chemical ( O DES B-chemical ) O or O a O triaryl B-chemical ‐ I-chemical ethylene I-chemical analog O were O superposed B-experimental_method to O show O that O the O ligand O ‐ O induced O difference O in O h11 B-structure_element conformation O is O transmitted O to O the O C O ‐ O terminus O of O h12 B-structure_element ( O PDB O 4ZN7 O , O 5DMC O ). O The O bound O ligands O are O shown O , O and O arrows O indicate O considerable O variation O in O the O orientation O of O the O different O h3 B-structure_element ‐, O h8 B-structure_element ‐, O h11 B-structure_element ‐, O or O h12 B-structure_element ‐ O directed O ligand O side O groups O . O Ligands O with O cell O ‐ O specific O activity O alter O the O shape O of O the O AF B-site ‐ I-site 2 I-site surface I-site Direct O modulators O like O tamoxifen B-chemical drive O AF B-structure_element ‐ I-structure_element 1 I-structure_element ‐ O dependent O cell O ‐ O specific O activity O by O completely O occluding O AF B-structure_element ‐ I-structure_element 2 I-structure_element , O but O it O is O not O known O how O indirect O modulators O produce O cell O ‐ O specific O ERα B-protein activity O . O For O instance O , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical analogs O ( O Fig O 2 O ) O had O similar O ERα B-protein activity O profiles O in O the O different O cell O types O ( O Fig O EV2A O – O C O ), O but O the O 2 O ‐ O versus O 3 O ‐ O methyl O substituted O phenol O rings O altered O the O correlated O signaling O patterns O in O different O cell O types O ( O Fig O 3B O lanes O 7 O and O 12 O ). O The O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical scaffolds O are O isomeric O , O but O with O aryl O groups O at O obtuse O and O acute O angles O , O respectively O ( O Fig O 2 O ). O Hierarchical B-experimental_method clustering I-experimental_method revealed O that O many O of O the O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O recapitulated O most O of O the O peptide O recruitment O and O dismissal O patterns O observed O with O E2 B-chemical ( O Fig O 6H O ). O Together O , O these O findings O suggest O that O without O an O extended O side O chain O , O cell O ‐ O specific O activity O stems O from O different O coregulator O recruitment O profiles O , O due O to O unique O ligand O ‐ O induced O conformations O of O the O AF B-site ‐ I-site 2 I-site surface I-site , O in O addition O to O differential O usage O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element . O Our O goal O was O to O identify O a O minimal O set O of O predictors O that O would O link O specific O structural O perturbations O to O ERα B-protein signaling O pathways O that O control O cell O ‐ O specific O signaling O and O proliferation O . O Ligands O in O these O classes O altered O the O shape O of O AF B-structure_element ‐ I-structure_element 2 I-structure_element to O affect O coregulator O preferences O . O It O is O noteworthy O that O regulation O of O h12 B-structure_element dynamics O indirectly O through O h11 B-structure_element can O virtually O abolish O AF B-structure_element ‐ I-structure_element 2 I-structure_element activity O , O and O yet O still O drive O robust O transcriptional O activity O through O AF B-structure_element ‐ I-structure_element 1 I-structure_element , O as O demonstrated O with O the O OBHS B-chemical series O . O Also O , O we O have O used O siRNA B-experimental_method screening I-experimental_method to O identify O a O number O of O coregulators O required O for O ERα B-protein ‐ O mediated O repression O of O the O IL O ‐ O 6 O gene O ( O Nwachukwu O et O al O , O 2014 O ). O If O we O calculated O inter B-evidence ‐ I-evidence atomic I-evidence distance I-evidence matrices I-evidence containing O 4 O , O 000 O atoms O per O structure O × O 76 O ligand O – O receptor O complexes O , O we O would O have O 3 O × O 105 O predictions O . O We O have O identified O atomic B-evidence vectors I-evidence for O the O OBHS B-chemical ‐ I-chemical N I-chemical and O triaryl B-chemical ‐ I-chemical ethylene I-chemical classes O that O predict O ligand O response O ( O Fig O 5E O and O F O ). O Significant O morbidity O and O mortality O has O been O associated O with O an O emerging O , O highly O drug O - O resistant O strain O of O K B-species . I-species pneumoniae I-species characterized O as O producing O the O carbapenemase B-protein_type enzyme O ( O KPC O - O producing O bacteria B-taxonomy_domain ; O Nordmann O et O al O ., O 2009 O ). O In O bacteria B-taxonomy_domain , O topoisomerase B-complex_assembly IV I-complex_assembly , O a O tetramer B-oligomeric_state of O two O ParC B-protein and O two O ParE B-protein subunits O , O unlinks O daughter O chromosomes O prior O to O cell O division O , O whereas O the O related O enzyme O gyrase B-protein_type , O a O GyrA2GyrB2 B-complex_assembly tetramer B-oligomeric_state , O supercoils O DNA B-chemical and O helps O unwind O DNA B-chemical at O replication O forks O . O Levofloxacin B-chemical is O a O broad O - O spectrum O third O - O generation O fluoro O ­ O quinolone O antibiotic O . O The O upper O region O of O the O topoisomerase B-protein_type complex O consists O of O the O E B-protein - I-protein subunit I-protein TOPRIM B-structure_element metal I-structure_element - I-structure_element binding I-structure_element domain I-structure_element formed O of O four O parallel B-structure_element β I-structure_element - I-structure_element sheets I-structure_element and O the O surrounding O α B-structure_element - I-structure_element helices I-structure_element . O There O is O 41 O . O 6 O % O sequence O identity O and O 54 O . O 4 O % O sequence O homology O between O the O ParE B-protein subunit O of O K B-species . I-species pneumoniae I-species and O that O of O S B-species . I-species pneumoniae I-species . O Interestingly O , O for O S B-species . I-species pneumoniae I-species we O observe O only O one O possible O orientation O of O the O C7 O groups O in O both O sub O ­ O units O , O while O for O K B-species . I-species pneumoniae I-species we O can O see O two O : O one O with O the O same O orientation O as O in O S B-species . I-species pneumoniae I-species and O other O rotated O 180 O ° O away O . O They O both O exist O within O the O same O crystal B-evidence in O the O two O different O dimers B-oligomeric_state in O the O asymmetric O unit O . O Similar O behaviour O was O observed O for O the O S B-species . I-species pneumoniae I-species topo B-complex_assembly ­ I-complex_assembly isomerase I-complex_assembly IV I-complex_assembly ParE30 B-complex_assembly - I-complex_assembly ParC55 I-complex_assembly fusion O protein O . O Given O the O current O concerns O about O drug O - O resistant O strains O of O Klebsiella B-taxonomy_domain , O the O structure B-evidence reported O here O provides O key O information O in O understanding O the O action O of O currently O used O quinolones B-chemical and O should O aid O in O the O development O of O other O topoisomerase B-protein_type - O targeting O therapeutics O active O against O this O major O human B-species pathogen O . O Bound B-protein_state ATP B-chemical is O indicated O by O pink O circles O in O the O ATPase B-structure_element domains I-structure_element ( O reproduced O with O permission O from O Fig O . O 1 O of O Lapanogov O et O al O ., O 2013 O ). O After O 60 O min O incubation O , O samples O were O treated O with O SDS O and O proteinase O K O to O remove O proteins O covalent O bound O to O DNA B-chemical , O and O the O DNA B-chemical products O were O examined O by O gel O electrophoresis O in O 1 O % O agarose O . O We O illustrate O this O here O using O glutamate B-protein_type dehydrogenase I-protein_type ( O GDH B-protein_type ), O a O 336 O - O kDa O metabolic O enzyme O that O catalyzes O the O oxidative O deamination O of O glutamate B-chemical . O Here O , O we O report O near O - O atomic O resolution O cryo B-experimental_method - I-experimental_method EM I-experimental_method structures B-evidence , O at O resolutions O ranging O from O 3 O . O 2 O Å O to O 3 O . O 6 O Å O for O GDH B-protein_type complexes O , O including O complexes O for O which O crystal B-evidence structures I-evidence are O not O available O . O The O first O is O located O near O the O dimer B-site interface I-site and O forms O the O core O of O the O hexamer B-oligomeric_state . O In O contrast O , O in O the O open B-protein_state conformation O , O the O cavity B-site present O in O the O closed B-protein_state state O becomes O too O narrow O for O the O nicotinamide O group O ; O instead O , O the O group O is O oriented O in O the O opposite O direction O , O parallel O to O the O pivot B-structure_element helix I-structure_element with O the O amido O group O extending O toward O the O C O - O terminal O end O of O the O helix B-structure_element . O In O the O open B-protein_state conformation O , O the O distance O between O His209 B-residue_name_number and O the O α O - O phosphate O of O NADH B-chemical is O ∼ O 4 O . O 4 O Å O , O which O is O comparable O with O the O corresponding O distance O in O the O ADP B-protein_state - I-protein_state bound I-protein_state conformation O . O Importantly O , O the O binding O of O GTP B-chemical alone O does O not O appear O to O drive O the O transition O from O the O open B-protein_state to O the O closed B-protein_state state O of O GDH B-protein . O When O NADH B-chemical and O GTP B-chemical are O both O present O , O classification B-experimental_method reveals O the O presence B-protein_state of I-protein_state both O closed B-protein_state and O open B-protein_state GDH B-protein conformations O , O similar O to O the O condition O when O only O NADH B-chemical is O present O ( O Fig O . O 4 O , O A O and O B O ). O When O GTP B-chemical is O present O in O the O GTP B-site binding I-site site I-site , O His209 B-residue_name_number instead O interacts O with O GTP B-chemical , O probably O stabilizing O the O closed B-protein_state conformation O ( O Fig O . O 4 O , O C O and O D O ). O These O structural O features O provide O a O potential O explanation O of O the O weaker O density B-evidence for O the O nicotinamide O moiety O of O NADH B-chemical in O the O open B-protein_state state O , O and O may O account O for O the O higher O reported O affinity O of O NADH B-chemical for O the O closed B-protein_state state O . O It O contains O a O membrane O - O deforming O F B-structure_element - I-structure_element BAR I-structure_element domain O as O well O as O a O Src B-structure_element homology I-structure_element 3 I-structure_element ( O SH3 B-structure_element ) O domain O and O a O G B-structure_element protein I-structure_element - I-structure_element binding I-structure_element homology I-structure_element region I-structure_element 1 I-structure_element ( O HR1 B-structure_element ) O domain O . O TOCA1 B-protein binding O to O Cdc42 B-protein leads O to O actin B-protein_type rearrangements O , O which O are O thought O to O be O involved O in O processes O such O as O endocytosis O , O filopodia O formation O , O and O cell O migration O . O The O structures B-evidence of O more O than O 60 O small O G B-protein_type protein I-protein_type · O effector O complexes O have O been O solved B-experimental_method , O and O , O not O surprisingly O , O the O switch B-site regions I-site have O been O implicated O in O a O large O proportion O of O the O G B-protein_type protein I-protein_type - O effector O interactions O ( O reviewed O in O Ref O .). O The O TOCA1 B-protein SH3 B-structure_element domain O has O many O known O binding O partners O , O including O N B-protein - I-protein WASP I-protein and O dynamin B-protein . O The O structures B-evidence of O the O PRK1 B-protein HR1a B-structure_element domain O in O complex B-protein_state with I-protein_state RhoA B-protein and O the O HR1b B-structure_element domain O in O complex B-protein_state with I-protein_state Rac1 B-protein show O that O the O HR1 B-structure_element domain O comprises O an O anti B-structure_element - I-structure_element parallel I-structure_element coiled I-structure_element - I-structure_element coil I-structure_element that O interacts O with O its O G B-protein_type protein I-protein_type binding O partner O via O both O helices B-structure_element . O Both O of O the O G B-site protein I-site switch I-site regions I-site are O involved O in O the O interaction O . O The O coiled B-structure_element - I-structure_element coil I-structure_element fold I-structure_element is O shared O by O the O HR1 B-structure_element domain O of O the O TOCA B-protein_type family I-protein_type protein I-protein_type , O CIP4 B-protein , O and O , O based O on O sequence O homology O , O by O TOCA1 B-protein itself O . O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence to O give O an O apparent O Kd B-evidence and O are O expressed O as O a O percentage O of O the O maximum O signal O ; O B O and O C O , O competition B-experimental_method SPA I-experimental_method experiments O were O carried O out O with O the O indicated O concentrations O of O ACK B-protein GBD B-structure_element ( O B O ) O or O HR1 B-structure_element domain O ( O C O ) O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant and O either O 30 O nm O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly or O full B-protein_state - I-protein_state length I-protein_state Cdc42Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly . O The O Kd B-evidence values O derived O for O the O TOCA1 B-protein HR1 B-structure_element with O Cdc42Δ7 B-mutant and O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein were O 6 O . O 05 O ± O 1 O . O 96 O and O 5 O . O 39 O ± O 1 O . O 69 O μm O , O respectively O . O It O was O possible O that O the O low O affinity O observed O was O due O to O negative O effects O of O immobilization O of O the O HR1 B-structure_element domain O , O so O other O methods O were O employed O , O which O utilized O untagged B-protein_state proteins O . O Other O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O have O also O failed O to O show O heat O changes O in O our O hands O . O 7 O Infrared B-experimental_method interferometry I-experimental_method with O immobilized B-protein_state Cdc42 B-protein was O also O attempted O but O was O unsuccessful O for O both O TOCA1 B-protein HR1 B-structure_element and O for O the O positive O control O , O ACK B-protein . O Full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O ΔSH3 B-mutant TOCA1 B-protein bound B-protein_state with O micromolar O affinity O ( O Fig O . O 2B O ), O in O a O similar O manner O to O the O isolated O HR1 B-structure_element domain O ( O Fig O . O 1A O ). O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence to O give O an O apparent O Kd B-evidence and O are O expressed O as O a O percentage O of O the O maximum O signal O . O The O affinities B-evidence of O both O the O FBP17 B-protein and O CIP4 B-protein HR1 B-structure_element domains O were O also O in O the O low O micromolar O range O ( O 10 O and O 5 O μm O , O respectively O ) O ( O Fig O . O 2 O , O D O and O E O ), O suggesting O that O low O affinity O interactions O with O Cdc42 B-protein are O a O common O feature O within O the O TOCA B-protein_type family I-protein_type . O 100 O structures B-evidence were O calculated B-experimental_method in O the O final O iteration O ; O the O 50 O lowest O energy O structures B-evidence were O water O - O refined O ; O and O of O these O , O the O 35 O lowest O energy O structures B-evidence were O analyzed O . O The O two O α B-structure_element - I-structure_element helices I-structure_element of O the O HR1 B-structure_element domain O interact O to O form O an O anti B-structure_element - I-structure_element parallel I-structure_element coiled I-structure_element - I-structure_element coil I-structure_element with O a O slight O left O - O handed O twist O , O reminiscent O of O the O HR1 B-structure_element domains O of O CIP4 B-protein ( O PDB O code O 2KE4 O ) O and O PRK1 B-protein ( O PDB O codes O 1CXZ O and O 1URF O ). O The O structure B-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O . O Long O range O NOEs B-evidence were O observed O linking O Leu B-residue_name_number - I-residue_name_number 334 I-residue_name_number , O Glu B-residue_name_number - I-residue_name_number 335 I-residue_name_number , O and O Asp B-residue_name_number - I-residue_name_number 336 I-residue_name_number with O Trp B-residue_name_number - I-residue_name_number 413 I-residue_name_number of O helix B-structure_element 2 I-structure_element , O Leu B-residue_name_number - I-residue_name_number 334 I-residue_name_number with O Lys B-residue_name_number - I-residue_name_number 409 I-residue_name_number of O helix B-structure_element 2 I-structure_element , O and O Phe B-residue_name_number - I-residue_name_number 337 I-residue_name_number and O Ser B-residue_name_number - I-residue_name_number 338 I-residue_name_number with O Arg B-residue_name_number - I-residue_name_number 345 I-residue_name_number , O Arg B-residue_name_number - I-residue_name_number 348 I-residue_name_number , O and O Leu B-residue_name_number - I-residue_name_number 349 I-residue_name_number of O helix B-structure_element 1 I-structure_element . O Residues O that O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein were O assigned O a O CSP B-experimental_method of O 0 O . O 2 O but O were O excluded O when O calculating O the O mean O CSP B-experimental_method and O are O indicated O with O open O bars O . O Side O chains O whose O CH O groups O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein are O marked O on O the O graph O in O Fig O . O 4B O with O green O asterisks O . O The O corresponding O 15N B-experimental_method and O 13C B-experimental_method NMR I-experimental_method experiments O were O also O recorded O on O 15N B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly or O 15N B-chemical / O 13C B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly in O the O presence B-protein_state of I-protein_state unlabeled B-protein_state HR1 B-structure_element domain O . O Mapping O the O binding B-site surface I-site of O the O HR1 B-structure_element domain O onto O Cdc42 B-protein . O Residues O with O disappeared O peaks O in O 13C B-experimental_method HSQC I-experimental_method experiments O are O marked O on O the O chart O with O green O asterisks O . O Residues O with O either O side O chain O or O backbone O groups O affected O are O colored O blue O if O buried O and O yellow O if O solvent B-protein_state - I-protein_state accessible I-protein_state . O The O switch B-site regions I-site of O Cdc42 B-protein did O not O , O however O , O become O visible O in O the O presence B-protein_state of I-protein_state the O TOCA1 B-protein HR1 B-structure_element domain O . O Residues O of O Cdc42 B-protein that O disappear O or O show O chemical O shift O changes O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein are O colored O cyan O if O also O identified O as O contacts O in O RhoA B-protein and O Rac1 B-protein and O yellow O if O they O are O not O . O D O , O regions O of O interest O of O the O Cdc42 B-complex_assembly · I-complex_assembly HR1 I-complex_assembly domain O model O . O D O , O selected O regions O of O the O 15N B-experimental_method HSQC I-experimental_method of O 600 O μm O TOCA1 B-protein HR1 B-structure_element domain O in B-protein_state complex I-protein_state with I-protein_state Cdc42 B-protein in O the O absence B-protein_state and O presence B-protein_state of I-protein_state the O N B-protein - I-protein WASP I-protein GBD B-structure_element , O showing O displacement O of O Cdc42 B-protein from O the O HR1 B-structure_element domain O by O N B-protein - I-protein WASP I-protein . O An O N B-protein - I-protein WASP I-protein GBD B-structure_element construct O was O produced O , O and O its O affinity B-evidence for O Cdc42 B-protein was O measured O by O competition B-experimental_method SPA I-experimental_method ( O Fig O . O 7B O ). O A O comparison O of O the O HSQC B-experimental_method experiments O recorded O on O 15N B-chemical - O Cdc42 B-protein alone B-protein_state , O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein HR1 B-structure_element , O N B-protein - I-protein WASP I-protein GBD B-structure_element , O or O both O , O shows O that O the O spectra B-evidence in O the O presence B-protein_state of I-protein_state N B-protein - I-protein WASP I-protein and O in O the O presence B-protein_state of I-protein_state both O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein HR1 B-structure_element are O identical O ( O Fig O . O 7C O ). O Actin B-protein_type polymerization O triggered O by O the O addition O of O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical - O containing O liposomes O has O previously O been O shown O to O depend O on O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein . O The O contacts B-bond_interaction between O the O N O - O terminal O region O and O the O coiled B-structure_element - I-structure_element coil I-structure_element are O predominantly O hydrophobic B-bond_interaction in O both O cases O , O but O sequence O - O specific O contacts O do O not O appear O to O be O conserved O . O Some O residues O that O are O affected O in O the O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O but O do O not O correspond O to O contact O residues O of O RhoA B-protein or O Rac1 B-protein ( O Fig O . O 6C O ) O may O contact O HR1TOCA1 B-structure_element directly O ( O Fig O . O 6D O ). O Thr B-residue_name_number - I-residue_name_number 52Cdc42 I-residue_name_number , O which O has O also O been O identified O as O making O minor O contacts O with O ACK B-protein , O falls O near O the O side O chains O of O HR1TOCA1 B-structure_element helix B-structure_element 1 I-structure_element , O particularly O Lys B-residue_name_number - I-residue_name_number 372TOCA1 I-residue_name_number , O whereas O the O equivalent O position O in O Rac1 B-protein is O Asn B-residue_name_number - I-residue_name_number 52Rac1 I-residue_name_number . O The O importance O of O this O residue O in O the O Cdc42 B-protein - O TOCA1 B-protein interaction O remains O unclear O , O although O its O mutation B-experimental_method reduces O binding O to O RhoGAP B-protein , O suggesting O that O it O can O be O involved O in O Cdc42 B-protein interactions O . O An O investigation O into O the O local O motions O , O particularly O in O the O G B-site protein I-site - I-site binding I-site regions I-site , O may O offer O further O insight O into O the O differential O specificities O and O affinities O of O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O . O WIP B-protein inhibits O the O activation O of O N B-protein - I-protein WASP I-protein by O Cdc42 B-protein , O an O effect O that O is O reversed O by O TOCA1 B-protein . O A O combination O of O allosteric O activation O by O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical , O activated B-protein_state Cdc42 B-protein and O TOCA1 B-protein , O and O oligomeric O activation O implemented O by O TOCA1 B-protein would O lead O to O full B-protein_state activation I-protein_state of O N B-protein - I-protein WASP I-protein and O downstream O actin O polymerization O . O Furthermore O , O TOCA1 B-protein is O required O for O Cdc42 B-protein - O mediated O activation O of O N B-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly WIP I-complex_assembly , O implying O that O it O may O not O be O possible O for O Cdc42 B-protein to O bind O and O activate O N B-protein - I-protein WASP I-protein prior O to O TOCA1 B-protein - O Cdc42 B-protein binding O . O There O is O an O advantage O to O such O an O effector O handover O , O in O that O N B-protein - I-protein WASP I-protein would O only O be O robustly O recruited O when O F B-structure_element - I-structure_element BAR I-structure_element domains O are O already O present O . O The O region O C O - O terminal O to O the O core O CRIB B-structure_element , O required O for O maximal O affinity O binding O , O would O then O fully O displace O the O TOCA1 B-protein HR1 B-structure_element . O We O envisage O a O complex O interplay O of O equilibria O between O free B-protein_state and O bound B-protein_state , O active B-protein_state and O inactive B-protein_state Cdc42 B-protein , O TOCA B-protein_type family I-protein_type , O and O WASP B-protein_type family O proteins O , O facilitating O a O tightly O spatially O and O temporally O regulated O pathway O requiring O numerous O simultaneous O events O in O order O to O achieve O appropriate O and O robust O activation O of O the O downstream O pathway O . O Our O data O are O therefore O easily O reconciled O with O the O dynamic O instability O models O described O in O relation O to O the O formation O of O endocytic O vesicles O and O with O the O current O data O pertaining O to O the O complex O activation O of O WASP B-protein_type / O N B-protein - I-protein WASP I-protein pathways O by O allosteric O and O oligomeric O effects O . O Acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O catalyse O the O committed O step O in O fatty O - O acid O biosynthesis O : O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O They O are O important O regulatory O hubs O for O metabolic O control O and O relevant O drug O targets O for O the O treatment O of O the O metabolic O syndrome O and O cancer O . O Biotin B-protein_type - I-protein_type dependent I-protein_type acetyl I-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O are O essential O enzymes O that O catalyse O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O This O reaction O provides O the O committed O activated O substrate O for O the O biosynthesis O of O fatty B-chemical acids I-chemical via O fatty B-protein_type - I-protein_type acid I-protein_type synthase I-protein_type . O The O principal O functional O protein O components O of O ACCs B-protein_type have O been O described O already O in O the O late O 1960s O for O Escherichia B-species coli I-species ( O E B-species . I-species coli I-species ) O ACC B-protein_type : O Biotin B-protein_type carboxylase I-protein_type ( O BC B-protein_type ) O catalyses O the O ATP B-chemical - O dependent O carboxylation O of O a O biotin B-chemical moiety O , O which O is O covalently O linked O to O the O biotin B-protein_type carboxyl I-protein_type carrier I-protein_type protein I-protein_type ( O BCCP B-protein_type ). O The O CD B-structure_element comprises O one O - O third O of O the O protein O and O is O a O unique B-protein_state feature I-protein_state of I-protein_state eukaryotic B-taxonomy_domain ACCs B-protein_type without O homologues O in O other O proteins O . O The O function O of O this O domain O remains O poorly O characterized O , O although O phosphorylation B-ptm of O several O serine B-residue_name residues O in O the O CD B-structure_element regulates O ACC B-protein_type activity O . O In O these O structures B-evidence , O the O BC B-protein_type and O CT B-protein_type active B-site sites I-site are O at O distances O between O 40 O and O 80 O Å O , O such O that O substrate O transfer O could O be O mediated O solely O by O the O mobility O of O the O flexibly B-protein_state tethered I-protein_state BCCP B-protein_type . O For O fungal B-taxonomy_domain ACC B-protein_type , O neither O spontaneous O nor O inducible O polymerization O has O been O detected O despite O considerable O sequence O conservation O to O human B-species ACC1 B-protein . O Despite O the O outstanding O relevance O of O ACC B-protein_type in O primary O metabolism O and O disease O , O the O dynamic O organization O and O regulation O of O the O giant O eukaryotic B-taxonomy_domain , O and O in O particular O fungal B-taxonomy_domain ACC B-protein_type , O remain O poorly O characterized O . O Integrating O these O data O with O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method ( O SAXS B-experimental_method ) O and O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O observations O yield O a O comprehensive O representation O of O the O dynamic O structure O and O regulation O of O fungal B-taxonomy_domain ACC B-protein_type . O CDL B-structure_element is O composed O of O a O small B-structure_element , I-structure_element irregular I-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O Lα1 B-structure_element – I-structure_element 4 I-structure_element ) O and O tightly O interacts O with O the O open O face O of O CDC1 B-structure_element via O an O interface B-site of O 1 O , O 300 O Å2 O involving O helices B-structure_element Lα3 B-structure_element and O Lα4 B-structure_element . O In O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method full B-protein_state - I-protein_state length I-protein_state SceACC B-protein , O the O highly B-protein_state conserved I-protein_state Ser1157 B-residue_name_number is O the O only O fully B-protein_state occupied I-protein_state phosphorylation B-site site I-site with O functional O relevance O in O S B-species . I-species cerevisiae I-species . O Additional O phosphorylation B-ptm was O detected O for O Ser2101 B-residue_name_number and O Tyr2179 B-residue_name_number ; O however O , O these O sites O are O neither B-protein_state conserved I-protein_state across O fungal B-taxonomy_domain ACC B-protein_type nor B-protein_state natively I-protein_state phosphorylated I-protein_state in O yeast B-taxonomy_domain . O On O the O basis O of O MS B-experimental_method analysis O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method human B-species full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O Ser80 B-residue_name_number shows O the O highest O degree O of O phosphorylation B-ptm ( O 90 O %). O Ser29 B-residue_name_number and O Ser1263 B-residue_name_number , O implicated O in O insulin B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm and O BRCA1 B-protein binding O , O respectively O , O are O phosphorylated B-protein_state at O intermediate O levels O ( O 40 O %). O Accordingly O , O most O of O this B-structure_element loop I-structure_element is O not O represented O in O the O HsaBT B-mutant - I-mutant CD I-mutant crystal B-evidence structure I-evidence . O Besides O the O regulatory B-structure_element loop I-structure_element , O also O the O phosphopeptide B-site target I-site region I-site for O BRCA1 B-protein interaction O is O not O resolved O presumably O because O of O pronounced O flexibility O . O On O the O basis O of O an O interface O area O of O ∼ O 600 O Å2 O and O its O edge O - O to O - O edge O connection O characteristics O , O the O interface B-site between O CT B-structure_element and O CD B-structure_element might O be O classified O as O conformationally O variable O . O SAXS B-experimental_method analysis O of O CthACC B-protein agrees O with O a O dimeric B-oligomeric_state state O and O an O elongated B-protein_state shape I-protein_state with O a O maximum O extent O of O 350 O Å O ( O Supplementary O Table O 1 O ). O The O CD B-structure_element has O no O direct O role O in O substrate O recognition O or O catalysis O but O contributes O to O the O regulation O of O all O eukaryotic B-taxonomy_domain ACCs B-protein_type . O However O , O flexibility O at O this O hinge B-structure_element may O be O required O for O full B-protein_state ACC I-protein_state activity I-protein_state , O as O the O distances O between O the O BCCP B-structure_element anchor I-structure_element points I-structure_element and O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element observed O here O are O such O large O that O mobility O of O the O BCCP B-structure_element alone O is O not O sufficient O for O substrate O transfer O . O A O second B-structure_element hinge I-structure_element can O be O identified O between O CDC1 B-structure_element / O CDC2 B-structure_element . O Large O - O scale O conformational O variability O has O also O been O observed O in O most O other O carrier B-protein_type protein I-protein_type - I-protein_type based I-protein_type multienzymes I-protein_type , O including O polyketide B-protein_type and I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ( O with O the O exception O of O fungal B-protein_type - I-protein_type type I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ), O non B-protein_type - I-protein_type ribosomal I-protein_type peptide I-protein_type synthetases I-protein_type and O the O pyruvate B-protein_type dehydrogenase I-protein_type complexes I-protein_type , O although O based O on O completely O different O architectures O . O The O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element binds O to O an O allosteric B-site site I-site at O the O interface B-site of O two O non B-protein_state - I-protein_state catalytic I-protein_state domains O and O restricts O conformational O freedom O at O several O hinges B-structure_element in O the O dynamic B-protein_state ACC B-protein_type . O CDN B-structure_element is O linked O by O a O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O CDL B-structure_element ) O to O two B-structure_element α I-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element domains I-structure_element ( O CDC1 B-structure_element and O CDC2 B-structure_element ). O ( O c O ) O Superposition B-experimental_method of O CDC1 B-structure_element and O CDC2 B-structure_element reveals O highly B-protein_state conserved I-protein_state folds B-structure_element . O ( O d O ) O The O regulatory B-structure_element loop I-structure_element with O the O phosphorylated B-protein_state Ser1157 B-residue_name_number is O bound O into O a O crevice O between O CDC1 B-structure_element and O CDC2 B-structure_element , O the O conserved B-protein_state residues O Arg1173 B-residue_name_number and O Arg1260 B-residue_name_number coordinate O the O phosphoryl B-chemical - O group O . O Variability O of O the O connections O of O CDC2 B-structure_element to O CT B-structure_element and O CDC1 B-structure_element in O fungal B-taxonomy_domain ACC B-protein_type . O For O other O instances O , O CDC2 B-structure_element domains O are O shown O in O transparent O tube O representation O with O only O one O helix O each O highlighted O . O Representation O as O in O a O , O but O the O CDC1 B-structure_element and O CDC2 B-structure_element are O superposed B-experimental_method based O on O CDC2 B-structure_element . O ( O a O – O c O ) O Large O - O scale O conformational O variability O of O the O CDN B-structure_element domain O relative O to O the O CDL B-structure_element / O CDC1 B-structure_element domain O . O CthCD B-mutant - I-mutant CT1 I-mutant ( O in O colour O ) O serves O as O reference O , O the O compared B-experimental_method structures I-experimental_method ( O as O indicated O , O numbers O after O construct O name O differentiate O between O individual O protomers B-oligomeric_state ) O are O shown O in O grey O . O Strikingly O , O SEL1Lcent B-structure_element forms O a O homodimer B-oligomeric_state with O two O - O fold O symmetry O in O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state manner O . O Particularly O , O the O SLR B-structure_element motif I-structure_element 9 I-structure_element plays O an O important O role O in O dimer B-oligomeric_state formation O by O adopting O a O domain B-protein_state - I-protein_state swapped I-protein_state structure O and O providing O an O extensive O dimeric B-site interface I-site . O In O particular O , O SEL1L B-protein is O crucial O for O translocation O of O Class B-complex_assembly I I-complex_assembly major I-complex_assembly histocompatibility I-complex_assembly complex I-complex_assembly ( O MHC B-complex_assembly ) O heavy B-protein_type chains I-protein_type ( O HCs B-protein_type ). O Although O there O is O evidence O that O the O luminal B-structure_element domain I-structure_element of O SEL1L B-protein is O involved O in O substrate O recognition O or O in O forming O complexes O with O chaperones B-protein_type , O it O is O not O known O how O the O unique O structure O of O the O repeated O SLR B-structure_element motifs O contributes O to O the O molecular O function O of O the O HRD1 B-complex_assembly - I-complex_assembly SEL1L I-complex_assembly E3 B-protein_type ligase I-protein_type complex O and O affects O ERAD O at O the O molecular O level O . O The O 11 O SLR B-structure_element motifs O are O located O in O the O ER O lumen O and O account O for O more O than O two O thirds O of O the O mass O of O full B-protein_state - I-protein_state length I-protein_state SEL1L B-protein . O Sequence B-experimental_method alignment I-experimental_method of O the O SLR B-structure_element motifs O revealed O that O there O is O a O short O linker B-structure_element sequence I-structure_element ( O residues O 336 B-residue_range – I-residue_range 345 I-residue_range ) O between O SLR B-structure_element - I-structure_element N I-structure_element and O SLR B-structure_element - I-structure_element M I-structure_element and O a O long O linker B-structure_element sequence I-structure_element ( O residues O 528 B-residue_range – I-residue_range 635 I-residue_range ) O between O SLR B-structure_element - I-structure_element M I-structure_element and O SLR B-structure_element - I-structure_element C I-structure_element ( O Fig O . O 1A O ). O To O identify O a O soluble O form O of O SEL1L B-protein , O we O generated O serial B-experimental_method truncation I-experimental_method constructs I-experimental_method of O SEL1L B-protein based O on O the O predicted O SLR B-structure_element motifs O and O highly B-protein_state conserved I-protein_state regions O across O several O different O species O . O Helices B-structure_element A I-structure_element and I-structure_element B I-structure_element are O 14 O and O 13 O residues O long O , O respectively O , O and O the O two O helices B-structure_element are O connected O by O a O short O turn B-structure_element and O loop B-structure_element ( O Fig O . O 1D O ). O The O concave B-site surface I-site of O each O SEL1L B-protein domain O comprising O helix B-structure_element 5A I-structure_element to I-structure_element 9A I-structure_element encircles O its O dimer B-oligomeric_state counterpart O in O an O interlocking O clasp O - O like O arrangement O . O Leu B-residue_name_number 521 I-residue_name_number is O located O in O the O dimerization B-site center I-site of O the O antiparallel O 9B B-structure_element helices I-structure_element in O the O SEL1Lcent B-structure_element dimer B-oligomeric_state . O For O this O structural O geometry O , O two O adjacent O residues O , O Gly B-residue_name_number 512 I-residue_name_number and O Gly B-residue_name_number 513 I-residue_name_number , O in O SEL1L B-protein confer O flexibility O at O this O position O by O adopting O main O - O chain O dihedral O angles O that O are O disallowed O for O non O - O glycine O residues O . O Gly B-residue_name_number 513 I-residue_name_number is O conserved B-protein_state among O other O SLR B-structure_element motifs O in O the O SEL1Lcent B-structure_element , O but O Gly B-residue_name_number 512 I-residue_name_number is O present O only O in O the O SLR B-structure_element motif I-structure_element 9 I-structure_element of O SEL1Lcent B-structure_element ( O Fig O . O 3A O ). O This O means O that O the O effect O of O the O mutation B-experimental_method is O mainly O to O generate O a O more O restricted O geometry O at O the O hinge B-structure_element region O . O The O G512K B-mutant / O G513K B-mutant double B-protein_state mutant I-protein_state eluted O at O the O monomer B-oligomeric_state position O in O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method ( O Fig O . O 3D O ). O To O further O examine O whether O the O SEL1Lcent B-structure_element domain O is O sufficient O to O physically O interact O with O full B-protein_state - I-protein_state length I-protein_state SEL1L B-protein , O we O generated O SEL1Lcent B-structure_element and O SLR B-structure_element motif I-structure_element 9 I-structure_element deletion B-experimental_method ( O SEL1L348 B-mutant – I-mutant 497 I-mutant ) O construct O , O which O were O fused B-experimental_method to I-experimental_method the O C O - O terminus O of O SEL1L B-protein signal B-structure_element peptides I-structure_element . O In O contrast O , O SEL1L348 B-mutant – I-mutant 497 I-mutant - I-mutant KDEL I-mutant and O the O single O - O residue O mutation O L521A B-mutant in O SEL1Lcent B-structure_element did O not O competitively O inhibit O the O self O - O association O of O full B-protein_state - I-protein_state length I-protein_state SEL1L B-protein ( O Fig O . O 4E O , O F O ). O The O fusion O proteins O were O immobilized O on O glutathione O - O Sepharose O beads O and O probed O for O binding O to O SLR B-structure_element - I-structure_element N I-structure_element , O SLR B-structure_element - I-structure_element M I-structure_element , O SLR B-structure_element - I-structure_element C I-structure_element , O and O monomer B-oligomeric_state form O of O SLR B-structure_element - I-structure_element M I-structure_element ( O SLR B-mutant - I-mutant ML521A I-mutant ). O One O possibility O is O that O SLR B-structure_element - I-structure_element N I-structure_element contributes O to O substrate O recognition O of O proteins O to O be O degraded O because O there O are O a O couple O of O putative O glycosylation B-site sites I-site within O the O SLR B-structure_element - I-structure_element N I-structure_element domain O ( O Fig O . O 1A O ). O Consistent O with O the O previous O data O , O our O crystal B-evidence structure I-evidence and O biochemical B-evidence data I-evidence demonstrate O that O mouse B-taxonomy_domain SEL1Lcent B-structure_element exists O as O a O homodimer B-oligomeric_state in O the O ER O lumen O via O domain O swapping O of O SLR B-structure_element motif I-structure_element 9 I-structure_element . O Rather O , O recent O research O shows O that O a O transiently B-protein_state expressed I-protein_state HRD1 B-complex_assembly - I-complex_assembly SEL1L I-complex_assembly complex O alone O associates O with O the O ERAD O lectins B-protein_type OS9 B-protein or O XTP B-protein - I-protein B I-protein and O is O sufficient O to O facilitate O the O retrotranslocation O and O degradation O of O the O model O ERAD O substrate O α B-protein - I-protein antitrypsin I-protein null I-protein Hong I-protein - I-protein Kong I-protein ( O NHK B-protein ) O and O its O variant O , O NHK B-mutant - I-mutant QQQ I-mutant , O which O lacks B-protein_state the O N B-site - I-site glycosylation I-site sites I-site . O In O yeast B-taxonomy_domain , O it O is O unclear O whether O self O - O association O of O Hrd3p B-protein is O due O to O SLR B-structure_element motifs O because O the O sequence O of O Hrd3p B-protein does O not O align O precisely O with O the O SLR B-structure_element motifs O in O SEL1L B-protein . O Furthermore O , O we O are O uncertain O whether O self O - O association O of O Hrd3p B-protein contributes O to O formation O of O the O active B-protein_state form O of O the O Hrd1p B-protein complex O . O This O interaction O seems O to O be O weak O because O direct O Yos9 B-protein - O Yos9 B-protein interactions O were O not O detected O in O immunoprecipitation B-experimental_method experiments I-experimental_method from O yeast B-taxonomy_domain cell O extracts O containing O different O epitope B-protein_state - I-protein_state tagged I-protein_state variants O of O Yos9 B-protein . O However O , O the O dimerization B-oligomeric_state of O Yos9 B-protein could O provide O a O higher O stability O for O the O Hrd1p B-protein complex O oligomer B-oligomeric_state . O Crystal B-evidence Structure I-evidence of O SEL1Lcent B-structure_element . O The O 11 O SLR B-structure_element motifs O were O divided O into O three O groups O ( O SLR B-structure_element - I-structure_element N I-structure_element , O SLR B-structure_element - I-structure_element M I-structure_element , O and O SLR B-structure_element - I-structure_element C I-structure_element ) O due O to O the O presence O of O linker B-structure_element sequences I-structure_element that O are O not O predicted O SLR B-structure_element motifs O . O ( O A O ) O The O diagram O on O the O left O shows O the O SEL1Lcent B-structure_element dimer B-oligomeric_state viewed O along O the O two O - O fold O symmetry O axis O . O The O elution O fractions O , O indicated O by O the O gray O shading O , O were O run O on O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method and O are O shown O below O the O gel B-evidence - I-evidence filtration I-evidence elution I-evidence profile I-evidence . O The O sequences O of O SEL1Lcent B-structure_element included O in O the O crystal B-evidence structure I-evidence are O highlighted O by O the O blue O box O . O In O SLR B-structure_element motif I-structure_element 9 I-structure_element , O the O axes O for O the O two O helices B-structure_element are O almost O parallel O , O while O the O other O SLR B-structure_element motifs O adopt O an O α B-structure_element - I-structure_element hairpin I-structure_element structure O . O ( O C O ) O Stereo O view O shows O that O the O Gly B-residue_name_number 512 I-residue_name_number and O Gly B-residue_name_number 513 I-residue_name_number residues O are O surrounded O by O neighboring O residues O from O helix B-structure_element 9B I-structure_element from O the O counterpart O dimer B-oligomeric_state . O The O Gly B-residue_name_number 512 I-residue_name_number and O Gly B-residue_name_number 513 I-residue_name_number residues O are O colored O green O and O red O , O respectively O . O ( O D O ) O The O following O point B-experimental_method mutations I-experimental_method were O generated O to O check O the O effect O of O the O Gly B-residue_name_number 512 I-residue_name_number and O Gly B-residue_name_number 513 I-residue_name_number residues O in O terms O of O generating O the O hinge B-structure_element of O SLR B-structure_element motif I-structure_element 9 I-structure_element : O G512A B-mutant , O G513A B-mutant , O G512A B-mutant / O G513A B-mutant , O and O G512K B-mutant / O G513K B-mutant . O The O SEL1L348 B-mutant – I-mutant 497 I-mutant fragment O was O secreted O to O the O culture O media O but O the O SEL1Lcent B-structure_element was O retained O in O the O ER O . O ( O C O ) O SEL1Lcent B-mutant - I-mutant FLAG I-mutant - I-mutant KDEL I-mutant and O SEL1L348 B-mutant – I-mutant 497 I-mutant - I-mutant FLAG I-mutant - I-mutant KDEL I-mutant localized O to O the O ER O . O The O SEL1L B-protein fragments O were O stained O in O red O . O ( O D O ) O HEK293T O cells O were O transfected O with O the O indicated O plasmid O constructs O and O the O lysates O were O immunoprecipitated B-experimental_method with O an O anti O - O HA B-experimental_method antibody O followed O by O Western B-experimental_method blot I-experimental_method analysis O using O an O anti O - O FLAG B-experimental_method antibody O . O The O red O asterisk O indicates O the O expected O signal O for O SEL1L348 B-mutant – I-mutant 497 I-mutant - I-mutant FLAG I-mutant - I-mutant KDEL I-mutant . O ( O A O ) O Ribbon O diagram O showing O superimposition B-experimental_method of O an O isolated O TPR B-structure_element motif O from O Cdc23 B-protein and O an O SLR B-structure_element motif O from O SEL1Lcent B-structure_element ( O left O ), O and O SLR B-structure_element motifs O in O HcpC B-protein and O SEL1Lcent B-structure_element ( O right O ). O The O red O arrow O indicates O disulfide B-ptm bonds I-ptm in O the O HcpC B-protein , O and O Cys B-residue_name residues O involved O in O disulfide B-ptm bonding I-ptm are O shown O by O a O yellow O line O . O ( O B O ) O Ribbon O representation O showing O superimposition B-experimental_method of O Cdc23 B-protein and O SEL1Lcent B-structure_element ( O left O ) O or O HcpC B-protein and O SEL1Lcent B-structure_element ( O right O ) O to O compare O the O overall O organization O of O the O α B-structure_element - I-structure_element solenoid I-structure_element domain I-structure_element . O Fragments O of O the O luminal B-structure_element loop I-structure_element of O HRD1 B-protein fused O to O GST B-chemical were O immobilized O on O glutathione O sepharose O beads O and O incubated O with O purified O three O clusters O of O SLR B-structure_element motifs O and O monomer B-oligomeric_state form O of O SLR B-structure_element - I-structure_element M I-structure_element ( O SLR B-mutant - I-mutant ML521A I-mutant , O right O panel O ) O in O SEL1L B-protein . O Proteins O were O analyzed O by O 12 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method and O Coomassie O blue O staining O . O In O order O to O understand O the O catalytic O mechanism O of O SePSK B-protein , O we O solved B-experimental_method the O structure B-evidence of O SePSK B-protein in B-protein_state complex I-protein_state with I-protein_state D B-chemical - I-chemical ribulose I-chemical and O found O two O potential O substrate B-site binding I-site pockets I-site in O SePSK B-protein . O Using O mutation B-experimental_method and I-experimental_method activity I-experimental_method analysis I-experimental_method , O we O further O verified O the O key O residues O important O for O its O catalytic O activity O . O Together O , O these O results O provide O important O information O for O a O more O detailed O understanding O of O the O cofactor O and O substrate O binding O mode O as O well O as O the O catalytic O mechanism O of O SePSK B-protein , O and O possible O similarities O with O its O plant B-taxonomy_domain homologue O AtXK B-protein - I-protein 1 I-protein . O Carbohydrates B-chemical are O essential O cellular O compounds O involved O in O the O metabolic O processes O present O in O all O organisms O . O The O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type contain O different O types O of O sugar B-protein_type kinases I-protein_type , O all O of O which O possess O different O catalytic O substrates O with O preferences O for O short O - O chained O sugar B-chemical substrates O , O ranging O from O triose B-chemical to O heptose B-chemical . O Synpcc7942_2462 B-gene from O the O cyanobacteria B-taxonomy_domain Synechococcus B-species elongatus I-species PCC I-species 7942 I-species encodes O a O putative O sugar B-protein_type kinase I-protein_type ( O SePSK B-protein ), O and O this O kinase B-protein_type contains O 426 B-residue_range amino O acids O . O Our O structural B-experimental_method analysis I-experimental_method showed O that O apo B-protein_state - O SePSK B-protein consists O of O one O SePSK B-protein protein O molecule O in O an O asymmetric O unit O . O Domain B-structure_element II I-structure_element is O comprised O of O aa O . O This O finding O is O in O agreement O with O a O previous O result O showing O that O xylulose B-protein_type kinase I-protein_type ( O PDB O code O : O 2ITM O ) O possessed O ATP B-chemical hydrolysis O activity O without O adding O substrate O . O Both O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O ATP B-chemical hydrolysis O activity O in O the O absence B-protein_state of I-protein_state substrate O . O To O understand O the O catalytic O mechanism O of O SePSK B-protein , O we O performed O structural B-experimental_method comparisons I-experimental_method among O xylulose B-protein_type kinase I-protein_type , O glycerol B-protein_type kinase I-protein_type , O ribulose B-protein_type kinase I-protein_type and O SePSK B-protein . O The O extremely O weak O electron B-evidence densities I-evidence of O ATP O γ O - O phosphate B-chemical in O both O structures B-evidence suggest O that O the O γ O - O phosphate B-chemical group O of O ATP B-chemical is O either O flexible O or O hydrolyzed O by O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein . O The O SePSK B-protein structure B-evidence is O shown O in O the O electrostatic O potential O surface O mode O . O However O , O structural B-experimental_method comparison I-experimental_method shows O that O the O substrate O ligating O residues O between O the O two O structures B-evidence are O not B-protein_state strictly I-protein_state conserved I-protein_state . O Based O on O the O structures B-evidence , O the O ligating O residues O of O RBL1 B-residue_name_number in O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence are O Ser72 B-residue_name_number , O Asp221 B-residue_name_number and O Ser222 B-residue_name_number , O and O the O interacting O residues O of O L B-chemical - I-chemical ribulose I-chemical with O L B-protein - I-protein ribulokinase I-protein are O Ala96 B-residue_name_number , O Lys208 B-residue_name_number , O Asp274 B-residue_name_number and O Glu329 B-residue_name_number ( O S7 O Fig O ). O The O RBL B-chemical molecules O ( O carbon O atoms O colored O yellow O ) O and O amino O acid O residues O of O SePSK B-protein ( O carbon O atoms O colored O green O ) O involved O in O RBL B-chemical interaction O are O shown O as O sticks O . O This O break O is O probably O induced O by O the O conformational O change O of O the O two O β B-structure_element - I-structure_element sheets I-structure_element ( O β1 B-structure_element and O β2 B-structure_element ), O with O the O result O that O the O linking B-structure_element loop I-structure_element ( O loop B-structure_element 1 I-structure_element ) O is O located O further O away O from O the O RBL2 B-site binding I-site site I-site . O This O change O might O be O the O reason O that O AtXK B-protein - I-protein 1 I-protein only O shows O limited O increasing O in O its O ATP B-chemical hydrolysis O ability O upon O adding O D B-chemical - I-chemical ribulose I-chemical as O a O substrate O after O comparing O with O SePSK B-protein ( O Fig O 2C O ). O However O , O considering O the O high O concentration O of O D B-chemical - I-chemical ribulose I-chemical used O for O crystal B-experimental_method soaking I-experimental_method , O as O well O as O the O relatively O weak O electron B-evidence density I-evidence of O RBL2 B-residue_name_number , O it O is O also O possible O that O the O second B-site binding I-site site I-site of O D B-chemical - I-chemical ribulose I-chemical in O SePSK B-protein is O an O artifact O . O Superposing B-experimental_method the O structures B-evidence of O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly , O the O results O show O that O the O nearest O distance O between O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical and O RBL1 B-residue_name_number / O RBL2 B-residue_name_number is O 7 O . O 5 O Å O ( O RBL1 B-residue_name_number - O O5 O )/ O 6 O . O 7 O Å O ( O RBL2 B-residue_name_number - O O1 O ) O ( O S8 O Fig O ). O This O distance O is O too O long O to O transfer O the O γ O - O phosphate B-chemical group O from O ATP B-chemical to O the O substrate O . O The O results O showed O that O domain B-structure_element I I-structure_element and O domain B-structure_element II I-structure_element are O closer O to O each O other O with O Ala228 B-residue_name_number and O Thr401 B-residue_name_number in O A2 B-structure_element as O Hinge B-structure_element - I-structure_element residues I-structure_element . O Together O , O our O superposition B-experimental_method results O provided O snapshots O of O the O conformational O changes O at O different O catalytic O stages O of O SePSK B-protein and O potentially O revealed O the O closed B-protein_state form O of O SePSK B-protein . O Previously O , O we O proposed O a O pseudoatomic B-evidence model I-evidence of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O based O on O its O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method map B-evidence and O crystal B-evidence structures I-evidence of O an O inactive B-protein_state LdcI B-protein decamer B-oligomeric_state and O a O RavA B-protein monomer B-oligomeric_state . O We O now O present O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method 3D B-evidence reconstructions I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein and O LdcC B-protein , O and O an O improved B-evidence map I-evidence of O the O LdcI B-protein bound B-protein_state to I-protein_state the O LARA B-structure_element domain I-structure_element of O RavA B-protein , O at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O . O They O counteract O acid O stress O experienced O by O the O bacterium B-taxonomy_domain in O the O host O digestive O and O urinary O tract O , O and O in O particular O in O the O extremely O acidic O stomach O . O In O addition O , O the O biosynthetic B-protein_state E B-species . I-species coli I-species lysine B-protein_type decarboxylase I-protein_type LdcC B-protein , O long O thought O to O be O constitutively O expressed O in O low O amounts O , O was O demonstrated O to O be O strongly O upregulated O by O fluoroquinolones B-chemical via O their O induction O of O RpoS B-protein . O A O direct O correlation O between O the O level O of O cadaverine B-chemical and O the O resistance O of O E B-species . I-species coli I-species to O these O antibiotics O commonly O used O as O a O first O - O line O treatment O of O UTI O could O be O established O . O Monomers B-oligomeric_state tightly O associate O via O their O core B-structure_element domains I-structure_element into O 2 B-protein_state - I-protein_state fold I-protein_state symmetrical I-protein_state dimers B-oligomeric_state with O two O complete O active B-site sites I-site , O and O further O build O a O toroidal B-structure_element D5 I-structure_element - I-structure_element symmetrical I-structure_element structure I-structure_element held O by O the O wing B-structure_element and O core B-structure_element domain I-structure_element interactions O around O the O central B-structure_element pore I-structure_element , O with O the O CTDs B-structure_element at O the O periphery O . O This O allowed O us O to O make O a O pseudoatomic B-evidence model I-evidence of O the O whole O assembly O , O underpinned O by O a O cryoEM B-experimental_method map B-evidence of O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly complex O ( O with O LARA B-structure_element standing O for O LdcI B-structure_element associating I-structure_element domain I-structure_element of I-structure_element RavA I-structure_element ), O and O to O identify O conformational O rearrangements O and O specific O elements O essential O for O complex O formation O . O To O solve O this O discrepancy O , O in O the O present O work O we O provided O a O three O - O dimensional O ( O 3D O ) O cryoEM B-experimental_method reconstruction B-evidence of O LdcC B-protein and O compared O it O with O the O available O LdcI B-protein and O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly structures B-evidence . O Given O that O the O LdcI B-protein crystal B-evidence structures I-evidence were O obtained O at O high B-protein_state pH I-protein_state where O the O enzyme O is O inactive B-protein_state ( O LdcIi B-protein , O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ), O whereas O the O cryoEM B-experimental_method reconstructions B-evidence of O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly were O done O at O acidic B-protein_state pH I-protein_state optimal I-protein_state for O the O enzymatic O activity O , O for O a O meaningful O comparison O , O we O also O produced O a O 3D B-evidence reconstruction I-evidence of O the O LdcI B-protein at O active B-protein_state pH I-protein_state ( O LdcIa B-protein , O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ). O This O comparison O pinpointed O differences O between O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylases I-protein_type and O brought O to O light O interdomain O movements O associated O to O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O RavA B-protein binding O , O notably O at O the O predicted O RavA B-site binding I-site site I-site at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O Consequently O , O we O tested O the O capacity O of O cage O formation O by O LdcI B-mutant - I-mutant LdcC I-mutant chimeras I-mutant where O we O interchanged B-experimental_method the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element in O question O . O Remarkably O , O this O analysis O revealed O that O several O specific B-structure_element residues I-structure_element in O the O above O - O mentioned O β B-structure_element - I-structure_element sheet I-structure_element , O independently O of O the O rest O of O the O protein O sequence O , O are O sufficient O to O define O if O a O particular O lysine B-protein_type decarboxylase I-protein_type should O be O classified O as O an O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O or O an O “ O LdcI B-protein_type - I-protein_type like I-protein_type ”. O As O common O for O the O α B-protein_type family I-protein_type of O the O PLP B-protein_type - I-protein_type dependent I-protein_type decarboxylases I-protein_type , O dimerization O is O required O for O the O enzymatic O activity O because O the O active B-site site I-site is O buried O in O the O dimer B-site interface I-site ( O Fig O . O 3A O , O B O ). O The O core B-structure_element domain I-structure_element is O built O by O the O PLP B-structure_element - I-structure_element binding I-structure_element subdomain I-structure_element ( O PLP B-structure_element - I-structure_element SD I-structure_element , O residues O 184 B-residue_range – I-residue_range 417 I-residue_range ) O flanked O by O two O smaller O subdomains B-structure_element rich O in O partly B-protein_state disordered I-protein_state loops B-structure_element – O the O linker B-structure_element region I-structure_element ( O residues O 130 B-residue_range – I-residue_range 183 I-residue_range ) O and O the O subdomain B-structure_element 4 I-structure_element ( O residues O 418 B-residue_range – I-residue_range 563 I-residue_range ). O The O resolution O of O the O cryoEM B-experimental_method maps B-evidence does O not O allow O modeling O the O position O of O the O PLP B-chemical moiety O and O calls O for O caution O in O detailed O mechanistic O interpretations O in O terms O of O individual O amino B-chemical acids I-chemical . O Between O these O two O extremes O , O the O PLP B-structure_element - I-structure_element SDs I-structure_element of O LdcIa B-protein and O LdcC B-protein are O similar O both O in O the O context O of O the O decamer B-oligomeric_state ( O Fig O . O 3F O ) O and O in O terms O of O RMSDmin B-evidence = O 0 O . O 9 O Å O , O which O probably O reflects O the O fact O that O , O at O the O optimal B-protein_state pH I-protein_state , O these O lysine B-protein_type decarboxylases I-protein_type have O a O similar O enzymatic O activity O . O The O ppGpp B-site binding I-site pocket I-site is O made O up O by O residues O from O all O domains O and O is O located O approximately O 30 O Å O away O from O the O PLP B-chemical moiety O . O All O our O current O cryoEM B-experimental_method reconstructions B-evidence of O the O lysine B-protein_type decarboxylases I-protein_type were O obtained O in O the O absence B-protein_state of I-protein_state ppGpp B-chemical in O order O to O be O closer O to O the O active B-protein_state state O of O the O enzymes O under O study O . O This O swinging O movement O seems O to O be O mediated O by O the O core B-structure_element domains I-structure_element and O is O accompanied O by O a O stretching O of O the O whole O LdcI B-protein subunits B-structure_element attracted O by O the O RavA B-protein magnets O . O Yet O the O superposition B-experimental_method of O the O decamers B-oligomeric_state lays O bare O a O progressive O movement O of O the O CTD B-structure_element as O a O whole O upon O enzyme O activation O by O pH O and O the O binding O of O LARA B-structure_element . O These O small O but O noticeable O swinging O and O stretching O ( O up O to O ~ O 4 O Å O ) O may O be O related O to O the O incorporation O of O the O LdcI B-protein decamer B-oligomeric_state into O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O a O lysine B-protein_type decarboxylase I-protein_type as O a O major O determinant O of O the O interaction O with O RavA B-protein Thus O , O to O advance O beyond O our O experimental O confirmation O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element as O a O major O determinant O of O the O capacity O of O a O particular O lysine B-protein_type decarboxylase I-protein_type to O form O a O cage O with O RavA B-protein , O we O set O out O to O investigate O whether O certain B-structure_element residues I-structure_element in O this O β B-structure_element - I-structure_element sheet I-structure_element are O conserved B-protein_state in O lysine B-protein_type decarboxylases I-protein_type of O different O enterobacteria B-taxonomy_domain that O have O the O ravA B-gene - I-gene viaA I-gene operon I-gene in O their O genome O . O We O inspected B-experimental_method the I-experimental_method genetic I-experimental_method environment I-experimental_method of O lysine B-protein_type decarboxylases I-protein_type from O 22 O enterobacterial B-taxonomy_domain species O referenced O in O the O NCBI O database O , O corrected O the O gene O annotation O where O necessary O ( O Tables O S3 O and O S4 O ), O and O performed O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method coupled O to O a O phylogenetic B-experimental_method analysis I-experimental_method ( O see O Methods O ). O Finally O , O cadaverine B-chemical being O an O important O platform O chemical O for O the O production O of O industrial O polymers O such O as O nylon O , O structural O information O is O valuable O for O optimisation O of O bacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type used O for O its O production O in O biotechnology O . O ( O A O , O C O , O E O ) O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O A O ), O LdcIa B-protein ( O C O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O E O ) O decamers B-oligomeric_state with O one O protomer B-oligomeric_state in O light O grey O . O The O dashed O circle O indicates O the O central O region B-structure_element that O remains O virtually O unchanged O between O all O the O structures B-evidence , O while O the O periphery O undergoes O visible O movements O . O ( O D O – O F O ) O Inserts O zooming O at O the O CTD B-structure_element part O in O proximity O of O the O LARA B-site binding I-site site I-site . O ( O D O , O E O ) O A O gallery O of O negative O stain O EM O images O of O ( O D O ) O the O wild B-protein_state type I-protein_state LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O and O ( O E O ) O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O ( O F O ) O Some O representative O class O averages O of O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O Polarity O differences O are O highlighted O . O ( O D O ) O Position O and O nature O of O these O differences O at O the O surface O of O the O respective O cryoEM B-experimental_method maps B-evidence with O the O color O code O as O in O B O . O See O also O Fig O . O S7 O and O Tables O S3 O and O S4 O . O The O phosphorylation B-site site I-site in O the O CTR B-structure_element is O solvent B-protein_state accessible I-protein_state and O located O in O a O negatively B-site charged I-site pocket I-site ∼ O 30 O Å O away O from O the O channel B-site exit I-site . O A O common O feature O of O transceptors B-protein_type is O that O they O are O induced O when O cells O are O starved O for O their O substrate O . O Fungi B-taxonomy_domain typically O have O more O than O one O Mep B-protein_type paralogue O , O for O example O , O Mep1 B-protein - I-protein 3 I-protein in O S B-species . I-species cerevisiae I-species . O As O is O the O case O for O other O transceptors B-protein_type , O it O is O not O clear O how O Mep2 B-protein interacts O with O downstream O signalling O partners O , O but O the O protein O kinase O A O and O mitogen O - O activated O protein O kinase O pathways O have O been O proposed O as O downstream O effectors O of O Mep2 B-protein ( O refs O ). O By O contrast O , O several O bacterial B-taxonomy_domain Amt B-protein_type orthologues O have O been O characterized O in O detail O via O high O - O resolution O crystal B-evidence structures I-evidence and O a O number O of O molecular B-experimental_method dynamics I-experimental_method ( O MD B-experimental_method ) O studies O . O A O highly B-protein_state conserved I-protein_state pair O of O channel B-site - O lining O histidine B-residue_name residues O dubbed O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element may O serve O as O a O proton O relay O system O while O NH3 B-chemical moves O through O the O channel B-site during O NH3 B-chemical / O H B-chemical + I-chemical symport O . O Together O with O a O structure B-evidence of O a O C O - O terminal O Mep2 B-mutant variant I-mutant lacking B-protein_state the O segment B-structure_element containing O the O phosphorylation B-site site I-site , O the O results O allow O us O to O propose O a O structural O model O for O phosphorylation O - O based O regulation O of O eukaryotic B-taxonomy_domain ammonium B-chemical transport O . O The O N O termini O of O the O Mep2 B-protein_type proteins I-protein_type are O ∼ O 20 B-residue_range – I-residue_range 25 I-residue_range residues O longer O compared O with O their O bacterial B-taxonomy_domain counterparts O ( O Figs O 1 O and O 2 O ), O substantially O increasing O the O size O of O the O extracellular B-structure_element domain I-structure_element . O The O largest O differences O between O the O Mep2 B-protein structures B-evidence and O the O other O known O ammonium B-protein_type transporter I-protein_type structures B-evidence are O located O on O the O intracellular O side O of O the O membrane O . O ICL1 B-structure_element has O also O moved O inwards O relative O to O its O position O in O the O bacterial B-taxonomy_domain Amts B-protein_type . O The O head O group O of O Arg54 B-residue_name_number has O moved O ∼ O 11 O Å O relative O to O that O in O Amt B-protein - I-protein 1 I-protein , O whereas O the O shift O of O the O head O group O of O the O variable O Lys55 B-residue_name_number residue O is O almost O 20 O Å O . O The O side O chain O of O Lys56 B-residue_name_number in O the O basic B-protein_state motif B-structure_element points O in O an O opposite O direction O in O the O Mep2 B-protein structures B-evidence compared O with O that O of O , O for O example O , O Amt B-protein - I-protein 1 I-protein ( O Fig O . O 4 O ). O This O is O illustrated O by O the O positions O of O the O five O universally B-protein_state conserved I-protein_state residues O within O the O CTR B-structure_element , O that O is O , O Arg415 B-residue_name_number ( O 370 B-residue_number ), O Glu421 B-residue_name_number ( O 376 B-residue_number ), O Gly424 B-residue_name_number ( O 379 B-residue_number ), O Asp426 B-residue_name_number ( O 381 B-residue_number ) O and O Tyr B-residue_name_number 435 I-residue_name_number ( O 390 B-residue_number ) O in O CaMep2 B-protein ( O Amt B-protein - I-protein 1 I-protein ) O ( O Fig O . O 2 O ). O These O residues O include O those O of O the O ‘ B-structure_element ExxGxD I-structure_element ' I-structure_element motif I-structure_element , O which O when O mutated B-experimental_method generate O inactive B-protein_state transporters B-protein_type . O Despite O its O location O at O the O periphery O of O the O trimer B-oligomeric_state , O the O electron B-evidence density I-evidence for O the O serine B-residue_name is O well O defined O in O both O Mep2 B-protein structures B-evidence and O corresponds O to O the O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O Fig O . O 6 O ). O The O same O mutant B-mutant lacking B-protein_state the I-protein_state His I-protein_state - I-protein_state tag I-protein_state has O WT B-protein_state properties O ( O Supplementary O Fig O . O 1b O ), O confirming O that O the O region O following O the O phosphorylation B-site site I-site is O dispensable O for O function O . O Mep2 B-protein lacking B-protein_state the O AI B-structure_element region I-structure_element is O conformationally B-protein_state heterogeneous I-protein_state This O is O not O unexpected O given O the O fact O that O the O AI B-structure_element region I-structure_element bridges O the O CTR B-structure_element and O the O main B-structure_element body I-structure_element of O Mep2 B-protein ( O Fig O . O 6 O ). O As O shown O in O Supplementary O Fig O . O 4 O , O the O consequence O of O the O single B-mutant D I-mutant mutation B-experimental_method is O very O similar O to O that O of O the O DD B-mutant substitution I-mutant , O with O conformational O changes O and O increased O dynamics O confined O to O the O conserved B-protein_state part O of O the O CTR B-structure_element ( O Supplementary O Fig O . O 4 O ). O As O the O simulation B-experimental_method proceeds O , O the O side O chains O of O the O acidic O residues O move O away O from O Asp452 B-residue_name_number and O Asp453 B-residue_name_number , O presumably O to O avoid O electrostatic O repulsion O . O One O possible O explanation O is O that O the O mutants B-mutant do O not O accurately O mimic O a O phosphoserine B-residue_name , O but O the O observation O that O the O S453D B-mutant and O DD B-mutant mutants I-mutant are O fully B-protein_state active I-protein_state in O the O absence B-protein_state of I-protein_state Npr1 B-protein suggests O that O the O mutations B-experimental_method do O mimic O the O effect O of O phosphorylation B-ptm ( O Fig O . O 3 O ). O In O addition O , O a O number O of O biochemical B-experimental_method and I-experimental_method genetic I-experimental_method studies I-experimental_method are O available O for O bacterial B-taxonomy_domain , O fungal B-taxonomy_domain and O plant B-taxonomy_domain proteins O . O However O , O even O the O otherwise O highly O similar O Mep2 B-protein_type proteins I-protein_type of O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species have O different O structures B-evidence for O their O CTRs B-structure_element ( O Fig O . O 1 O and O Supplementary O Fig O . O 6 O ). O In O addition O , O the O AI B-structure_element region I-structure_element of O the O CTR B-structure_element containing O the O Npr1 B-site kinase I-site site I-site is O conserved B-protein_state in O only O a O subset O of O fungal B-taxonomy_domain transporters B-protein_type , O suggesting O that O the O details O of O the O structural O changes O underpinning O regulation O vary O . O In O addition O , O the O considerable O differences O between O structurally O resolved O CTR B-structure_element domains O means O that O the O exact O environment O of O T460 B-residue_name_number in O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein is O also O not O known O ( O Supplementary O Fig O . O 6 O ). O ( O a O ) O Monomer B-oligomeric_state cartoon O models O viewed O from O the O side O for O ( O left O ) O A O . O fulgidus O Amt B-protein - I-protein 1 I-protein ( O PDB O ID O 2B2H O ), O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O middle O ) O and O C B-species . I-species albicans I-species Mep2 B-protein ( O right O ). O One O monomer B-oligomeric_state is O coloured O as O in O a O and O one O monomer B-oligomeric_state is O coloured O by O B O - O factor O ( O blue O , O low O ; O red O ; O high O ). O The O conserved B-protein_state RxK B-structure_element motif I-structure_element in O ICL1 B-structure_element is O boxed O in O blue O , O the O ER B-structure_element motif I-structure_element in O ICL2 B-structure_element in O cyan O , O the O conserved B-protein_state ExxGxD B-structure_element motif I-structure_element of O the O CTR B-structure_element in O red O and O the O AI B-structure_element region I-structure_element in O yellow O . O The O Npr1 B-site kinase I-site site I-site in O the O AI B-structure_element region I-structure_element is O highlighted O pink O . O ( O a O ) O ICL1 B-structure_element in O AfAmt B-protein - I-protein 1 I-protein ( O light O blue O ) O and O CaMep2 B-protein ( O dark O blue O ), O showing O unwinding O and O inward O movement O in O the O fungal B-taxonomy_domain protein O . O ( O b O ) O Stereo O diagram O viewed O from O the O cytosol O of O ICL1 B-structure_element , O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O in O AfAmt B-protein - I-protein 1 I-protein ( O light O colours O ) O and O CaMep2 B-protein ( O dark O colours O ). O The O side O chains O of O residues O in O the O RxK B-structure_element motif I-structure_element as O well O as O those O of O Tyr49 B-residue_name_number and O His342 B-residue_name_number are O labelled O . O ( O a O ) O Stereoviews O of O CaMep2 B-protein showing O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O CTR B-structure_element residues O Asp419 B-residue_range - I-residue_range Met422 I-residue_range and O for O Tyr446 B-residue_range - I-residue_range Thr455 I-residue_range of O the O AI B-structure_element region I-structure_element . O Phosphorylation B-ptm causes O conformational O changes O in O the O CTR B-structure_element . O The O arrow O indicates O the O phosphorylation B-site site I-site . O In O this O case O however O , O the O open B-protein_state channel B-site corresponds O to O the O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ; O phosphorylation B-ptm breaks O the O CTR O – O ICL3 O interactions O leading O to O channel B-site closure O . O ( O b O ) O Model O based O on O AMT O transporter O analogy O showing O how O phosphorylation B-ptm of O a O Mep2 B-protein monomer B-oligomeric_state might O allosterically O open B-protein_state channels B-site in O the O entire O trimer B-oligomeric_state via O disruption O of O the O interactions O between O the O CTR B-structure_element and O ICL3 B-structure_element of O a O neighbouring O monomer B-oligomeric_state ( O arrow O ). O Furthermore O , O mutational B-experimental_method analyses I-experimental_method show O that O tRNAHis B-chemical is O bound B-protein_state to I-protein_state TLP B-protein_type in O a O similar O manner O as O Thg1 B-protein , O thus O indicating O that O TLP B-protein_type has O a O dual O binding O mode O . O In O 3 O ′- O 5 O ′ O elongation O by O Thg1 B-protein / O TLP B-protein_type family O proteins O , O the O 5 B-chemical ′- I-chemical monophosphate I-chemical of O the O tRNA B-chemical is O first O activated O by O ATP B-chemical / O GTP B-chemical , O followed O by O the O actual O elongation O reaction O . O Furthermore O , O the O structure B-evidence of O Candida B-species albicans I-species Thg1 B-protein ( O CaThg1 B-protein ) O complexed B-protein_state with I-protein_state tRNAHis B-chemical reveals O that O the O tRNA B-chemical substrate O accesses O the O reaction B-site center I-site from O a O direction O opposite O to O that O of O canonical O DNA B-protein_type / I-protein_type RNA I-protein_type polymerase I-protein_type . O Therefore O , O we O prepared O a O crystal B-evidence of O MaTLP B-protein complexed B-protein_state with I-protein_state ppptRNAPheΔ1 B-chemical and O solved B-experimental_method its O structure B-evidence to O study O the O template O - O directed O 3 O ′- O 5 O ′ O elongation O reaction O by O TLP B-protein_type ( O fig O . O S1 O ). O ( O B O ) O Structure B-evidence after O GDPNP B-chemical binding O . O ( O C O ) O Superposition B-experimental_method of O the O two O structures B-evidence showing O movement O of O the O 5 O ′- O end O of O the O tRNA B-chemical before O ( O blue O ) O and O after O ( O red O ) O insertion O of O GDPNP B-chemical . O ( O D O ) O Superposition B-experimental_method of O the O 5 O ′- O end O of O the O tRNA B-chemical after O GDPNP B-chemical insertion O ( O red O ) O with O GTP B-chemical at O the O activation O step O ( O green O ), O showing O that O both O triphosphate B-chemical moieties O superpose O well O . O The O triphosphate B-chemical moiety O of O GDPNP B-chemical was O at O the O interface B-site between O molecules O A B-structure_element and O B B-structure_element and O was O recognized O by O the O side O chains O of O both O molecules O , O including O R19 B-residue_name_number ( O molecule O A B-structure_element ), O R83 B-residue_name_number ( O molecule O B B-structure_element ), O K86 B-residue_name_number ( O molecule O B B-structure_element ), O and O R114 B-residue_name_number ( O molecule O A B-structure_element ) O ( O Fig O . O 3B O ). O On O the O basis O of O these O structures B-evidence , O we O will O discuss O the O 3 O ′- O 5 O ′ O addition O reaction O compared O with O canonical O 5 O ′- O 3 O ′ O elongation O by O DNA B-protein_type / I-protein_type RNA I-protein_type polymerases I-protein_type . O In O the O first O activation O step O , O when O GTP B-chemical / O ATP B-chemical is O bound B-protein_state to I-protein_state site B-site 1 I-site ( O Fig O . O 5B O ), O the O 5 B-chemical ′- I-chemical phosphate I-chemical of O the O tRNA B-chemical is O deprotonated O by O Mg2 B-chemical + I-chemical A O and O attacks O the O α O - O phosphate B-chemical of O the O GTP B-chemical / O ATP B-chemical , O resulting O in O an O activated O intermediate O ( O Fig O . O 5C O ). O ( O D O ) O Structure B-evidence of O initiation O of O the O elongation O reaction O ( O corresponding O to O Fig O . O 3B O ). O In O these O reactions O , O the O roles O of O the O two O Mg B-chemical ions O are O identical O . O The O role O of O Mg2 B-chemical + I-chemical B O is O to O position O the O 5 B-chemical ′- I-chemical triphosphate I-chemical of O the O tRNA B-chemical in O TLP B-protein_type and O the O incoming O nucleotide O in O T7 B-protein RNA I-protein polymerase I-protein . O Structures B-evidence of O template O - O dependent O nucleotide O elongation O in O the O 3 O ′- O 5 O ′ O and O 5 O ′- O 3 O ′ O directions O . O Furthermore O , O the O dual O binding O mode O of O this O protein O suggests O that O it O has O further O evolved O to O cover O G B-residue_name_number − I-residue_name_number 1 I-residue_name_number addition O of O tRNAHis B-chemical by O additional O dimerization O ( O dimer B-oligomeric_state of O dimers B-oligomeric_state ). O Thus O , O the O present O structural B-experimental_method analysis I-experimental_method is O consistent O with O the O scenario O in O which O TLP B-protein_type began O as O a O 5 O ′- O end O repair O enzyme O and O evolved O into O a O tRNAHis B-protein_type - I-protein_type specific I-protein_type G I-protein_type − I-protein_type 1 I-protein_type addition I-protein_type enzyme I-protein_type . O Pooled O tRNAs B-chemical were O precipitated O with O isopropanol O and O dissolved O in O buffer O E O [ O 20 O mM O Hepes O - O NaOH O ( O pH O 7 O . O 5 O ), O 100 O mM O NaCl O , O and O 10 O mM O MgCl2 O ]. O The O longer B-protein_state CDRs B-structure_element with O tandem O glycines B-residue_name or O serines B-residue_name have O more O conformational O diversity O than O the O others O . O One O conclusion O is O that O the O CDR B-structure_element H3 B-structure_element conformations O are O influenced O by O both O their O amino O acid O sequence O and O their O structural O environment O determined O by O the O heavy B-structure_element and O light B-structure_element chain I-structure_element pairing O . O In O such O efforts O , O the O crystal B-evidence structure I-evidence of O the O specific O antibody B-protein_type may O not O be O available O , O but O modeling O can O be O used O to O guide O the O engineering O efforts O . O These O multimeric O forms O are O linked O with O an O additional O J B-structure_element chain O . O The O LCs B-structure_element that O associate O with O the O HCs B-structure_element are O divided O into O 2 O functionally O indistinguishable O classes O , O κ B-structure_element and O λ B-structure_element . O The O heavy B-structure_element and O light B-structure_element chains I-structure_element are O composed O of O structural B-structure_element domains I-structure_element that O have O ∼ B-residue_range 110 I-residue_range amino I-residue_range acid I-residue_range residues I-residue_range . O These O domains O have O a O common O folding O pattern O often O referred O to O as O the O “ O immunoglobulin B-structure_element fold I-structure_element ,” O formed O by O the O packing O together O of O 2 O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheets I-structure_element . O The O “ O kinked B-protein_state ” O or O “ O bulged B-protein_state ” O conformation O is O the O most O prevalent O , O but O an O “ O extended B-protein_state ” O or O “ O non B-protein_state - I-protein_state bulged I-protein_state ” O conformation O is O also O , O but O less O frequently O , O observed O . O Recent O antibody B-experimental_method modeling I-experimental_method assessments I-experimental_method show O continued O improvement O in O the O quality O of O the O models O being O generated O by O a O variety O of O modeling O methods O . O The O need O for O improvement O in O this O area O was O also O highlighted O in O a O recent O study O reporting O an O approach O and O results O that O may O influence O future O antibody B-protein_type modeling O efforts O . O One O important O finding O of O the O antibody B-experimental_method modeling I-experimental_method assessments I-experimental_method was O that O errors O in O the O structural O templates O that O are O used O as O the O basis O for O homology B-experimental_method models I-experimental_method can O propagate O into O the O final O models O , O producing O inaccuracies O that O may O negatively O influence O the O predictive O nature O of O the O V B-structure_element region I-structure_element model O . O This O Fab B-structure_element library O is O composed O of O 3 O HC B-structure_element germlines O , O IGHV1 B-mutant - I-mutant 69 I-mutant ( O H1 B-mutant - I-mutant 69 I-mutant ), O IGHV3 B-mutant - I-mutant 23 I-mutant ( O H3 B-mutant - I-mutant 23 I-mutant ) O and O IGHV5 B-mutant - I-mutant 51 I-mutant ( O H5 B-mutant - I-mutant 51 I-mutant ), O and O 4 O LC B-structure_element germlines O ( O all O κ B-structure_element ), O IGKV1 B-mutant - I-mutant 39 I-mutant ( O L1 B-mutant - I-mutant 39 I-mutant ), O IGKV3 B-mutant - I-mutant 11 I-mutant ( O L3 B-mutant - I-mutant 11 I-mutant ), O IGKV3 B-mutant - I-mutant 20 I-mutant ( O L3 B-mutant - I-mutant 20 I-mutant ) O and O IGKV4 B-mutant - I-mutant 1 I-mutant ( O L4 B-mutant - I-mutant 1 I-mutant ). O The O structure O analyses O include O comparisons O of O the O overall O structures B-evidence , O canonical O structures B-evidence of O the O L1 B-structure_element , O L2 B-structure_element , O L3 B-structure_element , O H1 B-structure_element and O H2 B-structure_element CDRs B-structure_element , O the O structures B-evidence of O all O CDR B-structure_element H3s B-structure_element , O and O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly packing B-bond_interaction interactions I-bond_interaction . O In O addition O to O these O , O 2 O primary O disordered O stretches O of O residues O are O observed O in O a O number O of O structures B-evidence ( O Table O S1 O ). O The O other O is O located O in O CDR B-structure_element H3 B-structure_element ( O in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O in O one O of O 2 O copies O of O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly ). O The O CDR B-structure_element H1 B-structure_element backbone O conformations O for O all O variants O for O each O of O the O HCs B-structure_element are O shown O in O Fig O . O 1 O . O The O superposition B-experimental_method of O CDR B-structure_element H2 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O heavy B-structure_element chains I-structure_element : O ( O A O ) O H1 B-mutant - I-mutant 69 I-mutant , O ( O B O ) O H3 B-mutant - I-mutant 23 I-mutant , O ( O C O ) O H3 B-mutant - I-mutant 53 I-mutant and O ( O D O ) O H5 B-mutant - I-mutant 51 I-mutant . O Arg71 B-residue_name_number in O H3 B-mutant - I-mutant 23 I-mutant fills O the O space O between O CDRs B-structure_element H2 B-structure_element and O H4 B-structure_element , O and O defines O the O conformation O of O the O tip O of O CDR B-structure_element H2 B-structure_element so O that O residue O 54 B-residue_number points O away O from O the O antigen B-site binding I-site site I-site . O Some O changes O in O conformation O occur O between O residues O 30a B-residue_number and O 30f B-residue_number ( O residues O 8 B-residue_number and O 13 B-residue_number of O 17 B-residue_number in O CDR B-structure_element L1 B-structure_element ). O Two O structures B-evidence , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly are O assigned O to O canonical O structure O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant with O virtually O identical O backbone O conformations O . O The O conformation O of O CDR B-structure_element L1 B-structure_element in O these O 2 O Fabs B-structure_element is O slightly O different O , O and O both O conformations O fall O somewhere O between O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant and O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant . O As O with O CDR B-structure_element L2 B-structure_element , O all O 4 O LCs B-structure_element have O CDR B-structure_element L3 B-structure_element of O the O same O length O and O canonical O structure B-evidence , O L3 B-mutant - I-mutant 9 I-mutant - I-mutant cis7 I-mutant - I-mutant 1 I-mutant ( O Table O 2 O ). O As O mentioned O earlier O , O all O 16 O Fabs B-structure_element have O the O same O CDR B-structure_element H3 B-structure_element , O for O which O the O amino O acid O sequence O is O derived O from O the O anti O - O CCL2 O antibody B-protein_type CNTO B-chemical 888 I-chemical . O Ribbon O representations O of O ( O A O ) O the O superposition B-experimental_method of O all O CDR B-structure_element H3s B-structure_element of O the O structures B-evidence with O complete O backbone O traces O . O ( O B O ) O The O CDR B-structure_element H3s B-structure_element rotated O 90 O ° O about O the O y O axis O of O the O page O . O A O comparison O of O representatives O of O the O “ O kinked B-protein_state ” O and O “ O extended B-protein_state ” O structures B-evidence . O ( O A O ) O The O “ O kinked B-protein_state ” O CDR B-structure_element H3 B-structure_element of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly with O purple O carbon O atoms O and O yellow O dashed O lines O connecting O the O H O - O bond O pairs O for O Leu100b B-residue_name_number O O and O Trp103 B-residue_name_number NE1 O , O Arg94 B-residue_name_number NE O and O Asp101 B-residue_name_number OD1 O , O and O Arg94 B-residue_name_number NH2 O and O Asp101 B-residue_name_number OD2 O . O The O VH B-structure_element and O VL B-structure_element domains O have O a O β B-structure_element - I-structure_element sandwich I-structure_element structure I-structure_element ( O also O often O referred O as O a O Greek B-structure_element key I-structure_element motif I-structure_element ) O and O each O is O composed O of O a O 4 B-structure_element - I-structure_element stranded I-structure_element and I-structure_element a I-structure_element 5 I-structure_element - I-structure_element stranded I-structure_element antiparallel I-structure_element β I-structure_element - I-structure_element sheets I-structure_element . O VH B-site : I-site VL I-site interface I-site amino O acid O residue O interactions O They O include O : O 1 O ) O a O bidentate O hydrogen B-bond_interaction bond I-bond_interaction between O L B-structure_element - O Gln38 B-residue_name_number and O H B-structure_element - O Gln39 B-residue_name_number ; O 2 O ) O H B-structure_element - O Leu45 B-residue_name_number in O a O hydrophobic B-site pocket I-site between O L B-structure_element - O Phe98 B-residue_name_number , O L B-structure_element - O Tyr87 B-residue_name_number and O L B-structure_element - O Pro44 B-residue_name_number ; O 3 O ) O L B-structure_element - O Pro44 B-residue_name_number stacked O against O H B-structure_element - O Trp103 B-residue_name_number ; O and O 4 O ) O L B-structure_element - O Ala43 B-residue_name_number opposite O the O face O of O H B-structure_element - O Tyr91 B-residue_name_number ( O Fig O . O 8 O ). O These O core O interactions O provide O enough O stability O to O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly dimer B-oligomeric_state so O that O additional O VH B-site - I-site VL I-site contacts I-site can O tolerate O amino O acid O sequence O variations O in O CDRs B-structure_element H3 B-structure_element and O L3 B-structure_element that O form O part O of O the O VH B-site : I-site VL I-site interface I-site . O In O most O of O the O structures B-evidence , O it O has O the O χ2 B-evidence angle O of O ∼ O 80 O °, O while O the O ring O is O flipped O over O ( O χ2 B-evidence = O − O 100 O °) O in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly : I-complex_assembly 11 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O Apparently O , O residues O flanking O CDR B-structure_element H3 B-structure_element in O the O 2 O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairings O are O inconsistent O with O any O stable B-protein_state conformation O of O CDR B-structure_element H3 B-structure_element , O which O translates O into O a O less O restricted O conformational O space O for O some O of O them O , O including O H B-structure_element - O Trp47 B-residue_name_number . O Residues O in O CDR B-structure_element H3 B-structure_element are O missing O : O YGE B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O GIY B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O Melting B-evidence temperatures I-evidence for O the O 16 O Fabs B-structure_element . O Colors O : O blue O ( O Tm B-evidence < O 70 O ° O C O ), O green O ( O 70 O ° O C O < O Tm B-evidence < O 73 O ° O C O ), O yellow O ( O 73 O ° O C O < O Tm B-evidence < O 78 O ° O C O ), O orange O ( O Tm B-evidence > O 78 O ° O C O ). O It O appears O that O for O each O given O LC B-structure_element , O the O Fabs B-structure_element with O germlines O H1 B-mutant - I-mutant 69 I-mutant and O H3 B-mutant - I-mutant 23 I-mutant are O substantially O more O stable B-protein_state than O those O with O germlines O H3 B-mutant - I-mutant 53 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant . O No O electron B-evidence density I-evidence is O observed O for O a O number O of O side O chains O in O CDRs B-structure_element H3 B-structure_element and O L3 B-structure_element in O all O Fabs B-structure_element with O germline O H3 B-mutant - I-mutant 53 I-mutant , O which O indicates O loose O packing O of O the O variable B-structure_element domains I-structure_element . O Of O the O 4 O HCs B-structure_element , O H1 B-mutant - I-mutant 69 I-mutant has O the O greatest O number O of O canonical O structure O assignments O ( O Table O 2 O ). O As O mentioned O in O the O Results O section O , O this O data O set O is O composed O of O 21 O Fabs B-structure_element , O since O 5 O of O the O 16 O variants O have O 2 O Fab B-structure_element copies O in O the O asymmetric O unit O . O For O the O 18 O Fabs B-structure_element with O complete O backbone O atoms O for O CDR B-structure_element H3 B-structure_element , O 10 O have O conformations O similar O to O that O of O the O parent O , O while O the O others O have O significantly O different O conformations O ( O Fig O . O 6 O ). O Thus O , O it O is O likely O that O the O CDR B-structure_element H3 B-structure_element conformation O is O dependent O upon O 2 O dominating O factors O : O 1 O ) O amino O acid O sequence O ; O and O 2 O ) O VH B-structure_element and O VL B-structure_element context O . O Interestingly O , O as O described O earlier O , O these O 2 O pairs O differ O in O the O stem B-structure_element regions I-structure_element with O the O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly pair O in O the O ‘ O extended B-protein_state ’ O conformation O and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly pair O in O the O ‘ O kinked B-protein_state ’ O conformation O . O The O CDR B-structure_element H3 B-structure_element conformational B-experimental_method analysis I-experimental_method shows O that O , O for O each O set O of O variants O of O one O HC B-structure_element paired O with O the O 4 O different O LCs B-structure_element , O both O “ O parental O ” O and O “ O non O - O parental O ” O conformations O are O observed O . O The O same O variability O is O observed O for O the O sets O of O variants O composed O of O one O LC B-structure_element paired O with O each O of O the O 4 O HCs B-structure_element . O This O finding O supports O the O hypothesis O of O Weitzner O et O al O . O that O the O H3 B-structure_element conformation O is O controlled O both O by O its O sequence O and O its O environment O . O Two O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O have O the O largest O differences O in O the O tilt O angles O compared O to O other O variants O as O seen O in O Table O 3 O . O One O of O the O variants O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O the O CDR B-structure_element H3 B-structure_element conformation O similar O to O the O parent O , O but O the O other O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O is O different O . O Pairing O of O different O germlines O yields O antibodies B-protein_type with O various O degrees O of O stability O . O Note O that O most O of O the O VH B-site : I-site VL I-site interface I-site residues O are O invariant O ; O therefore O , O significant O change O of O the O tilt O angle O must O come O with O a O penalty O in O free O energy O . O The O final O conformation O represents O an O energetic O minimum O ; O however O , O in O most O cases O it O is O very O shallow O , O so O that O a O single O mutation O can O cause O a O dramatic O rearrangement O of O the O structure B-evidence . O These O data O reveal O the O difficulty O of O modeling O CDR B-structure_element H3 B-structure_element accurately O , O as O shown O again O in O Antibody O Modeling O Assessment O II O . O With O the O recent O advances O in O expression B-experimental_method and I-experimental_method crystallization I-experimental_method methods I-experimental_method , O Fab B-structure_element structures B-evidence can O be O obtained O rapidly O . O Finally O , O a O model O of O the O full B-protein_state - I-protein_state length I-protein_state NsrR B-protein in O the O active B-protein_state and O inactive B-protein_state state O provides O insights O into O protein O dimerization O and O DNA B-chemical - O binding O . O One O of O the O potential O antibiotic O alternatives O are O lantibiotics B-chemical . O Thus O , O the O lantibiotic B-chemical producer O strains O have O an O inbuilt O self O - O protection O mechanism O ( O immunity O ) O to O prevent O cell O death O caused O due O to O the O action O of O its O cognate O lantibiotic B-chemical . O Recently O , O the O structure B-evidence of O SaNSR B-protein from O S B-species . I-species agalactiae I-species was O solved O which O provides O resistance O against O nisin B-chemical by O a O protease O activity O . O The O expression O of O the O lantibiotic B-chemical - O resistance O genes O via O TCS B-complex_assembly is O generally O regulated O by O microorganism O - O specific O lantibiotics B-chemical , O which O act O via O external O stimuli O . O Interestingly O , O the O histidine B-protein_type kinase I-protein_type contains O two B-structure_element - I-structure_element transmembrane I-structure_element helices I-structure_element but O lacks O an O extracellular B-structure_element sensory I-structure_element domain I-structure_element , O and O are O therefore O known O as O ‘ B-protein_type intramembrane I-protein_type - I-protein_type sensing I-protein_type ’ I-protein_type histidine I-protein_type kinases I-protein_type . O All O their O members O are O characterized O by O a O winged B-structure_element helix I-structure_element - I-structure_element turn I-structure_element - I-structure_element helix I-structure_element ( O wHTH B-structure_element ) O motif O . O The O structures B-evidence of O DrrD B-protein and O DrrB B-protein exist O in O an O open B-protein_state conformation O , O here O the O recognition B-structure_element helix I-structure_element is O fully B-protein_state exposed I-protein_state , O suggesting O that O RRs B-protein_type are O flexible B-protein_state in O solution O and O can O adopt O multiple O conformations O . O NsrR B-protein was O expressed B-experimental_method and I-experimental_method purified I-experimental_method as O described O , O resulting O in O a O homogenous O protein O as O observed O by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method ( O Fig O 1A O ), O with O a O yield O of O 2 O mg O per O liter O of O cell O culture O . O The O purified O NsrR B-protein protein O has O a O theoretical O molecular B-evidence mass I-evidence of O 27 O . O 7 O kDa O and O was O > O 98 O % O pure O as O assessed O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method ( O Fig O 1B O , O indicated O by O *). O This O was O also O observed O by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method where O a O peak O at O an O elution O time O of O 18 O min O appeared O ( O Fig O 1A O ). O NsrR B-protein was O crystallized B-experimental_method yielding O two O crystal O forms O , O which O were O distinguishable O by O visual O inspection O . O After O the O structure B-evidence was O solved O , O it O became O evident O that O these O crystals B-evidence contained O two O monomers B-oligomeric_state of O the O ED B-structure_element of O NsrR B-protein in O the O asymmetric O unit O . O The O Rwork B-evidence and O Rfree B-evidence values O after O refinement O were O 0 O . O 17 O and O 0 O . O 22 O , O respectively O . O Although O the O entire O N O - O terminal O receiver B-structure_element domain I-structure_element is O composed O of O residues O Met1 B-residue_range - I-residue_range Leu119 I-residue_range , O only O residues O Asn4 B-residue_range to I-residue_range Arg121 I-residue_range of O chain B-structure_element A I-structure_element ( O including O residues O Arg120 B-residue_name_number and O Arg121 B-residue_name_number of O the O linker B-structure_element ) O and O Gln5 B-residue_range to I-residue_range Ser122 I-residue_range of O chain B-structure_element B I-structure_element ( O including O residues O Arg120 B-residue_range until I-residue_range Ser122 I-residue_range of O the O linker B-structure_element ) O could O be O traced O in O the O electron B-evidence density I-evidence of O NsrR B-protein - O RD B-structure_element . O The O NsrR B-protein - O RD B-structure_element structure B-evidence shows O a O β1 B-structure_element - I-structure_element α1 I-structure_element - I-structure_element β2 I-structure_element - I-structure_element α2 I-structure_element - I-structure_element β3 I-structure_element - I-structure_element α3 I-structure_element - I-structure_element β4 I-structure_element - I-structure_element α4 I-structure_element - I-structure_element β5 I-structure_element - I-structure_element α5 I-structure_element topology O as O also O observed O for O other O RRs B-protein_type . O The O receiver B-structure_element domain I-structure_element of O NsrR B-protein was O superimposed B-experimental_method with O other O structurally O characterized O receiver B-structure_element domains I-structure_element from O the O OmpR B-protein_type / I-protein_type PhoB I-protein_type family I-protein_type , O such O as O DrrB B-protein , O KdpE B-protein , O MtrA B-protein , O and O the O crystal B-evidence structure I-evidence of O only O the O receiver B-structure_element domain I-structure_element of O PhoB B-protein . O The O rmsd B-evidence of O the O overlays B-experimental_method and O the O corresponding O PDB O codes O used O are O highlighted O in O Table O 2 O . O This O could O explain O the O flexibility O and O thereby O the O different O orientation O of O helix B-structure_element α4 B-structure_element in O NsrR B-protein . O Based O on O the O Dali B-experimental_method server I-experimental_method , O the O NsrR B-protein - O RD B-structure_element domain O is O structurally O closely O related O to O KdpE B-protein ( O PDB O code O : O 4KNY O ) O from O E B-species . I-species coli I-species , O displaying O a O sequence O identity O of O 28 O %. O The O putative O phosphorylation B-site site I-site of O NsrR B-protein is O Asp55 B-residue_name_number , O which O is O localized O at O the O end O of O strand B-structure_element β3 B-structure_element ( O Fig O 3 O , O shown O in O red O ; O Fig O 4 O ) O and O lies O within O an O acidic O environment O composed O of O the O side O chains O of O Glu12 B-residue_name_number and O Asp13 B-residue_name_number ( O Fig O 3 O , O highlighted O in O pink O ). O A O divalent O metal O ion O is O usually O bound O in O this O acidic O environment O and O is O essential O for O phosphorylation B-ptm and O de B-ptm - I-ptm phosphorylation I-ptm of O RRs B-protein_type . O In O contrast O , O the O switch B-site residues I-site face O towards O the O active B-site site I-site in O the O active B-protein_state state O conformation O ( O Fig O 4B O ). O A O comparison O of O the O NsrR B-protein - O RD B-structure_element structure B-evidence with O the O available O structures B-evidence of O PhoB B-protein ( O Fig O 4 O ) O in O the O active B-protein_state ( O PDB O code O : O 1ZES O ) O and O inactive B-protein_state ( O PDB O code O : O 1B00 O ) O states O demonstrates O that O Ser82 B-residue_name_number ( O NsrR B-protein - O RD B-structure_element ) O is O oriented O away O from O the O active B-site site I-site Asp55 B-residue_name_number , O and O that O Phe101 B-residue_name_number is O also O in O an O outward B-protein_state conformation O suggesting O an O inactive B-protein_state state O of O the O NsrR B-protein - O RD B-structure_element ( O Fig O 4A O ). O Phosphorylation B-ptm shifts O the O equilibrium O towards O the O active B-protein_state conformation O and O induces O the O formation O of O rotationally O symmetric O dimers B-oligomeric_state on O the O α4 B-site - I-site β5 I-site - I-site α5 I-site interface I-site of O RDs B-structure_element . O It O has O been O suggested O that O dimerization O is O crucial O for O DNA B-chemical - O binding O of O RRs B-protein_type of O the O OmpR B-protein_type / I-protein_type PhoB I-protein_type subfamily I-protein_type . O The O putative O functional O dimer B-oligomeric_state of O NsrR B-protein - O RD B-structure_element is O depicted O in O Fig O 5 O . O Majority O of O these O interactions O involve O residues O that O are O highly B-protein_state conserved I-protein_state within O the O OmpR B-protein_type / I-protein_type PhoB I-protein_type subfamily I-protein_type of O RRs B-protein_type . O Structurally O , O a O similar O set O of O residues O is O also O found O in O NsrR B-protein : O Leu94 B-residue_name_number ( O α4 B-structure_element ), O Val110 B-residue_name_number ( O α5 B-structure_element ) O and O Ala113 B-residue_name_number ( O α5 B-structure_element ), O respectively O ( O depicted O as O spheres O in O Fig O 5B O ), O which O are O conserved B-protein_state to O some O extent O on O sequence O level O ( O highlighted O in O yellow O ; O Fig O 3 O ). O Here O , O Asp100 B-residue_name_number ( O β5 B-structure_element ) O and O Lys114 B-residue_name_number ( O α5 B-structure_element ) O form O an O interaction O within O one O monomer B-oligomeric_state , O and O an O intermolecular O interaction O can O be O observed O between O Asn95 B-residue_name_number ( O α4 B-structure_element ) O of O one O monomer B-oligomeric_state with O Thr116 B-residue_name_number ( O α5 B-structure_element ) O of O the O other O monomer B-oligomeric_state ( O Fig O 3 O , O shown O in O cyan O ). O Ramachandran B-evidence validation I-evidence was O done O using O MolProbity O . O Monomer B-oligomeric_state A B-structure_element contains O residue O 129 B-residue_range – I-residue_range 224 I-residue_range and O monomer B-oligomeric_state B B-structure_element contain O residues O 128 B-residue_range – I-residue_range 225 I-residue_range . O The O two O β B-structure_element - I-structure_element sheets I-structure_element sandwich O the O three O α B-structure_element - I-structure_element helices I-structure_element . O Structure B-evidence of O the O C O - O terminal O effector B-structure_element domain I-structure_element of O NsrR B-protein . O Overall O , O the O structures B-evidence are O very O similar O with O rmsd B-evidence ’ O s O ranging O from O 1 O . O 7 O to O 2 O . O 6 O Å O ( O Table O 2 O ). O This O resulted O in O a O list O of O possible O templates O for O modeling O the O full B-protein_state - I-protein_state length I-protein_state structure B-evidence of O NsrR B-protein ( O Table O 2 O ). O This O mimics O the O closed B-protein_state inactive B-protein_state conformation O of O NsrR B-protein ( O Fig O 7A O ; O the O missing B-protein_state linker B-structure_element is O represented O as O dotted O line O ). O The O RD B-structure_element domain O of O NsrR B-protein is O highlighted O in O yellow O and O the O ED B-structure_element domain O in O green O with O the O “ O recognition B-structure_element helix I-structure_element ” O colored O in O cyan O . O ( O a O ) O Inactive B-protein_state state O conformation O : O Both O domains O of O NsrR B-protein were O aligned B-experimental_method to O the O structure B-evidence of O MtrA B-protein ( O not O shown O ), O which O adopts O a O closed B-protein_state inactive B-protein_state conformation O , O to O obtain O a O model O of O full B-protein_state - I-protein_state length I-protein_state NsrR B-protein . O Phe101 B-residue_name_number and O Asp187 B-residue_name_number stabilize O this O closed B-protein_state conformation O . O READ B-experimental_method enabled O us O to O visualize O even O sparsely O populated O conformations O of O the O substrate O protein O immunity B-protein protein I-protein 7 I-protein ( O Im7 B-protein ) O in B-protein_state complex I-protein_state with I-protein_state the O E B-species . I-species coli I-species chaperone B-protein_type Spy B-protein . O This O study O resulted O in O a O series O of O snapshots O depicting O the O various O folding O states O of O Im7 B-protein while O bound B-protein_state to I-protein_state Spy B-protein . O Particularly O challenging O are O interactions O of O intrinsically B-protein_state or I-protein_state conditionally I-protein_state disordered I-protein_state sections O of O proteins O with O their O partner O proteins O . O Structural O characterization O of O chaperone B-protein_type - O assisted O protein O folding O likely O would O help O bring O clarity O to O this O question O . O To O address O this O question O , O we O investigated O the O ATP B-protein_state - I-protein_state independent I-protein_state Escherichia B-species coli I-species periplasmic O chaperone B-protein_type Spy B-protein . O We O used O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly selenomethionine B-chemical crystals B-evidence for O phasing O with O single B-experimental_method - I-experimental_method wavelength I-experimental_method anomalous I-experimental_method diffraction I-experimental_method ( O SAD B-experimental_method ) O experiments O , O and O used O this O solution O to O build O the O well O - O ordered O Spy B-protein portions O of O all O four O complexes O . O Moreover O , O binding B-experimental_method experiments I-experimental_method indicated O that O Im76 B-mutant - I-mutant 45 I-mutant comprises O the O entire O Spy B-site - I-site binding I-site region I-site . O Consistent O with O the O fragmented O density B-evidence , O however O , O we O observed O multiple O iodine B-chemical positions O for O seven O of O the O eight O substituted O residues O . O Simultaneously O , O it O uses O the O residual B-evidence electron I-evidence density I-evidence to O help O choose O ensembles O . O By O analyzing O the O individual O structures B-evidence of O the O six O - O member O ensemble O of O Im76 B-mutant - I-mutant 45 I-mutant bound B-protein_state to I-protein_state Spy B-protein , O we O observed O that O Im76 B-mutant - I-mutant 45 I-mutant takes O on O several O different O conformations O while O bound B-protein_state . O Surprisingly O , O we O noted O that O in O the O ensemble O , O Im76 B-mutant - I-mutant 45 I-mutant interacts O with O only O 38 O % O of O the O hydrophobic O residues O in O the O Spy B-protein cradle B-site , O but O interacts O with O 61 O % O of O the O hydrophilic O residues O in O the O cradle B-site . O This O mixture O suggests O the O importance O of O both O electrostatic O and O hydrophobic O components O in O binding O the O Im76 B-mutant - I-mutant 45 I-mutant ensemble O . O Whereas O the O least B-protein_state - I-protein_state folded I-protein_state Im76 B-mutant - I-mutant 45 I-mutant pose O in O the O ensemble O forms O the O most O hydrophobic O contacts O with O Spy B-protein ( O Fig O . O 3 O ), O the O two O most B-protein_state - I-protein_state folded I-protein_state conformations O form O the O fewest O hydrophobic O contacts O ( O Fig O . O 3 O ). O Spy B-protein changes O conformation O upon O substrate O binding O As O inter O - O molecular O hydrophobic B-bond_interaction interactions I-bond_interaction between O Spy B-protein and O the O substrate O become O progressively O replaced O by O intra O - O molecular O interactions O within O the O substrate O , O the O affinity O between O chaperone B-protein_type and O substrates O could O decrease O , O eventually O leading O to O release O of O the O folded B-protein_state client O protein O . O This O interaction O presumably O reduces O the O mobility O of O the O C B-structure_element - I-structure_element terminal I-structure_element helix I-structure_element . O The O F115I B-mutant / O L B-mutant substitutions O would O replace O these O hydrogen B-bond_interaction bonds I-bond_interaction with O hydrophobic B-bond_interaction interactions I-bond_interaction that O have O little O angular O dependence O . O As O a O result O , O the O C O - O terminus O , O and O possibly O also O the O flexible B-protein_state linker B-structure_element , O is O likely O to O become O more O flexible O and O thus O more O accommodating O of O different O conformations O of O substrates O . O ( O b O ) O Composites O of O iodine B-chemical positions O detected O from O anomalous B-evidence signals I-evidence using O pI B-chemical - I-chemical Phe I-chemical substitutions B-experimental_method , O colored O and O numbered O by O sequence O . O The O frequency O plotted O is O calculated O as O the O average O contact B-evidence frequency I-evidence from O Spy B-protein to O every O residue O of O Im76 B-mutant - I-mutant 45 I-mutant and O vice O - O versa O . O Flexibility O of O Spy B-protein linker B-structure_element region I-structure_element and O effect O of O Super O Spy B-protein mutants O . O ( O a O ) O The O Spy B-protein linker B-structure_element region I-structure_element adopts O one O dominant O conformation O in O its O apo B-protein_state state O ( O PDB O ID O 3039 O , O gray O ), O but O expands O and O adopts O multiple O conformations O in O bound B-protein_state states O ( O green O ). O ( O b O ) O F115 B-residue_name_number and O L32 B-residue_name_number tether O Spy B-protein ’ O s O linker B-structure_element region I-structure_element to O its O cradle B-site , O decreasing O Spy B-protein activity O by O limiting O linker B-structure_element region I-structure_element flexibility O . O L32 B-residue_name_number , O F115 B-residue_name_number , O and O Y104 B-residue_name_number are O rendered O in O purple O to O illustrate O residues O that O are O most O affected O by O Super O Spy B-protein mutations B-protein_state ; O CH O ⋯ O π O hydrogen B-bond_interaction bonds I-bond_interaction are O depicted O by O orange O dashes O . O Herein O , O we O report O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O ligand B-protein_state - I-protein_state free I-protein_state Tdp2 B-protein and O Tdp2 B-complex_assembly - I-complex_assembly DNA I-complex_assembly complexes O with O alkylated O and O abasic O DNA B-chemical that O unveil O a O dynamic B-protein_state Tdp2 B-protein active B-structure_element site I-structure_element lid I-structure_element and O deep O substrate B-site binding I-site trench I-site well O - O suited O for O engaging O the O diverse O DNA B-chemical damage O triggers O of O abortive O Top2 B-protein_type reactions O . O Nuclear O DNA B-chemical compaction O and O the O action O of O DNA B-chemical and O RNA B-protein_type polymerases I-protein_type create O positive O and O negative O DNA B-chemical supercoiling O — O over O - O and O under O - O winding O of O DNA B-chemical strands O , O respectively O — O and O the O linking O together O ( O catenation O ) O of O DNA B-chemical strands O . O To O promote O cancer O cell O death O , O Top2 B-protein_type reactions O are O ‘ O poisoned O ’ O by O keystone O pharmacological O anticancer O agents O like O etoposide B-chemical , O teniposide B-chemical and O doxorubicin B-chemical . O The O chemical O complexity O of O DNA B-chemical damage O - O derived O Top2cc B-complex_assembly necessitates O that O DNA B-chemical repair O machinery O dedicated O to O resolving O these O lesions O recognizes O both O DNA B-chemical and O protein O , O whilst O accommodating O diverse O chemical O structures O that O trap O Top2cc B-complex_assembly . O Tdp2 B-protein processes O phosphotyrosyl B-ptm linkages I-ptm in O diverse O DNA B-chemical damage O contexts O . O Tdp2 B-protein hydrolyzes O the O 5 O ′– O phosphotyrosine B-residue_name adduct O derived O from O poisoned O Top2 B-protein_type leaving O DNA B-chemical ends O with O a O 5 B-chemical ′- I-chemical phosphate I-chemical , O which O facilitates O DNA B-chemical end O joining O through O the O NHEJ O pathway O . O Phosphotyrosyl B-ptm bond O hydrolysis O catalyzed O by O mTdp2cat B-structure_element releases O p B-chemical - I-chemical nitrophenol I-chemical , O which O is O detected O by O measuring O absorbance O at O 415 O nm O . O ( O C O ) O mTdp2cat B-structure_element reaction B-evidence rates I-evidence on O p B-chemical – I-chemical nitrophenol I-chemical modified O DNA B-chemical substrates O shown O in O panel O B O . O Rates O are O reported O as O molecules O of O PNP B-chemical s O − O 1 O produced O by O mTdp2cat B-structure_element . O However O , O important O questions O regarding O the O mechanism O of O Tdp2 B-protein engagement O and O processing O of O DNA B-chemical damage O remain O . O Finally O , O we O characterize O a O Tdp2 B-protein SNP O that O ablates B-protein_state the O Tdp2 B-protein single B-site metal I-site binding I-site site I-site and O Tdp2 B-protein substrate O induced O conformational O changes O , O and O confers O Top2 B-protein_type drug O sensitivity O in O mammalian B-taxonomy_domain cells O . O To O test O this O , O we O adapted O an O EDC B-experimental_method coupling I-experimental_method method I-experimental_method to O generate O 5 O ′- O terminal O p B-chemical - I-chemical nitrophenol I-chemical ( O PNP B-chemical ) O modified O oligonucleotides O that O also O harbored O DNA B-chemical damage O at O the O 5 O ′- O nucleotide O position O ( O see O Materials O and O Methods O ). O mTdp2cat B-structure_element is O colored O with O red O ( O electronegative O ), O blue O ( O electropositive O ) O and O gray O ( O hydrophobic O ) O electrostatic O surface O potential O displayed O . O A O structural B-experimental_method overlay I-experimental_method of O damaged O and O undamaged O nucleotides O shows O no O major O distortions O to O nucleotide O planarity O between O different O bound B-protein_state sequences O and O DNA B-chemical damage O ( O compare O ϵA B-chemical , O dA B-chemical and O dC B-chemical , O Supplementary O Figure O S1A O – O D O ). O Likewise O , O the O abasic B-chemical deoxyribose I-chemical analog O THF B-chemical substrate O binds O similar O to O the O alkylated O and O non O - O alkylated O substrates O , O but O with O a O slight O alteration O in O the O approach O of O the O 5 O ′- O terminus O ( O Figure O 2C O ). O An O intriguing O feature O of O the O DNA B-protein_state - I-protein_state damage I-protein_state bound I-protein_state conformation O of O the O Tdp2 B-protein active B-site site I-site is O an O underlying O network O of O protein O – O water B-chemical – O protein O contacts O that O span O a O gap O between O the O catalytic B-site core I-site and O the O DNA B-site binding I-site β2Hβ I-site - I-site grasp I-site ( O Supplementary O Figure O S2 O ). O The O β2Hβ B-site docking I-site pocket I-site ( O circled O ) O is O unoccupied O and O residues O N312 B-residue_name_number , O N314 B-residue_name_number and O L315 B-residue_name_number ( O orange O ) O are O solvent B-protein_state - I-protein_state exposed I-protein_state . O Wall O - O eyed O stereo O view O is O displayed O . O ( O C O ) O Alignment O of O active B-structure_element site I-structure_element loop I-structure_element conformers O observed O in O the O 5 O promoters B-oligomeric_state of O the O DNA B-protein_state - I-protein_state free I-protein_state mTdp2cat B-structure_element ( O PDB O entry O 5INM O , O see O Table O 1 O ) O crystallographic O asymmetric O unit O ( O left O ) O and O sequence B-experimental_method alignment I-experimental_method showing O residues O not O observed O in O the O electron B-evidence density I-evidence as O ‘∼’ O ( O right O ). O ( O D O ) O Limited B-experimental_method trypsin I-experimental_method proteolysis I-experimental_method probes O the O solvent O accessibility O of O the O flexible B-protein_state active B-structure_element - I-structure_element site I-structure_element loop I-structure_element . O Reactions O were O separated O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method and O proteins O visualized O by O staining O with O coomassie O blue O . O ( O E O ) O Limited B-experimental_method chymotrypsin I-experimental_method proteolysis I-experimental_method probes O the O solvent O accessibility O of O the O flexible B-protein_state active B-structure_element - I-structure_element site I-structure_element loop I-structure_element . O Burial O of O Thr309 B-residue_name_number is O enabled O by O an O unusual O main O chain O cis B-bond_interaction – I-bond_interaction peptide I-bond_interaction bond I-bond_interaction between O Asp308 B-residue_name_number - O Thr309 B-residue_name_number and O disassembly O of O the O short B-structure_element antiparallel I-structure_element beta I-structure_element - I-structure_element strand I-structure_element of O the O β2Hβ B-structure_element fold O . O To O transition O into O the O closed B-protein_state β2Hβ B-structure_element conformation O , O Thr309 B-residue_name_number disengages O from O the O EEP B-structure_element domain O pocket B-site , O flips O peptide O backbone O conformation O cis O to O trans O , O and O is O integral O to O the O β2Hβ B-structure_element antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O Accordingly O , O in O the O DNA B-protein_state free I-protein_state structure B-evidence , O we O observe O a O trend O where O the O 2 O closed B-protein_state monomers B-oligomeric_state have O an O ordered O Mg2 B-chemical + I-chemical ion O in O their O active B-site sites I-site , O while O the O monomers B-oligomeric_state with O open B-protein_state conformations O have O a O poorly O ordered O or O vacant O metal B-site binding I-site site I-site . O Overall O , O these O observations O suggest O that O engagement O of O diverse O damaged O DNA B-chemical ends O is O enabled O by O an O elaborate O substrate O selected O stabilization O of O the O β2Hβ B-site DNA I-site binding I-site grasp I-site , O and O these O rearrangements O are O coordinated O with O Mg2 B-chemical + I-chemical binding O in O the O Tdp2 B-protein active B-site site I-site . O While O this O work O was O suggestive O of O a O two O metal O ion O mechanism O for O phosphotyrosyl B-ptm bond O cleavage O by O Tdp2 B-protein , O we O note O that O second O metal O ion O titrations O can O be O influenced O by O metal B-site ion I-site binding I-site sites I-site outside O of O the O active B-site site I-site . O This O analysis O revealed O Mg2 B-chemical + I-chemical Kd B-evidence values O in O the O sub O - O millimolar O range O and O Hill B-evidence coefficients I-evidence which O were O consistent O with O a O single O metal B-site binding I-site site I-site both O in O the O presence B-protein_state and O absence B-protein_state of I-protein_state DNA B-chemical ( O Supplementary O Table O S2 O ). O In O contrast O , O while O co B-evidence - I-evidence complex I-evidence structures I-evidence with O Ca2 B-chemical + I-chemical also O show O a O single O metal O ion O , O Ca2 B-chemical + I-chemical binds O in O a O slightly O different O position O , O shifted O ∼ O 1 O Å O from O the O Mg2 B-site + I-site site I-site . O Residue O numbers O shown O are O for O the O mTdp2 B-protein homolog O . O ( O D O ) O Electrostatic B-evidence surface I-evidence potential I-evidence calculated O for O 5 B-residue_name ′- I-residue_name phosphotyrosine I-residue_name in O isolation O ( O upper O panel O ) O and O in O the O presence B-protein_state of I-protein_state a O cation B-bond_interaction – I-bond_interaction π I-bond_interaction interaction I-bond_interaction with O the O guanidinium O group O of O Arg216 B-residue_name_number ( O lower O panel O ) O shows O electron O - O withdrawing O effect O of O this O interaction O . O Here O , O the O water B-chemical proton O and O the O neighboring O O O of O Asp272 B-residue_name_number participates O in O a O strong O hydrogen B-bond_interaction bond I-bond_interaction ( O distance O of O 1 O . O 58 O Å O ) O and O the O phosphotyrosyl B-ptm O O – O P O distance O is O stretched O to O 1 O . O 77 O Å O , O which O is O 0 O . O 1 O Å O beyond O an O equilibrium O bond O length O . O Product O formation O is O coupled O to O a O transfer O of O a O proton O from O the O nucleophillic O water B-chemical to O Asp272 B-residue_name_number , O consistent O with O the O proposed O function O for O this O residue O as O the O catalytic O base O . O By O analyzing O activities O on O this O nested O set O of O chemically O related O substrates O we O aimed O to O dissect O structure O - O activity O relationships O of O Tdp2 B-protein catalysis O . O Structural B-evidence results I-evidence and O QM B-experimental_method / I-experimental_method MM I-experimental_method modeling I-experimental_method indicate O mAsp272 B-residue_name_number activates O a O water B-chemical molecule O for O in O - O line O nucleophilic O attack O of O the O scissile O phosphotyrosyl B-ptm linkage I-ptm . O Mutations B-experimental_method hI307A B-mutant , O hL305A B-mutant , O hL305F B-mutant and O hL305W B-mutant all O impaired O catalysis O on O both O nucleotide O - O containing O substrates O (< O 50 O % O activity O ). O Quantification O of O percent O MBP B-experimental_method - O hTdp2cat B-structure_element activity O relative O to O WT B-protein_state protein O for O the O 5 B-chemical ′- I-chemical Y I-chemical DNA I-chemical oligonucleotide I-chemical substrate O ( O blue O bars O ), O T5PNP B-chemical ( O red O bars O ) O and O PNPP B-chemical ( O green O bars O ) O is O displayed O . O Accordingly O , O we O demonstrate O here O that O 5 B-protein_state ′- I-protein_state tyrosylated I-protein_state ends O are O sufficient O to O severely O impair O an O in O vitro O reconstituted O mammalian B-taxonomy_domain NHEJ O reaction O ( O Figure O 7A O , O lanes O 3 O and O 6 O ), O unless O supplemented O with O catalytic O quantities O of O hTdp2FL B-protein ( O Figure O 7A O , O lane O 8 O ). O DNA B-chemical substrates O with O 5 B-residue_name ′- I-residue_name phosphotyrosine I-residue_name adducts O and O 4 O nucleotide O 5 O ′ O overhangs O were O electroporated O into O cultured O mammalian B-taxonomy_domain cells O . O Error O bars O , O s O . O d O , O n O = O 3 O . O ( O E O ) O Clonogenic B-experimental_method survival I-experimental_method assay I-experimental_method of O WT B-protein_state , O Tdp2 B-protein knockout O and O complemented O MEF O cells O after O treatment O with O indicated O concentrations O of O etoposide B-chemical for O 3 O h O ; O error O bars O , O s O . O d O , O n O = O 3 O . O Top2 B-protein_type chemotherapeutic O agents O remain O frontline O treatments O , O and O exposure O to O the O chemical O and O damaged O DNA B-chemical triggers O of O Top2 B-protein_type - O DNA B-chemical protein O crosslink O formation O are O unavoidable O . O Together O with O mutagenesis B-experimental_method and O functional B-experimental_method assays I-experimental_method , O our O new O Tdp2 B-protein structures B-evidence in B-protein_state the I-protein_state absence I-protein_state of I-protein_state ligands B-chemical and O in B-protein_state complex I-protein_state with I-protein_state DNA B-chemical damage O reveal O four O novel O facets O of O Tdp2 B-protein DNA B-chemical - O protein O conjugate O processing O : O ( O i O ) O The O Tdp2 B-protein active B-site site I-site is O well O - O suited O for O accommodating O a O variety O of O DNA B-chemical structures O including O abasic O and O bulky O alkylated O DNA B-chemical lesions O that O trigger O Top2 B-protein_type poisoning O , O ( O ii O ) O High O - O resolution O structural B-experimental_method analysis I-experimental_method coupled O with O mutational B-experimental_method studies I-experimental_method and O QM B-experimental_method / I-experimental_method MM I-experimental_method molecular I-experimental_method modeling I-experimental_method of O the O Tdp2 B-protein reaction O coordinate O support O a O single O metal O - O ion O mechanism O for O the O diverse O clade O of O EEP B-structure_element domain O catalyzed O phosphoryl B-protein_type hydrolase I-protein_type reactions O , O ( O iii O ) O The O Tdp2 B-protein active B-site site I-site is O conformationally B-protein_state plastic I-protein_state , O and O undergoes O intricate O rearrangements O upon O DNA B-chemical and O Mg2 B-chemical + I-chemical cofactor O binding O and O ( O iv O ) O Naturally O occurring O Tdp2 B-protein variants O undermine O Tdp2 B-protein active B-site site I-site chemistry O , O cellular O and O biochemical O activities O . O We O hypothesize O that O binding O of O the O Top2 B-protein_type protein O component O of O a O DNA B-chemical – O protein O crosslink O and O / O or O other O protein O - O regulated O assembly O of O the O Tdp2 B-protein active B-site site I-site might O also O serve O to O regulate O Tdp2 B-protein activity O to O restrict O it O from O misplaced O Top2 B-protein_type processing O events O , O such O that O it O cleaves O only O topologically O trapped O or O poisoned O Top2 B-protein_type molecules O when O needed O . O Etoposide B-chemical and O other O Top2 B-protein_type poisons O remain O front O line O anti O - O cancer O drugs O , O and O Tdp2 B-protein frameshift O mutations O in O the O human B-species population O confer O hypersensitivity O to O Top2 B-protein_type poisons O including O etoposide B-chemical and O doxyrubicin B-chemical . O Here O , O we O elucidate O their O mechanisms O of O extracellular O ion O recognition O and O exchange O through O a O structural B-experimental_method analysis I-experimental_method of O the O exchanger B-protein_type from O Methanococcus B-species jannaschii I-species ( O NCX_Mj B-protein ) O bound B-protein_state to I-protein_state Na B-chemical +, I-chemical Ca2 B-chemical + I-chemical or O Sr2 B-chemical + I-chemical in O various O occupancies O and O in O an O apo B-protein_state state O . O The O basic O functional O unit O for O ion O transport O in O NCX B-protein_type consists O of O ten O membrane B-structure_element - I-structure_element spanning I-structure_element segments I-structure_element , O comprising O two O homologous O halves B-structure_element . O With O similar O ion O exchange O properties O to O those O of O its O eukaryotic B-taxonomy_domain counterparts O , O NCX_Mj B-protein provides O a O compelling O model O system O to O investigate O the O structural O basis O for O the O specificity O , O stoichiometry O and O mechanism O of O the O ion O - O exchange O reaction O catalyzed O by O NCX B-protein_type . O An O independent O analysis O based O on O molecular B-experimental_method - I-experimental_method dynamics I-experimental_method simulations I-experimental_method demonstrates O that O the O structures B-evidence capture O mechanistically O relevant O states O . O Extracellular O Na B-chemical + I-chemical binding O The O Na B-chemical + I-chemical occupation O at O SCa B-site , O compounded O with O the O expected O 3Na O +: B-chemical 1Ca2 O + B-chemical stoichiometry O , O implies O our O previous O assignment O of O the O Smid B-site site O must O be O re O - O evaluated O . O However O , O when O Sext B-site becomes O empty B-protein_state at O low B-protein_state Na B-chemical + I-chemical concentrations O , O TM7a B-structure_element and O TM7b B-structure_element become O a O continuous O straight O helix B-structure_element ( O Fig O . O 2a O ), O and O the O carbonyl O group O of O Ala206 B-residue_name_number retracts O away O ( O Fig O . O 2b O - O d O ). O This O structurally O - O derived O Na B-evidence + I-evidence affinity I-evidence agrees O well O with O the O external O Na B-chemical + I-chemical concentration O required O for O NCX B-protein_type activation O in O eukaryotes B-taxonomy_domain . O Sr2 B-chemical + I-chemical is O transported O by O NCX B-protein_type similarly O to O Ca2 B-chemical + I-chemical , O and O is O distinguishable O from O Na B-chemical + I-chemical by O its O greater O electron B-evidence - I-evidence density I-evidence intensity I-evidence . O The O Sr2 B-protein_state +- I-protein_state loaded I-protein_state NCX_Mj B-protein structure B-evidence adopts O the O partially B-protein_state open I-protein_state conformation O observed O at O low O Na B-chemical + I-chemical concentrations O . O This O finding O is O consistent O with O physiological B-evidence and I-evidence biochemical I-evidence data I-evidence for O both O eukaryotic B-taxonomy_domain NCX B-protein_type and O NCX_Mj B-protein indicating O that O the O apparent O Ca2 B-evidence + I-evidence affinity I-evidence is O much O lower O on O the O extracellular O than O the O cytoplasmic O side O . O Although O the O binding B-site sites I-site are O thus O fully B-protein_state accessible I-protein_state to O the O external O solution O ( O Fig O . O 3e O ), O the O lack O of O electron B-evidence density I-evidence therein O indicates O no O ions O or O ordered O solvent O molecules O . O Alternatively O , O this O structure B-evidence might O capture O a O fully B-protein_state protonated I-protein_state state O of O the O transporter B-protein_type , O to O which O Na B-chemical + I-chemical and O Ca2 B-chemical + I-chemical cannot O bind O . O Ion O occupancy O determines O the O free O - O energy O landscape O of O NCX_Mj B-protein As O it O happens O , O the O results O confirm O that O the O structures B-evidence now O available O are O representing O interconverting O states O of O the O functional O cycle O of O NCX_Mj B-protein , O while O revealing O how O the O alternating O - O access O mechanism O is O controlled O by O the O ion O - O occupancy O state O . O Specifically O , O we O first O simulated B-experimental_method the O outward B-protein_state - I-protein_state occluded I-protein_state form O , O in O the O ion O configuration O we O previously O predicted O , O now O confirmed O by O the O high B-protein_state - I-protein_state Na I-protein_state + I-protein_state crystal B-evidence structure I-evidence described O above O ( O Fig O . O 1b O ). O That O is O , O Na B-chemical + I-chemical ions O occupy O Sext B-site , O SCa B-site , O and O Sint B-site , O while O D240 B-residue_name_number is O protonated B-protein_state and O a O water B-chemical molecule O occupies O Smid B-site . O The O Na B-chemical + I-chemical ion O at O Sext B-site was O then O relocated O from O the O site O to O the O bulk O solution O ( O Methods O ), O and O this O system O was O then O allowed O to O evolve O freely O in O time O . O The O most O noticeable O is O an O increased O separation O between O TM7 B-structure_element and O TM2 B-structure_element ( O Fig O . O 4f O ), O previously O brought O together O by O concurrent O backbone O interactions O with O the O Na B-chemical + I-chemical ion O at O SCa B-site ( O Fig O . O 4d O - O e O ). O TM1 B-structure_element and O TM6 B-structure_element also O slide O further O towards O the O membrane O center O , O relative O to O the O outward B-protein_state - I-protein_state occluded I-protein_state state O ( O Fig O . O 4c O ). O This O semi B-protein_state - I-protein_state open I-protein_state conformation O is O nearly O identical O to O that O found O to O be O the O most O probable O when O Na B-chemical + I-chemical occupies O only O SCa B-site and O Sint B-site ( O 2 O × O Na B-chemical +, I-chemical Fig O . O 5a O ), O demonstrating O that O binding O ( O or O release O ) O of O Na B-chemical + I-chemical to O Sext B-site occurs O in O this O metastable B-protein_state conformation O . O This O occluded B-protein_state conformation O , O which O is O a O necessary O intermediate O between O the O outward B-protein_state and O inward B-protein_state - I-protein_state open I-protein_state states O , O and O which O entails O the O internal O dehydration B-protein_state of O the O protein O , O is O only O attainable O upon O complete B-protein_state occupancy I-protein_state of O the O binding B-site sites I-site . O For O example O , O in O the O crystal B-evidence of O NCX_Mj B-protein in O LCP B-experimental_method , O the O extracellular B-structure_element half I-structure_element of O the O gating B-structure_element helices I-structure_element ( O TM6 B-structure_element and O TM1 B-structure_element ) O form O a O lattice O contact O , O which O might O ultimately O restrict O the O degree O of O opening O of O the O ion B-site - I-site binding I-site sites I-site in O some O cases O ( O e O . O g O . O in O the O apo B-protein_state , O low B-protein_state pH I-protein_state structure B-evidence ). O The O simulations B-experimental_method also O demonstrate O how O this O landscape O is O drastically O re O - O shaped O upon O each O ion O - O binding O event O . O We O posit O that O a O similar O principle O might O govern O the O alternating O - O access O mechanism O in O other O transporters B-protein_type ; O that O is O , O we O anticipate O that O for O both O symporters B-protein_type and O antiporters B-protein_type , O it O is O the O feasibility O of O the O occluded B-protein_state state O , O encoded O in O the O protein B-evidence conformational I-evidence free I-evidence - I-evidence energy I-evidence landscape I-evidence and O its O dependence O on O substrate O binding O , O that O ultimately O explains O their O specific O coupling O mechanisms O . O Specifically O , O saturating O amounts O of O Ca2 B-chemical + I-chemical or O Na B-chemical + I-chemical resulted O in O a O noticeable O slowdown O in O the O HDX B-evidence rate I-evidence for O extracellular O portions O of O the O α B-structure_element - I-structure_element repeat I-structure_element helices I-structure_element . O Na B-chemical + I-chemical binding O to O outward B-protein_state - I-protein_state facing I-protein_state NCX_Mj B-protein . O ( O a O ) O Overall O structure B-evidence of O native B-protein_state outward B-protein_state - I-protein_state facing I-protein_state NCX_Mj B-protein from O crystals B-experimental_method grown I-experimental_method in O 150 O mM O Na B-chemical +. I-chemical No O significant O changes O were O observed O in O the O side O - O chains O involved O in O ion O or O water B-chemical coordination O at O the O SCa B-site , O Sint B-site and O Smid B-site sites O . O For O Ca2 B-chemical +, I-chemical a O map B-evidence is O shown O in O which O a O correction O for O the O charge O - O transfer O between O the O ion O and O the O protein O is O introduced O , O alongside O the O uncorrected O map B-evidence ( O see O Supplementary O Notes O 3 O - O 4 O and O Supplementary O Fig O . O 5 O - O 6 O ). O Asterisks O mark O the O states O whose O crystal B-evidence structures I-evidence have O been O determined O in O this O study O . O We O use O single B-experimental_method - I-experimental_method molecule I-experimental_method Förster I-experimental_method resonance I-experimental_method energy I-experimental_method transfer I-experimental_method ( O smFRET B-experimental_method ) O to O characterize O the O conformational B-evidence dynamics I-evidence of O this O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element during O Py B-chemical - I-chemical tract I-chemical recognition O . O Both O RRM1 B-structure_element / O RRM2 B-structure_element extensions B-structure_element and O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element of O U2AF651 B-mutant , I-mutant 2L I-mutant directly O recognize O the O bound B-protein_state oligonucleotide B-chemical . O The O discovery O of O nine O U2AF65 B-site - I-site binding I-site sites I-site for O contiguous B-structure_element Py B-chemical - I-chemical tract I-chemical nucleotides I-chemical was O unexpected O . O Surprisingly O , O the O RRM2 B-structure_element extension I-structure_element / O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element contribute O new O central O nucleotide B-site - I-site binding I-site sites I-site near O the O RRM1 B-site / I-site RRM2 I-site junction I-site and O the O RRM1 B-structure_element extension I-structure_element recognizes O the O 3 O ′- O terminal O nucleotide B-chemical ( O Fig O . O 2c O ; O Supplementary O Movie O 1 O ). O We O tested B-experimental_method the I-experimental_method contribution I-experimental_method of O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O with O the O new O central O nucleotide B-chemical to O Py B-evidence - I-evidence tract I-evidence affinity I-evidence ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4a O , O b O ). O U2AF65 B-protein RRM B-structure_element extensions I-structure_element interact O with O the O Py B-chemical tract I-chemical Indirectly O , O the O additional O contacts O with O the O third B-residue_number nucleotide B-chemical shift O the O rU2 B-residue_name_number nucleotide B-chemical in O the O second B-site binding I-site site I-site closer O to O the O C O - O terminal O β B-structure_element - I-structure_element strand I-structure_element of O RRM2 B-structure_element . O A O second B-structure_element kink I-structure_element at O P236 B-residue_name_number , O coupled O with O respective O packing O of O the O L235 B-residue_name_number and O M238 B-residue_name_number side O chains O on O the O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element RRM1 I-structure_element extension I-structure_element and O the O core B-protein_state RRM1 B-structure_element α2 B-structure_element - I-structure_element helix I-structure_element , O reverses O the O direction O of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element towards O the O RRM1 B-site / I-site RRM2 I-site interface I-site and O away O from O the O RNA B-site - I-site binding I-site site I-site . O At O the O RNA B-chemical surface O , O the O key O V254 B-residue_name_number that O recognizes O the O fifth B-residue_number uracil B-residue_name is O secured O via O hydrophobic B-bond_interaction contacts I-bond_interaction between O its O side O chain O and O the O β B-structure_element - I-structure_element sheet I-structure_element surface I-structure_element of O RRM2 B-structure_element , O chiefly O the O consensus O RNP1 B-structure_element - O F304 B-residue_name_number residue O that O stacks B-bond_interaction with O the O fourth B-residue_number uracil B-residue_name ( O Fig O . O 4a O , O lower O left O ). O Despite O 12 B-experimental_method concurrent I-experimental_method mutations I-experimental_method , O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 12Gly I-mutant variant B-protein_state was O reduced O by O only O three O - O fold O relative O to O the O unmodified B-protein_state protein B-protein ( O Fig O . O 4b O ), O which O is O less O than O the O penalty O of O the O V254P B-mutant mutation O that O disrupts O the O rU5 B-residue_name_number hydrogen B-bond_interaction bond I-bond_interaction ( O Fig O . O 3d O , O i O ). O To O further O test O cooperation O among O the O U2AF65 B-protein RRM B-structure_element extensions I-structure_element and O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element for O RNA O recognition O , O we O tested O the O impact O of O a O triple O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method ( O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant ) O for O RNA O binding O ( O Fig O . O 4b O ; O Supplementary O Fig O . O 4d O ). O The O non O - O additive O effects O of O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant triple B-experimental_method mutation I-experimental_method , O coupled O with O the O context O - O dependent O penalties O of O an O internal O U2AF65 B-protein linker B-experimental_method deletion I-experimental_method , O highlights O the O importance O of O the O structural O interplay O among O the O U2AF65 B-protein linker B-structure_element and O the O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element flanking O the O core B-protein_state RRMs B-structure_element . O Sparse O inter B-structure_element - I-structure_element RRM I-structure_element contacts O underlie O apo B-protein_state - O U2AF65 B-protein dynamics O The O direct O interface B-site between O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element is O minor O , O burying O 265 O Å2 O of O solvent O accessible O surface O area O compared O with O 570 O Å2 O on O average O for O a O crystal O packing O interface O . O A O handful O of O inter B-structure_element - I-structure_element RRM I-structure_element hydrogen B-bond_interaction bonds I-bond_interaction are O apparent O between O the O side O chains O of O RRM1 B-structure_element - O N155 B-residue_name_number and O RRM2 B-structure_element - O K292 B-residue_name_number , O RRM1 B-structure_element - O N155 B-residue_name_number and O RRM2 B-structure_element - O D272 B-residue_name_number as O well O as O the O backbone O atoms O of O RRM1 B-structure_element - O G221 B-residue_name_number and O RRM2 B-structure_element - O D273 B-residue_name_number ( O Fig O . O 4c O ). O We O first O characterized O the O conformational O dynamics O spectrum O of O U2AF65 B-protein in O the O absence B-protein_state of I-protein_state RNA B-chemical ( O Fig O . O 6c O , O d O ; O Supplementary O Fig O . O 7a O , O b O ). O A O 0 O . O 45 O FRET B-evidence value I-evidence was O again O predominant O , O indicating O a O similar O RNA B-protein_state - I-protein_state bound I-protein_state conformation O and O structural O dynamics O for O the O untethered B-protein_state and O tethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ). O Therefore O , O RRM1 B-structure_element - O to O - O RRM2 B-structure_element distance O remains O similar O regardless O of O whether O U2AF65 B-protein is O bound B-protein_state to I-protein_state interrupted O or O continuous O Py B-chemical tract I-chemical . O The O inter B-evidence - I-evidence fluorophore I-evidence distances I-evidence derived O from O the O observed O 0 O . O 45 O FRET B-evidence state I-evidence agree O with O the O distances O between O the O α O - O carbon O atoms O of O the O respective O residues O in O the O crystal B-evidence structures I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical . O Thus O , O the O sequence O of O structural O rearrangements O of O U2AF65 B-protein observed O in O smFRET B-experimental_method traces B-evidence ( O Supplementary O Fig O . O 7c O – O g O ) O suggests O that O a O ‘ O conformational O selection O ' O mechanism O of O Py B-chemical - I-chemical tract I-chemical recognition O ( O that O is O , O RNA O ligand O stabilization O of O a O pre B-protein_state - I-protein_state configured I-protein_state U2AF65 B-protein conformation O ) O is O complemented O by O ‘ O induced O fit O ' O ( O that O is O , O RNA O - O induced O rearrangement O of O the O U2AF65 B-protein RRMs B-structure_element to O achieve O the O final O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O conformation O ), O as O discussed O below O . O Several O observations O indicate O that O the O numerous O intramolecular O contacts O , O here O revealed O among O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM1 B-structure_element , O RRM2 B-structure_element , O and O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element , O synergistically O coordinate O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O . O The O lesser O 0 O . O 65 O – O 0 O . O 8 O and O 0 O . O 2 O – O 0 O . O 3 O FRET B-evidence values I-evidence in O the O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O experiment O could O correspond O to O respective O variants O of O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state U2AF65 B-protein conformations O characterized O by O NMR B-experimental_method / O PRE B-experimental_method data O , O or O to O extended B-protein_state U2AF65 B-protein conformations O , O in O which O the O intramolecular O RRM1 B-structure_element / O RRM2 B-structure_element interactions O have O dissociated O the O protein B-protein is O bound B-protein_state to I-protein_state RNA B-chemical via O single B-protein_state RRMs B-structure_element . O Notably O , O our O smFRET B-experimental_method results O reveal O that O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O can O be O characterized O by O an O ‘ O extended O conformational O selection O ' O model O ( O Fig O . O 7b O ). O Based O on O ( O i O ) O similar O RNA B-evidence affinities I-evidence of O U2AF65 B-protein and O U2AF651 B-mutant , I-mutant 2L I-mutant , O ( O ii O ) O indistinguishable O conformations O among O four O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence in O two O different O crystal O packing O arrangements O and O ( O iii O ) O penalties B-evidence of O structure B-experimental_method - I-experimental_method guided I-experimental_method mutations I-experimental_method in O RNA B-experimental_method binding I-experimental_method and I-experimental_method splicing I-experimental_method assays I-experimental_method , O we O suggest O that O the O extended B-protein_state inter B-structure_element - I-structure_element RRM I-structure_element regions I-structure_element of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence underlie O cognate O Py B-chemical - I-chemical tract I-chemical recognition O by O the O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein protein O . O RRM B-structure_element , O RNA B-structure_element recognition I-structure_element motif I-structure_element ; O RS B-structure_element , O arginine B-structure_element - I-structure_element serine I-structure_element rich I-structure_element ; O UHM B-structure_element , O U2AF B-structure_element homology I-structure_element motif I-structure_element ; O ULM B-structure_element , O U2AF B-structure_element ligand I-structure_element motif I-structure_element . O ( O b O ) O Stereo O views O of O a O ‘ O kicked O ' O 2 B-evidence | I-evidence Fo I-evidence |−| I-evidence Fc I-evidence | I-evidence electron I-evidence density I-evidence map I-evidence contoured O at O 1σ O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N O - O and O C O - O terminal O residues O ( O blue O ) O or O bound O oligonucleotide B-chemical of O a O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure O ( O structure O iv O , O bound B-protein_state to I-protein_state 5 O ′-( O P O ) O rUrUrUdUrUrU O ( O BrdU O ) O dUrC O ) O ( O magenta O ). O New O residues O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence are O coloured O a O darker O shade O of O blue O , O apart O from O residues O that O were O tested O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method , O which O are O coloured O yellow O . O The O nucleotide B-site - I-site binding I-site sites I-site of O the O U2AF651 B-mutant , I-mutant 2L I-mutant and O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence are O compared O in O Supplementary O Fig O . O 3a O – O h O . O The O first B-site and I-site seventh I-site U2AF651 I-site , I-site 2L I-site - I-site binding I-site sites I-site are O unchanged O from O the O prior O dU2AF651 B-complex_assembly , I-complex_assembly 2 I-complex_assembly – I-complex_assembly RNA I-complex_assembly structure B-evidence and O are O portrayed O in O Supplementary O Fig O . O 3a O , O f O . O The O four O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence are O similar O with O the O exception O of O pH O - O dependent O variations O at O the O ninth B-site site I-site that O are O detailed O in O Supplementary O Fig O . O 3i O , O j O . O The O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence shown O has O the O highest O resolution O and O / O or O ribose B-chemical nucleotide I-chemical at O the O given O site O : O ( O a O ) O rU2 B-residue_name_number of O structure O iv O ; O ( O b O ) O rU3 B-residue_name_number of O structure O iii O ; O ( O c O ) O rU4 B-residue_name_number of O structure O i O ; O ( O d O ) O rU5 B-residue_name_number of O structure O iii O ; O ( O e O ) O rU6 B-residue_name_number of O structure O ii O ; O ( O f O ) O dU8 B-residue_name_number of O structure O iii O ; O ( O g O ) O dU9 B-residue_name_number of O structure O iii O ; O ( O h O ) O rC9 B-residue_name_number of O structure O iv O . O Other O linker B-structure_element residues O are O coloured O either O dark O blue O for O new O residues O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structure O or O light O blue O for O the O remaining O inter B-structure_element - I-structure_element RRM I-structure_element residues O . O ( O b O ) O Representative O RT B-experimental_method - I-experimental_method PCR I-experimental_method of O pyPY B-chemical transcripts O from O HEK293T O cells O co B-experimental_method - I-experimental_method transfected I-experimental_method with O constructs O encoding O the O pyPY B-chemical minigene O and O either O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O U2AF65 B-protein or O a O triple O U2AF65 B-protein mutant B-protein_state ( O 3Mut B-mutant ) O of O Q147A B-mutant , O R227A B-mutant and O V254P B-mutant residues O . O ( O c O ) O A O bar O graph O of O the O average O percentage O of O the O py B-chemical - O spliced O mRNA B-chemical relative O to O total O detected O pyPY B-chemical transcripts O ( O spliced O and O unspliced O ) O for O the O corresponding O gel O lanes O ( O black O , O no O U2AF65 B-protein added O ; O white O , O WT B-protein_state U2AF65 B-protein ; O grey O , O 3Mut B-mutant U2AF65 B-protein ). O The O U2AF651 B-mutant , I-mutant 2LFRET I-mutant proteins O were O doubly O labelled O at O A181C B-mutant / O Q324C B-mutant such O that O a O mixture O of O Cy3 B-chemical / O Cy5 B-chemical fluorophores B-chemical are O expected O to O be O present O at O each O site O . O Typical O single B-experimental_method - I-experimental_method molecule I-experimental_method FRET I-experimental_method traces B-evidence ( O c O , O e O , O g O , O i O ) O show O fluorescence O intensities O from O Cy3 B-chemical ( O green O ) O and O Cy5 B-chemical ( O red O ) O and O the O calculated B-evidence apparent I-evidence FRET I-evidence efficiency I-evidence ( O blue O ). O ( O a O ) O Diagram O of O the O U2AF65 B-protein , O SF1 B-protein and O U2AF35 B-protein splicing O factors O bound B-protein_state to I-protein_state the O consensus O elements O of O the O 3 B-site ′ I-site splice I-site site I-site . O A O surface O representation O of O U2AF651 B-mutant , I-mutant 2L I-mutant is O shown O bound B-protein_state to I-protein_state nine O nucleotides B-chemical ( O nt O ); O the O relative O distances O and O juxtaposition O of O the O branch B-site point I-site sequence I-site ( O BPS B-site ) O and O consensus O AG B-chemical dinucleotide I-chemical at O the O 3 B-site ′ I-site splice I-site site I-site are O unknown O . O The O availability O of O two O TRAP B-complex_assembly molecules O in O the O asymmetric O unit O , O of O which O only O one O contained O bound B-protein_state RNA B-chemical , O allowed O a O controlled O investigation O into O the O exact O role O of O RNA B-chemical binding O in O protein O specific O damage O susceptibility O . O However O , O there O is O still O no O general O consensus O within O the O field O on O how O to O minimize O RD O during O MX B-experimental_method data O collection O , O and O debates O on O the O dependence O of O RD O progression O on O incident O X O - O ray O energy O ( O Shimizu O et O al O ., O 2007 O ; O Liebschner O et O al O ., O 2015 O ) O and O the O efficacy O of O radical O scavengers O ( O Allan O et O al O ., O 2013 O ) O have O yet O to O be O resolved O . O At O 100 O K O , O an O experimental O dose O limit O of O 30 O MGy O has O been O recommended O as O an O upper O limit O beyond O which O the O biological O information O derived O from O any O macromolecular O crystal B-evidence may O be O compromised O ( O Owen O et O al O ., O 2006 O ). O Specific B-experimental_method radiation I-experimental_method damage I-experimental_method ( O SRD B-experimental_method ) O is O observed O in O the O real B-evidence - I-evidence space I-evidence electron I-evidence density I-evidence , O and O has O been O detected O at O much O lower O doses O than O any O observable O decay O in O the O intensity O of O reflections O . O Indeed O , O the O C O — O Se B-chemical bond O in O selenomethionine B-chemical , O the O stability O of O which O is O key O for O the O success O of O experimental O phasing O methods O , O can O be O cleaved O at O a O dose O as O low O as O 2 O MGy O for O a O crystal B-evidence maintained O at O 100 O K O ( O Holton O , O 2007 O ). O The O significant O chemical O strain O required O for O catalysis O within O the O active B-site site I-site of O phosphoserine B-protein_type aminotransferase I-protein_type has O been O observed O to O diminish O during O X O - O ray O exposure O ( O Dubnovitsky O et O al O ., O 2005 O ). O Nucleoproteins B-complex_assembly also O represent O one O of O the O main O targets O of O radiotherapy O , O and O an O insight O into O the O damage O mechanisms O induced O by O X O - O ray O irradiation O could O inform O innovative O treatments O . O Instead O , O we O use O here O a O maximum B-evidence density I-evidence - I-evidence loss I-evidence metric I-evidence ( O D B-evidence loss I-evidence ), O which O is O the O per O - O atom O equivalent O of O the O magnitude O of O these O negative B-evidence Fourier I-evidence difference I-evidence map I-evidence peaks I-evidence in O units O of O e O Å O − O 3 O . O Salt B-bond_interaction - I-bond_interaction bridge I-bond_interaction interactions O have O previously O been O suggested O to O reduce O the O glutamate B-residue_name decarboxylation O rate O within O the O large O (∼ O 62 O . O 4 O kDa O ) O myrosinase B-protein_type protein O structure B-evidence ( O Burmeister O , O 2000 O ). O A O significant O difference O was O observed O between O the O D B-evidence loss I-evidence dynamics I-evidence for O the O nonbound B-protein_state / O bound B-protein_state Glu42 B-residue_name_number O O ∊ O 1 O atoms O ( O Fig O . O 5 O ▸ O c O ; O p O = O 0 O . O 007 O ) O but O not O for O the O Glu42 B-residue_name_number O O ∊ O 2 O atoms O ( O Fig O . O 5 O ▸ O d O ; O p O = O 0 O . O 239 O ), O indicating O that O the O stabilizing O strength O of O this O salt B-bond_interaction - I-bond_interaction bridge I-bond_interaction interaction O was O conserved O upon O RNA B-chemical binding O and O that O the O water B-chemical - O mediated O hydrogen B-bond_interaction bond I-bond_interaction had O a O greater O relative O susceptibility O to O atomic O disordering O in O the O absence B-protein_state of I-protein_state RNA B-chemical . O The O RNA B-chemical - O stabilizing O effect O was O not O restricted O to O radiation O - O sensitive O acidic O residues O . O The O side O chain O of O Phe32 B-residue_name_number stacks O against O the O G3 B-residue_name_number base O within O the O 11 O TRAP B-site RNA I-site - I-site binding I-site interfaces I-site ( O Antson O et O al O ., O 1999 O ). O Consistent O with O that O study O , O at O high O doses O of O above O ∼ O 20 O MGy O , O F B-evidence obs I-evidence ( I-evidence d I-evidence n I-evidence ) I-evidence − I-evidence F I-evidence obs I-evidence ( I-evidence d I-evidence 1 I-evidence ) I-evidence map I-evidence density I-evidence was O detected O around O P O , O O3 O ′ O and O O5 O ′ O atoms O of O the O RNA B-chemical backbone O , O with O no O significant O difference B-evidence density I-evidence localized O to O RNA B-chemical ribose O and O basic O subunits B-structure_element . O At O 25 O . O 0 O MGy O , O the O magnitude O of O the O RNA B-chemical backbone O D B-evidence loss I-evidence was O of O the O same O order O as O for O the O radiation O - O insensitive O Gly B-residue_name Cα O atoms O and O on O average O less O than O half O that O of O the O acidic O residues O of O the O protein O ( O Supplementary O Fig O . O S3 O ). O Upon O RNA B-chemical binding O , O the O Asp39 B-residue_name_number side O - O chain O carboxyl O group O solvent O - O accessible O area O changes O from O ∼ O 75 O to O 35 O Å2 O , O still O allowing O a O high O CO2 B-chemical - O formation O rate B-evidence K I-evidence 2 I-evidence . O However O , O for O each O of O these O residues O the O exact O crystal O contacts O are O not O preserved O between O bound B-protein_state and O nonbound B-protein_state TRAP B-complex_assembly or O even O between O monomers O within O one O TRAP B-complex_assembly ring B-structure_element . O For O example O , O in O bound B-protein_state TRAP B-complex_assembly , O Glu73 B-residue_name_number hydrogen O - O bonds O to O a O nearby O lysine B-residue_name on O each O of O the O 11 O subunits B-structure_element , O whereas O in O nonbound B-protein_state TRAP B-complex_assembly no O such O interaction O exists O and O Glu73 B-residue_name_number interacts O with O a O variable O number O of O refined O waters B-chemical in O each O subunit B-structure_element . O It O has O been O suggested O ( O Burmeister O , O 2000 O ) O that O Tyr B-residue_name residues O can O lose O their O aromatic O – O OH O group O owing O to O radiation O - O induced O effects O ; O however O , O no O energetically O favourable O pathway O for O – O OH O cleavage O exists O and O this O has O not O been O detected O in O aqueous O radiation O - O chemistry O studies O . O Indeed O , O no O convincing O reproducible O Fourier B-evidence difference I-evidence peaks I-evidence above O the O background O map B-evidence noise O were O observed O around O any O Tyr B-residue_name terminal O – O OH O groups O . O Within O the O nonbound B-protein_state TRAP B-complex_assembly macromolecule O , O the O acidic O residues O within O the O unoccupied O RNA B-site - I-site binding I-site interfaces I-site ( O Asp39 B-residue_name_number , O Glu36 B-residue_name_number , O Glu42 B-residue_name_number ) O are O notably O amongst O the O most O susceptible O residues O within O the O asymmetric O unit O ( O Fig O . O 4 O ▸). O In O ( O a O ) O clear O difference B-evidence density I-evidence is O observed O around O the O Glu42 B-residue_name_number carboxyl O side O chain O in O chain O H O , O within O the O lowest B-evidence dose I-evidence difference I-evidence map I-evidence at O d O 2 O = O 3 O . O 9 O MGy O . O The O important O MAPK B-protein_type family I-protein_type of O signalling O proteins O is O controlled O by O MAPK B-protein_type phosphatases I-protein_type ( O MKPs B-protein_type ). O The O best O - O studied O docking O interactions O are O those O between O MAP B-protein_type kinases I-protein_type and O ‘ O D B-structure_element - I-structure_element motifs I-structure_element ', O which O consists O of O two O or O more O basic O residues O followed O by O a O short B-structure_element linker I-structure_element and O a O cluster O of O hydrophobic O residues O . O Here O , O we O present O the O crystal B-evidence structure I-evidence of O JNK1 B-protein in B-protein_state complex I-protein_state with I-protein_state the O catalytic B-structure_element domain I-structure_element of O MKP7 B-protein . O Thus O , O the O kinetic B-evidence data I-evidence were O analysed O using O the O general O initial B-evidence velocity I-evidence equation I-evidence , O taking O substrate O depletion O into O account O : O To O further O confirm O the O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly interaction O , O we O performed O a O pull B-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method using O the O purified O proteins O . O To O understand O the O molecular O basis O of O JNK1 B-protein recognition O by O MKP7 B-protein , O we O determined O the O crystal B-evidence structure I-evidence of O unphosphorylated B-protein_state JNK1 B-protein in B-protein_state complex I-protein_state with I-protein_state the O MKP7 B-protein - O CD B-structure_element ( O Fig O . O 3a O , O Supplementary O Fig O . O 1a O and O Table O 1 O ). O This O loop B-structure_element is O shortened O by O nine O residues O in O MKP7 B-protein - O CD B-structure_element compared O with O that O in O VHR B-protein . O Although O the O catalytically O important O residues O in O MKP7 B-protein - O CD B-structure_element are O well O aligned O with O those O in O VHR B-protein , O the O residues O in O the O P B-structure_element - I-structure_element loop I-structure_element of O MKP7 B-protein are O smaller O and O have O a O more O hydrophobic O character O than O those O of O VHR B-protein ( O Cys124 B-residue_name_number - O Arg125 B-residue_name_number - O Glu126 B-residue_name_number - O Gly127 B-residue_name_number - O Tyr128 B-residue_name_number - O Gly129 B-residue_name_number - O Arg130 B-residue_name_number ; O Fig O . O 3b O , O c O ). O In O the O complex O , O MKP7 B-protein - O CD B-structure_element and O JNK1 B-protein form O extensive O protein O – O protein O interactions O involving O the O C B-structure_element - I-structure_element terminal I-structure_element helices I-structure_element of O MKP7 B-protein - O CD B-structure_element and O C B-structure_element - I-structure_element lobe I-structure_element of O JNK1 B-protein ( O Fig O . O 3d O , O e O ). O As O shown O in O Fig O . O 4f O , O all O the O mutants B-protein_state , O except O F287D B-mutant / I-mutant A I-mutant , O showed O little O or O no O activity O change O compared O with O the O wild B-protein_state - I-protein_state type I-protein_state MKP7 B-protein - O CD B-structure_element . O In O addition O , O His230 B-residue_name_number and O Val256 B-residue_name_number in O JNK1 B-protein are O replaced O by O the O negatively O charged O residues O Glu208 B-residue_name_number and O Asp235 B-residue_name_number in O CDK2 B-protein ( O Fig O . O 5d O ), O and O the O charge O distribution O on O the O CDK2 B-protein interactive B-site surface I-site is O quite O different O from O that O of O JNK B-protein_type . O Parallel O experiments O showed O clearly O that O the O D B-structure_element - I-structure_element motif I-structure_element mutants B-protein_state ( O R56A B-mutant / O R57A B-mutant and O V63A B-mutant / O I65A B-mutant ) O dephosphorylated B-protein_state JNK B-protein_type as O did O the O wild B-protein_state type I-protein_state under O the O same O conditions O , O further O confirming O that O the O MKP7 B-protein - O KBD B-structure_element is O not O required O for O the O JNK B-protein_type inactivation O in O vivo O . O Consistent O with O the O in O vitro O data O , O the O level O of O phosphorylated B-protein_state JNK B-protein_type was O not O or O little O altered O in O MKP7 B-protein FXF B-structure_element - I-structure_element motif I-structure_element mutants B-protein_state ( O F285D B-mutant , O F287D B-mutant and O L288D B-mutant )- O transfected O cells O , O and O the O MKP7 B-protein D268A B-mutant and O N286A B-mutant mutants B-protein_state retained O the O ability O to O reduce O the O phosphorylation O levels O of O JNK B-protein_type . O We O next O tested O in O vivo O interactions O between O JNK1 B-protein mutants B-protein_state and O full B-protein_state - I-protein_state length I-protein_state MKP7 B-protein by O coimmunoprecipitation B-experimental_method experiments I-experimental_method under O unstimulated O conditions O . O When O co B-experimental_method - I-experimental_method expressed I-experimental_method in O HEK293T O cells O , O wild B-protein_state - I-protein_state type I-protein_state ( O HA O )- O JNK1 B-protein was O readily O precipitated O with O ( O Myc O )- O MKP7 B-protein ( O Fig O . O 6d O ), O indicating O that O MKP7 B-protein binds O dephosphorylated B-protein_state JNK1 B-protein protein O in O vivo O . O In O contrast O , O cells O transfected O with O the O MKP7 B-protein FXF B-structure_element - I-structure_element motif I-structure_element mutants B-protein_state ( O F285D B-mutant , O F287D B-mutant and O L288D B-mutant ) O showed O little O protective O effect O after O ultraviolet O treatment O and O similar O levels O of O apoptosis O rates O were O detected O to O cells O transfected O with O control O vectors O ( O Fig O . O 6e O , O f O ). O MKP5 B-protein is O unique O among O the O MKPs B-protein_type in O possessing O an O additional O domain O of O unknown O function O at O the O N O - O terminus O ( O Fig O . O 7a O ). O Deletion B-experimental_method of I-experimental_method the O KBD B-structure_element in O MKP5 B-protein leads O to O a O 280 O - O fold O increase O in O Km B-evidence for O p38α B-protein substrate O . O Comparisons O between O catalytic B-structure_element domains I-structure_element structures B-evidence of O MKP5 B-protein and O MKP7 B-protein reveal O that O the O overall O folds O of O the O two O proteins O are O highly O similar O , O with O only O a O few O regions O exhibiting O small O deviations O ( O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence of O 0 O . O 79 O Å O ; O Fig O . O 7c O ). O Pull B-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method also O confirmed O the O protein O – O protein O interactions O observed O above O . O As O shown O in O Fig O . O 7f O , O the O T432A B-mutant and O L449F B-mutant MKP5 B-protein mutant B-protein_state showed O little O or O no O difference O in O phosphatase O activity O , O whereas O the O other O mutants B-protein_state showed O reduced O specific O activities O of O MKP5 B-protein . O Taken O together O , O our O results O suggest O that O MKP5 B-protein binds O JNK1 B-protein in O a O docking O mode O similar O to O that O in O the O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly complex O , O and O the O detailed O interaction O model O can O be O generated O using O molecular B-experimental_method dynamics I-experimental_method simulation I-experimental_method based O on O the O structure B-evidence of O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly complex O ( O Supplementary O Fig O . O 4b O , O c O ). O The O MKP7 B-protein - O KBD B-structure_element docks O to O the O D B-site - I-site site I-site located O on O the O back O side O of O the O p38α B-protein catalytic B-site pocket I-site for O high O - O affinity O association O , O whereas O the O interaction O of O the O MKP7 B-protein - O CD B-structure_element with O another O p38α B-protein structural O region O , O which O is O close O to O the O activation B-structure_element loop I-structure_element , O may O not O only O stabilize O binding O but O also O provide O contacts O crucial O for O organizing O the O MKP7 B-protein active B-site site I-site with O respect O to O the O phosphoreceptor O in O the O p38α B-protein substrate O for O efficient O dephosphorylation O . O In O addition O to O the O canonical O D B-site - I-site site I-site , O the O MAPK B-protein_type ERK2 B-protein contains O a O second B-site binding I-site site I-site utilized O by O transcription O factor O substrates O and O phosphatases B-protein_type , O the O FXF B-site - I-site motif I-site - I-site binding I-site site I-site ( O also O called O F B-site - I-site site I-site ), O that O is O exposed O in O active B-protein_state ERK2 B-protein and O the O D B-structure_element - I-structure_element motif I-structure_element peptide O - O induced O conformation O of O MAPKs B-protein_type . O MKP7 B-protein - O CD B-structure_element is O shown O in O surface O representation O coloured O according O to O electrostatic O potential O ( O positive O , O blue O ; O negative O , O red O ). O Mutant B-protein_state F285D B-mutant and O JNK1 B-protein were O eluted O as O monomers B-oligomeric_state , O with O the O molecular O masses O of O ∼ O 17 O and O 44 O kDa O , O respectively O . O One O remarkable O difference O between O these O two O kinase O - O phosphatase O complexes O is O that O helix B-structure_element α6 B-structure_element of O KAP B-protein ( O corresponding O to O helix B-structure_element α4 B-structure_element of O MKP7 B-protein - O CD B-structure_element ) O plays O little O , O if O any O , O role O in O the O formation O of O a O stable B-protein_state heterodimer B-oligomeric_state of O CDK2 B-protein and O KAP B-protein . O ( O c O ) O Sequence B-experimental_method alignment I-experimental_method of O the O JNK B-site - I-site interacting I-site regions I-site on O MKPs B-protein_type . O ( O d O ) O Sequence B-experimental_method alignment I-experimental_method of O the O F B-structure_element - I-structure_element site I-structure_element regions I-structure_element on O MAPKs B-protein_type . O HEK293T O cells O were O infected O with O lentiviruses B-taxonomy_domain expressing O MKP7 B-protein and O its O mutants B-protein_state ( O 1 O . O 0 O μg O ). O HEK293T O cells O were O co B-experimental_method - I-experimental_method transfected I-experimental_method with O MKP7 B-protein full B-protein_state - I-protein_state length I-protein_state ( O 1 O . O 0 O μg O ) O and O JNK1 B-protein ( O wild B-protein_state type I-protein_state or O mutants B-protein_state as O indicated O , O 1 O . O 0 O μg O ). O MKP5 B-protein - O CD B-structure_element is O crucial O for O JNK1 B-protein binding O and O enzyme O catalysis O . O The O solid O lines O are O best O - O fitting O results O according O to O the O Michaelis O – O Menten O equation O with O Km B-evidence and O kcat B-evidence values O indicated O . O ( O h O ) O Pull B-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method of O MKP5 B-protein - O CD B-structure_element by O GST B-protein_state - I-protein_state tagged I-protein_state JNK1 B-protein mutants B-protein_state . O The O next O step O following O on O from O this O work O is O to O understand O what O signals O are O produced O when O IDA B-protein activates O HAESA B-protein . O The O IDA B-site binding I-site pocket I-site covers O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element and O all O residues O originate O from O the O inner O surface O of O the O HAESA B-protein superhelix B-structure_element . O The O conserved B-protein_state PIP B-structure_element motif I-structure_element is O highlighted O in O yellow O , O the O central O Hyp B-residue_name in O blue O . O IDA B-protein ( O in O bonds O representation O , O surface O view O included O ) O is O depicted O in O yellow O . O The O peptide B-site binding I-site pocket I-site covers O HAESA B-protein LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element . O ( O D O ) O Close O - O up O view O of O the O entire O IDA B-protein ( O in O yellow O ) O peptide B-site binding I-site site I-site in O HAESA B-protein ( O in O blue O ). O Full B-protein_state - I-protein_state length I-protein_state IDA B-protein is O proteolytically B-ptm processed I-ptm and O a O conserved B-protein_state stretch B-residue_range of I-residue_range 20 I-residue_range amino I-residue_range - I-residue_range acids I-residue_range ( O termed O EPIP B-structure_element ) O can O rescue O the O IDA B-protein loss O - O of O - O function O phenotype O ( O Figure O 1A O ). O Close O - O up O views O of O ( O A O ) O IDA B-protein , O ( O B O ) O the O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state PKGV B-mutant - I-mutant IDA I-mutant and O ( O C O ) O IDL1 B-protein bound B-protein_state to I-protein_state the O HAESA B-protein hormone B-site binding I-site pocket I-site ( O in O bonds O representation O , O in O yellow O ) O and O including O simulated B-experimental_method annealing I-experimental_method 2Fo B-evidence – I-evidence Fc I-evidence omit I-evidence electron I-evidence density I-evidence maps I-evidence contoured O at O 1 O . O 0 O σ O . O no O detectable O binding O ). O ( O E O ) O Structural B-experimental_method superposition I-experimental_method of O the O active B-protein_state IDA B-protein ( O in O bonds O representation O , O in O gray O ) O and O IDL1 B-chemical peptide I-chemical ( O in O yellow O ) O hormones O bound B-protein_state to I-protein_state the O HAESA B-protein ectodomain B-structure_element . O The O titration B-experimental_method of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state versus O the O isolated O HAESA B-protein ectodomain B-structure_element from O Figure O 1B O is O shown O for O comparison O ( O red O line O ; O n O . O d O . O Mutant B-protein_state ( O m O ) O versions O , O which O carry O point B-experimental_method mutations I-experimental_method in O their O active B-site sites I-site ( O Asp837HAESA B-mutant → I-mutant Asn I-mutant , O Asp447SERK1 B-mutant → I-mutant Asn I-mutant ) O possess O no O autophosphorylation O activity O ( O lanes O 2 O + O 4 O ). O The O COO O - O group O of O Asn69IDA B-residue_name_number is O in O direct O contact O with O Arg407HAESA B-residue_name_number and O Arg409HAESA B-residue_name_number and O HAESA B-protein cannot O bind O a O C B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-mutant - I-mutant SFVN I-mutant peptide O ( O Figures O 1D O , O F O , O 2D O ). O This O suggests O that O the O conserved B-protein_state Asn69IDA B-residue_name_number may O constitute O the O very O C O - O terminus O of O the O mature B-protein_state IDA B-chemical peptide I-chemical in O planta B-taxonomy_domain and O that O active B-protein_state IDA B-protein is O generated O by O proteolytic O processing O from O a O longer O pre O - O protein O . O Replacing B-experimental_method Hyp64IDA B-ptm , O which O is O common O to O all O IDLs B-protein_type , O with O proline B-residue_name impairs O the O interaction O with O the O receptor O , O as O does O the O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state - I-protein_state mutant I-protein_state discussed O below O ( O Figure O 1A O , O 2D O ). O Our O binding B-experimental_method assays I-experimental_method reveal O that O IDA B-chemical family I-chemical peptides I-chemical are O sensed O by O the O isolated B-protein_state HAESA B-protein ectodomain B-structure_element with O relatively O weak O binding B-evidence affinities I-evidence ( O Figures O 1B O , O 2A O – O D O ). O It O has O been O recently O reported O that O SOMATIC B-protein_type EMBRYOGENESIS I-protein_type RECEPTOR I-protein_type KINASES I-protein_type ( O SERKs B-protein_type ) O are O positive O regulators O of O floral O abscission O and O can O interact O with O HAESA B-protein and O HSL2 B-protein in O an O IDA O - O dependent O manner O . O In O vitro O , O the O LRR B-structure_element ectodomain I-structure_element of O SERK1 B-protein ( O residues O 24 B-residue_range – I-residue_range 213 I-residue_range ) O forms O stable B-protein_state , O IDA B-protein_state - I-protein_state dependent I-protein_state heterodimeric B-oligomeric_state complexes B-protein_state with I-protein_state HAESA B-protein in O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O ( O Figure O 3B O ). O We O next O titrated B-experimental_method SERK1 B-protein into O a O solution O containing O only O the O HAESA B-protein ectodomain B-structure_element . O Our O calorimetry B-experimental_method experiments O now O reveal O that O SERKs B-protein_type may O render O HAESA B-protein , O and O potentially O other O receptor B-protein_type kinases I-protein_type , O competent O for O high O - O affinity O sensing O of O their O cognate O ligands O . O Together O , O our O genetic B-experimental_method and I-experimental_method biochemical I-experimental_method experiments I-experimental_method implicate O SERK1 B-protein as O a O HAESA B-protein_type co I-protein_type - I-protein_type receptor I-protein_type in O the O Arabidopsis B-taxonomy_domain abscission O zone O . O SERK1 B-protein loop B-structure_element residues O establish O multiple O hydrophobic B-bond_interaction and I-bond_interaction polar I-bond_interaction contacts I-bond_interaction with O Lys66IDA B-residue_name_number and O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein ( O Figure O 4C O ). O Deletion B-experimental_method of O the O C O - O terminal O Asn69IDA B-residue_name_number completely O inhibits B-protein_state complex O formation O . O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain showed O significantly O increased O abscission O compared O to O Col O - O 0 O controls O in O inflorescence O positions O 2 O and O 3 O ( O a O ). O It O is O of O note O that O our O reported O binding B-evidence affinities I-evidence for O IDA B-protein and O SERK1 B-protein have O been O measured O using O synthetic B-protein_state peptides B-chemical and O the O isolated B-experimental_method HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element , O and O thus O might O differ O in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state , O membrane B-protein_state - I-protein_state embedded I-protein_state signaling O complex O . O ( O A O ) O Structural B-experimental_method comparison I-experimental_method of O plant B-taxonomy_domain steroid B-chemical and O peptide B-protein_type hormone I-protein_type membrane B-protein_type signaling I-protein_type complexes I-protein_type . O In O addition O , O residues O 53 B-residue_range - I-residue_range 55SERK1 I-residue_range from O the O SERK1 B-protein N O - O terminal O cap B-structure_element mediate O specific O interactions O with O the O IDA B-chemical peptide I-chemical ( O Figures O 4C O , O 6B O ). O Structure B-experimental_method - I-experimental_method guided I-experimental_method multiple I-experimental_method sequence I-experimental_method alignment I-experimental_method of O IDA B-protein and O IDA B-chemical - I-chemical like I-chemical peptides I-chemical with O other O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type , O including O CLAVATA3 B-protein_type – I-protein_type EMBRYO I-protein_type SURROUNDING I-protein_type REGION I-protein_type - I-protein_type RELATED I-protein_type ( O CLV3 B-protein_type / I-protein_type CLE I-protein_type ), O ROOT B-protein_type GROWTH I-protein_type FACTOR I-protein_type – I-protein_type GOLVEN I-protein_type ( O RGF B-protein_type / I-protein_type GLV I-protein_type ), O PRECURSOR B-protein_type GENE I-protein_type PROPEP1 I-protein_type ( O PEP1 B-protein_type ) O from O Arabidopsis B-species thaliana I-species . O The O conserved B-protein_state ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element is O highlighted O in O red O , O the O central O Hyp B-residue_name residue O in O IDLs B-protein_type and O CLEs B-protein_type is O marked O in O blue O . O Among O these O are O the O CLE B-chemical peptides I-chemical regulating O stem O cell O maintenance O in O the O shoot O and O the O root O . O It O is O interesting O to O note O , O that O CLEs B-protein_type in O their O mature B-protein_state form I-protein_state are O also O hydroxyprolinated B-protein_state dodecamers B-structure_element , O which O bind O to O a O surface B-site area I-site in O the O BARELY B-protein_type ANY I-protein_type MERISTEM I-protein_type 1 I-protein_type receptor I-protein_type that O would O correspond O to O part O of O the O IDA B-site binding I-site cleft I-site in O HAESA B-protein . O Diverse O plant B-taxonomy_domain peptide B-protein_type hormones I-protein_type may O thus O also O bind O their O LRR B-protein_type - I-protein_type RK I-protein_type receptors I-protein_type in O an O extended B-protein_state conformation I-protein_state along O the O inner O surface O of O the O LRR B-structure_element domain I-structure_element and O may O also O use O small B-protein_state , O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptors I-protein_type for O high O - O affinity O ligand O binding O and O receptor O activation O . O The O structures B-evidence suggest O missing O links O in O our O understanding O of O tRNA B-chemical translocation O . O The O canonical O scenario O of O cap O - O dependent O and O IRES B-site - O dependent O initiation O involves O positioning O of O the O AUG O start O codon O and O the O initiator O tRNAMet B-chemical in O the O ribosomal O peptidyl B-site - I-site tRNA I-site ( I-site P I-site ) I-site site I-site , O facilitated O by O interaction O with O initiation B-protein_type factors I-protein_type . O Subsequent O binding O of O an O elongator O aminoacyl B-chemical - I-chemical tRNA I-chemical to O the O ribosomal O A B-site site I-site transitions O the O initiation B-complex_assembly complex I-complex_assembly into O the O elongation O cycle O of O translation O . O The O IGR B-structure_element - O IRES B-site - O driven O initiation B-protein_state does O not O involve O initiator O tRNAMet B-chemical and O initiation B-protein_state factors O . O The O codon B-structure_element - I-structure_element anticodon I-structure_element - I-structure_element like I-structure_element helix I-structure_element of O PKI B-structure_element is O stabilized O by O interactions O with O the O universally B-protein_state conserved I-protein_state decoding B-site - I-site center I-site nucleotides O G577 B-residue_name_number , O A1755 B-residue_name_number and O A1756 B-residue_name_number ( O G530 B-residue_name_number , O A1492 B-residue_name_number and O A1493 B-residue_name_number in O E B-species . I-species coli I-species 16S O ribosomal O RNA B-chemical , O or O rRNA B-chemical ). O For O a O cognate O aminoacyl B-chemical - I-chemical tRNA I-chemical to O bind O the O first O viral B-taxonomy_domain mRNA B-chemical codon O , O PKI B-structure_element has O to O be O translocated O from O the O A B-site site I-site , O so O that O the O first O codon O can O be O presented O in O the O A B-site site I-site . O Intersubunit O rotation O occurs O spontaneously O upon O peptidyl O transfer O , O and O is O coupled O with O formation O of O hybrid B-protein_state tRNA B-chemical states O . O ( O a O ) O Structures B-evidence of O bacterial B-taxonomy_domain 70S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly translocation O complexes O , O ordered O according O to O the O position O of O the O translocating O A B-site -> I-site P I-site tRNA B-chemical ( O orange O ). O The O large O ribosomal O subunit B-structure_element is O shown O in O cyan O ; O the O small B-structure_element subunit I-structure_element in O light O yellow O ( O head B-structure_element ) O and O wheat O - O yellow O ( O body B-structure_element ); O the O TSV B-species IRES B-site in O red O , O eEF2 B-protein in O green O . O ( O a O ) O Structures B-evidence I I-evidence through I-evidence V I-evidence . O In O all O panels O , O the O large B-structure_element ribosomal I-structure_element subunit I-structure_element is O shown O in O cyan O ; O the O small B-structure_element subunit I-structure_element in O light O yellow O ( O head B-structure_element ) O and O wheat O - O yellow O ( O body B-structure_element ); O the O TSV B-species IRES B-site in O red O , O eEF2 B-protein in O green O . O Although O the O mechanism O of O sordarin B-chemical action O is O not O fully O understood O , O the O inhibitor O does O not O affect O the O conformation O of O eEF2 B-complex_assembly • I-complex_assembly GDPNP I-complex_assembly on O the O ribosome B-complex_assembly , O rendering O it O an O excellent O tool O in O translocation O studies O . O ( O a O ) O Rotational O states O of O the O 40S B-complex_assembly subunit B-structure_element in O the O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly structure B-evidence ( O INIT B-complex_assembly ; O PDB O 3J6Y O ) O and O in O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly • I-complex_assembly eEF2 I-complex_assembly Structures B-evidence I I-evidence , I-evidence II I-evidence , I-evidence III I-evidence , I-evidence IV I-evidence and I-evidence V I-evidence ( O this O work O ). O The O sizes O of O the O arrows O correspond O to O the O extent O of O the O head B-structure_element swivel O ( O yellow O ) O and O subunit B-structure_element rotation O ( O black O ). O Our O structures B-evidence represent O hitherto O uncharacterized O translocation O complexes O of O the O TSV B-species IRES B-site captured O within O globally O distinct O 80S B-complex_assembly conformations O ( O Figures O 1b O and O 2 O ). O Changes O in O ribosome B-complex_assembly conformation O and O eEF2 B-protein positions O are O coupled O with O IRES B-site movement O through O the O ribosome B-complex_assembly Using O the O post B-protein_state - I-protein_state translocation I-protein_state S B-species . I-species cerevisiae I-species 80S B-complex_assembly ribosome I-complex_assembly bound B-protein_state with I-protein_state the O P B-site and I-site E I-site site I-site tRNAs B-chemical as O a O reference O ( O 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly ), O in O which O both O the O subunit B-structure_element rotation O and O the O head B-structure_element - O body B-structure_element swivel O are O 0 O °, O we O found O that O the O ribosome B-complex_assembly adopts O four O globally O distinct O conformations O in O Structures B-evidence I I-evidence through I-evidence V I-evidence ( O Figure O 1b O ; O see O also O Figure O 1 O — O figure O supplement O 1 O and O Figure O 2 O — O source O data O 1 O ). O Structure B-evidence V I-evidence is O in O a O nearly O non B-protein_state - I-protein_state rotated I-protein_state conformation O ( O 0 O . O 5 O °), O very O similar O to O that O of O post B-protein_state - I-protein_state translocation I-protein_state ribosome B-complex_assembly - I-complex_assembly tRNA I-complex_assembly complexes O . O However O in O the O pre B-protein_state - I-protein_state translocation I-protein_state intermediates O ( O from O Structure B-evidence I I-evidence to I-evidence IV I-evidence ), O the O beak O of O the O head B-structure_element domain O first O turns O toward O the O large B-structure_element subunit I-structure_element and O then O backs O off O ( O Figure O 2 O — O figure O supplement O 1 O ). O By O comparison O , O the O similarly O mid B-protein_state - I-protein_state rotated I-protein_state ( O 4 O °) O 80S B-complex_assembly • I-complex_assembly TSV I-complex_assembly IRES I-complex_assembly initiation B-protein_state complex O , O in O the O absence B-protein_state of I-protein_state eEF2 B-protein , O adopts O a O mid B-protein_state - I-protein_state swiveled I-protein_state position O (~ O 10 O °) O ( O Figure O 2c O ). O The O view O shows O the O vicinity O of O the O ribosomal O E B-site site I-site . O Structures B-evidence of O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly complexes O in O the O absence B-protein_state of I-protein_state eEF2 B-protein ( O INIT B-complex_assembly ; O PDB O 3J6Y O ,) O and O in O the O presence B-protein_state of I-protein_state eEF2 B-protein ( O this O work O ) O are O shown O in O the O lower O row O and O labeled O . O Positions O of O the O IRES B-site relative O to O eEF2 B-protein and O elements O of O the O ribosome B-complex_assembly in O Structures B-evidence I I-evidence through I-evidence V I-evidence . O Pseudoknots O and O stem B-structure_element loops I-structure_element are O labeled O and O colored O as O in O ( O a O ). O We O collectively O term O domains O I B-structure_element and O II B-structure_element the O 5 B-structure_element ’ I-structure_element domain I-structure_element . O The O view O was O obtained O by O structural B-experimental_method alignment I-experimental_method of O the O body B-structure_element domains O of O 18S B-chemical rRNAs I-chemical of O the O corresponding O 80S B-complex_assembly structures B-evidence . O Distances O between O nucleotides O 6848 B-residue_number and O 6913 B-residue_number in O SL4 B-structure_element and O PKI B-structure_element , O respectively O , O are O shown O ( O see O also O Figure O 2 O — O source O data O 1 O ). O Rearrangements O of O the O IRES B-site involve O restructuring O of O several O interactions O with O the O ribosome B-complex_assembly . O However O , O in O the O extended B-protein_state conformations O , O these O parts O of O the O IRES B-site and O the O 60S B-complex_assembly subunit B-structure_element are O separated O by O more O than O 10 O Å O , O suggesting O that O an O interaction O between O them O stabilizes O the O bent B-protein_state conformations O but O not O the O extended B-protein_state ones O . O Cryo B-experimental_method - I-experimental_method EM I-experimental_method density B-evidence of O the O GTPase B-structure_element region I-structure_element in O Structures B-evidence I I-evidence and I-evidence II I-evidence . O Superposition B-experimental_method was O obtained O by O structural B-experimental_method alignment I-experimental_method of O the O 25S B-chemical rRNAs I-chemical . O Sordarin B-chemical is O shown O in O pink O with O oxygen O atoms O in O red O . O The O GTPase B-site - I-site associated I-site center I-site comprises O the O P B-structure_element stalk I-structure_element ( O L11 B-structure_element and O L7 B-structure_element / O L12 B-structure_element stalk B-structure_element in O bacteria B-taxonomy_domain ) O and O the O sarcin B-structure_element - I-structure_element ricin I-structure_element loop I-structure_element ( O SRL B-structure_element , O nt O 3012 B-residue_range – I-residue_range 3042 I-residue_range ). O The O view O was O obtained O by O structural B-experimental_method alignment I-experimental_method of O the O 18S B-chemical rRNAs I-chemical . O ( O a O ) O eEF2 B-protein ( O green O ) O interacts O only O with O the O body B-structure_element in O Structure B-evidence I I-evidence ( O eEF2 B-protein domains O are O labeled O with O roman O numerals O in O white O ), O and O with O both O the O head B-structure_element and O body B-structure_element in O Structures B-evidence II I-evidence through I-evidence V I-evidence . O Colors O are O as O in O Figure O 1 O , O except O for O the O 40S B-complex_assembly structural O elements O that O contact O eEF2 B-protein , O which O are O labeled O and O shown O in O purple O . O ( O b O ) O Entry O of O eEF2 B-protein into O the O 40S B-complex_assembly A B-site site I-site , O from O Structure B-evidence I I-evidence through I-evidence V I-evidence . O Distances O to O the O A B-site - I-site site I-site accommodated O eEF2 B-protein ( O Structure B-evidence V I-evidence ) O are O shown O . O There O are O two O modest O but O noticeable O domain O rearrangements O between O Structures B-evidence I I-evidence and I-evidence V I-evidence . O Unlike O in O free B-protein_state eEF2 B-protein , O which O can O sample O large O movements O of O at O least O 50 O Å O of O the O C O - O terminal O superdomain B-structure_element relative O to O the O N O - O terminal O superdomain B-structure_element ( O Figure O 5c O ), O eEF2 B-protein undergoes O moderate O repositioning O of O domain O IV B-structure_element (~ O 3 O Å O ; O Figure O 5a O ) O and O domain O III B-structure_element (~ O 5 O Å O ; O Figure O 6d O ). O Domain O IV B-structure_element of O eEF2 B-protein binds O at O the O 40S B-complex_assembly A B-site site I-site in O Structures B-evidence I I-evidence to I-evidence V I-evidence but O the O mode O of O interaction O differs O in O each O complex O ( O Figure O 6 O ). O Because O eEF2 B-protein is O rigidly O attached O to O the O 60S B-complex_assembly subunit B-structure_element and O does O not O undergo O large O inter O - O subunit B-structure_element rearrangements O , O gradual O entry O of O domain O IV B-structure_element into O the O A B-site site I-site between O Structures B-evidence I I-evidence and I-evidence V I-evidence is O due O to O 40S B-complex_assembly subunit B-structure_element rotation O and O head B-structure_element swivel O . O Modest O intra O - O eEF2 B-protein shifts O of O domain O IV B-structure_element between O Structures B-evidence I I-evidence to I-evidence V I-evidence outline O a O stochastic O trajectory O ( O Figure O 5a O ), O consistent O with O local O adjustments O of O the O domain O in O the O A B-site site I-site . O We O therefore O define O C1274 B-residue_name_number as O the O foundation O of O the O ' O head B-structure_element A B-site site I-site '. O Accordingly O , O we O use O U1191 B-residue_name_number ( O G966 B-residue_name_number in O E B-species . I-species coli I-species ) O and O C1637 B-residue_name_number ( O C1400 B-residue_name_number in O E B-species . I-species coli I-species ) O as O the O reference O points O of O the O ' O head B-structure_element P B-site site I-site ' O and O ' O body B-structure_element P B-site site I-site ' O ( O Figure O 2g O ), O respectively O , O because O these O nucleotides O form O a O stacking O foundation O for O the O fully B-protein_state translocated I-protein_state mRNA B-structure_element - I-structure_element tRNA I-structure_element helix I-structure_element in O tRNA B-protein_state - I-protein_state bound I-protein_state structures B-evidence and O in O our O post B-protein_state - I-protein_state translocation I-protein_state Structure B-evidence V I-evidence discussed O below O . O The O interaction O of O PKI B-structure_element with O the O 40S B-complex_assembly body B-structure_element is O substantially O rearranged O relative O to O that O in O the O initiation B-protein_state state O . O Diphthamide B-ptm is O a O unique O posttranslational O modification O conserved B-protein_state in O archaeal B-taxonomy_domain and O eukaryotic B-taxonomy_domain EF2 B-protein ( O at O residue O 699 B-residue_number in O S B-species . I-species cerevisiae I-species ) O and O involves O addition O of O a O ~ O 7 O - O Å O long O 3 O - O carboxyamido O - O 3 O -( O trimethylamino O )- O propyl O moiety O to O the O histidine B-residue_name imidazole O ring O at O CE1 O . O Switch B-structure_element loop I-structure_element II I-structure_element ( O aa O 105 B-residue_range – I-residue_range 110 I-residue_range ), O which O carries O the O catalytic B-protein_state H108 B-residue_name_number ( O H92 B-residue_name_number in O E B-species . I-species coli I-species EF B-protein - I-protein G I-protein ; O is O well O resolved O in O all O five O structures B-evidence . O Bulged B-protein_state A416 B-residue_name_number interacts O with O the O switch B-structure_element loop I-structure_element in O the O vicinity O of O D53 B-residue_name_number . O Next O to O GDP B-chemical , O the O C O - O terminal O part O of O the O switch B-structure_element loop I-structure_element ( O aa O 61 B-residue_range – I-residue_range 67 I-residue_range ) O adopts O a O helical B-protein_state fold I-protein_state . O As O such O , O the O conformations O of O SWI B-structure_element and O the O GTPase B-site center I-site in O general O are O similar O to O those O observed O in O ribosome B-protein_state - I-protein_state bound I-protein_state EF B-protein - I-protein Tu I-protein and O EF B-protein - I-protein G I-protein in O the O presence B-protein_state of I-protein_state GTP B-chemical analogs O . O The O head B-site interface I-site of O domain O IV B-structure_element interacts O with O the O 40S B-complex_assembly head B-structure_element ( O Figure O 6a O ). O Structure B-evidence III I-evidence represents O a O highly B-protein_state bent I-protein_state IRES B-site with O PKI B-structure_element captured O between O the O head B-structure_element A B-site and I-site P I-site sites I-site The O codon B-structure_element - I-structure_element anticodon I-structure_element – I-structure_element like I-structure_element helix I-structure_element is O stacked O on O P B-site - I-site site I-site residues O U1191 B-residue_name_number and O C1637 B-residue_name_number ( O Figure O 3d O ), O analogous O to O stacking B-bond_interaction of O the O tRNA B-complex_assembly - I-complex_assembly mRNA I-complex_assembly helix B-structure_element ( O Figure O 3e O ). O As O in O the O preceding O Structures B-evidence , O the O histidine B-site - I-site diphthamide I-site tip I-site is O bound B-protein_state in I-protein_state the O minor B-site groove I-site of O the O P B-site - I-site site I-site codon B-structure_element - I-structure_element anticodon I-structure_element helix I-structure_element . O Animation O showing O the O transition O from O the O initiation B-protein_state 80S B-complex_assembly • I-complex_assembly TSV I-complex_assembly IRES I-complex_assembly structures B-evidence ( O Koh O et O al O ., O 2014 O ) O to O eEF2 B-protein_state - I-protein_state bound I-protein_state Structures B-evidence I I-evidence through I-evidence V I-evidence ( O this O work O ). O In O scene O 4 O , O C1274 B-residue_name_number and O U1191 B-residue_name_number are O labeled O and O shown O in O yellow O ; O G577 B-residue_name_number , O A1755 B-residue_name_number and O A1756 B-residue_name_number of O the O 40S B-complex_assembly body B-structure_element A B-site site I-site and O C1637 B-residue_name_number of O the O body B-structure_element P B-site site I-site are O labeled O and O shown O in O orange O . O In O this O work O we O have O captured O the O structures B-evidence of O the O TSV B-species IRES B-site , O whose O PKI B-structure_element samples O positions O between O the O A B-site and I-site P I-site sites I-site ( O Structures B-evidence I I-evidence – I-evidence IV I-evidence ), O as O well O as O in O the O P B-site site I-site ( O Structure B-evidence V I-evidence ). O In O summary O , O the O reported O ensemble O of O structures B-evidence substantially O enhances O our O understanding O of O the O translocation O mechanism O , O including O that O of O tRNAs B-chemical as O discussed O below O . O In O the O first O sub O - O step O ( O Structures B-evidence I I-evidence to I-evidence IV I-evidence ), O the O hind B-structure_element end I-structure_element advances O from O the O A B-site to I-site the I-site P I-site site I-site and O approaches O the O front B-structure_element end I-structure_element , O which O remains O attached O to O the O 40S B-complex_assembly surface O . O Notably O , O at O all O steps O , O the O head B-structure_element of O the O IRES B-site inchworm B-protein_state ( O L1 B-structure_element . I-structure_element 1 I-structure_element region I-structure_element ) O is O supported O by O the O mobile B-protein_state L1 B-structure_element stalk I-structure_element . O Upon O translocation O , O the O GCU O start O codon O is O positioned O in O the O A B-site site I-site ( O Structure B-evidence V I-evidence ), O ready O for O interaction O with O Ala B-chemical - I-chemical tRNAAla I-chemical upon O eEF2 B-protein departure O . O In O our O structures B-evidence , O the O IRES B-site presents O to O the O decoding B-site center I-site a O pre B-protein_state - I-protein_state translocated I-protein_state or O fully B-protein_state translocated I-protein_state ORF B-structure_element , O rather O than O a O + O 1 O ( O more O translocated O ) O ORF B-structure_element , O suggesting O that O eEF2 B-protein does O not O induce O a O highly O populated O fraction O of O + O 1 O shifted O IRES B-site mRNAs B-chemical . O The O presence B-protein_state of I-protein_state several O translocation O complexes O in O a O single O sample O suggests O that O the O structures B-evidence represent O equilibrium O states O of O forward O and O reverse O translocation O of O the O IRES B-site , O which O interconvert O among O each O other O . O These O findings O indicate O that O IRES B-site translocation O by O eEF2 B-protein is O futile O : O the O IRES B-site returns O to O the O A B-site site I-site upon O releasing O eEF2 B-complex_assembly • I-complex_assembly GDP I-complex_assembly unless O an O amino B-chemical - I-chemical acyl I-chemical tRNA I-chemical enters O the O A B-site site I-site and O blocks O IRES B-site back O - O translocation O . O Various O degrees O of O intersubunit O rotation O have O been O observed O in O cryo B-experimental_method - I-experimental_method EM I-experimental_method studies I-experimental_method of O the O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly initiation B-protein_state complexes O . O The O pre B-protein_state - I-protein_state translocation I-protein_state Structure B-evidence I I-evidence with O eEF2 B-protein least O advanced O into O the O A B-site site I-site adopts O a O fully B-protein_state rotated I-protein_state conformation I-protein_state . O Translocases B-protein_type are O efficient O enzymes O . O The O Structures B-evidence reveal O hopping O of O the O positive O clusters O over O rRNA B-chemical helices B-structure_element . O Whereas O intersubunit O rotation O of O the O pre B-protein_state - I-protein_state translocation I-protein_state complex O occurs O spontaneously O , O the O head B-structure_element swivel O is O induced O by O the O eEF2 B-protein / O EF B-protein - I-protein G I-protein translocase B-protein_type , O consistent O with O requirement O of O eEF2 B-protein for O unlocking O . O Structural B-experimental_method studies I-experimental_method revealed O large O head B-structure_element swivels O in O various O 70S B-complex_assembly • I-complex_assembly tRNA I-complex_assembly • I-complex_assembly EF I-complex_assembly - I-complex_assembly G I-complex_assembly and O 80S B-complex_assembly • I-complex_assembly tRNA I-complex_assembly • I-complex_assembly eEF2 I-complex_assembly complexes O , O but O not O in O ' O locked B-protein_state ' O complexes B-protein_state with I-protein_state the O A B-site site I-site occupied O by O the O tRNA B-chemical in O the O absence B-protein_state of I-protein_state the O translocase B-protein_type . O This O ' O locked B-protein_state ' O state O is O identical O to O that O observed O for O PKI B-structure_element in O the O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly initiation B-protein_state structures B-evidence in O the O absence B-protein_state of I-protein_state eEF2 B-protein . O Observation O of O different O PKI B-structure_element conformations O sampling O a O range O of O positions O between O the O A B-site and I-site P I-site sites I-site in O the O presence B-protein_state of I-protein_state eEF2 B-complex_assembly • I-complex_assembly GDP I-complex_assembly implies O that O thermal O fluctuations O of O the O 40S B-complex_assembly head B-structure_element domain O are O sufficient O for O translocation O along O the O energetically O flat O trajectory O . O In O all O five O structures B-evidence , O the O GTPase B-structure_element domain I-structure_element is O attached O to O the O P B-structure_element stalk I-structure_element and O the O sarcin B-structure_element - I-structure_element ricin I-structure_element loop I-structure_element . O The O least B-protein_state rotated I-protein_state conformation O of O the O post B-protein_state - I-protein_state translocation I-protein_state Structure B-evidence V I-evidence suggests O conformational O changes O that O may O trigger O eEF2 B-protein release O from O the O ribosome B-complex_assembly at O the O end O of O translocation O . O Sordarin B-chemical is O a O potent O antifungal O antibiotic O that O inhibits O translation O . O Although O our O complex O was O assembled O using O eEF2 B-complex_assembly • I-complex_assembly GTP I-complex_assembly , O density B-evidence maps I-evidence clearly O show O GDP B-chemical and O Mg2 B-chemical + I-chemical in O each O structure B-evidence ( O Figure O 5g O ). O Because O translocation O of O tRNA B-chemical must O involve O large O - O scale O dynamics O , O this O step O has O long O been O regarded O as O the O most O puzzling O step O of O translation O . O Intersubunit O rearrangements O and O tRNA B-chemical hybrid B-protein_state states O have O been O proposed O to O play O key O roles O half O a O century O ago O . O Second O , O the O structures B-evidence clarify O the O structural O basis O of O the O often O - O used O but O structurally O undefined O terms O ' O locking O ' O and O ' O unlocking O ' O with O respect O to O the O pre B-protein_state - I-protein_state translocation I-protein_state complex O ( O Figure O 6f O ). O Previous O studies O showed O that O this O movement O widens O the O constriction B-site (' O gate B-site ') O between O the O P B-site and I-site E I-site sites I-site , O thus O allowing O the O P B-site - O tRNA B-chemical passage O to O the O E B-site site I-site . O In O addition O to O the O ' O gate B-site - O opening O ' O role O , O we O now O show O that O the O head B-structure_element swivel O brings O the O head B-structure_element A B-site site I-site to O the O body B-structure_element P B-site site I-site , O allowing O a O step O - O wise O conveying O of O the O codon B-structure_element - I-structure_element anticodon I-structure_element helix I-structure_element between O the O A B-site and I-site P I-site sites I-site . O Movement O of O PKI B-structure_element relative O to O the O head B-structure_element occurs O during O the O subsequent O reverse O swivel O in O three O 3 O – O 7 O Å O sub O - O steps O ( O II B-evidence to I-evidence III I-evidence to I-evidence IV I-evidence to I-evidence V I-evidence ). O Our O work O sheds O light O on O the O dynamic O mechanism O of O cap O - O independent O translation O by O IGR B-structure_element IRESs B-site , O tightly O coupled O with O the O universally B-protein_state conserved I-protein_state dynamic O properties O of O the O ribosome B-complex_assembly . O This O difference O likely O accounts O for O the O inefficient O translocation O of O the O IRES B-site , O which O is O difficult O to O stabilize O in O the O post B-protein_state - I-protein_state translocation I-protein_state state O and O therefore O is O prone O to O reverse O translocation O . O Intergenic O IRESs B-site , O in O turn O , O represent O a O striking O example O of O convergent O molecular O evolution O . O Ensemble O cryo B-experimental_method - I-experimental_method EM I-experimental_method While O the O inactive B-protein_state α B-protein subunits I-protein build O the O two O outer O rings B-structure_element , O the O β B-protein subunits I-protein form O the O inner O rings B-structure_element . O Only O three O out O of O the O seven O different O β B-protein subunits I-protein , O namely O β1 B-protein , O β2 B-protein and O β5 B-protein , O bear O N O - O terminal O proteolytic B-site active I-site centres I-site , O and O before O CP B-complex_assembly maturation O these O are O protected O by O propeptides B-structure_element . O In O the O last O stage O of O CP B-complex_assembly biogenesis O , O the O prosegments B-structure_element are O autocatalytically B-ptm removed I-ptm through O nucleophilic O attack O by O the O active B-site site I-site residue I-site Thr1 B-residue_name_number on O the O preceding O peptide O bond O involving O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number Although O the O chemical O nature O of O the O substrate B-site - I-site binding I-site channel I-site and O hence O substrate O preferences O are O unique O to O each O of O the O distinct O active B-protein_state β B-protein subunits I-protein , O all O active B-site sites I-site employ O an O identical O reaction O mechanism O to O hydrolyse O peptide O bonds O . O Data O from O biochemical B-experimental_method and I-experimental_method structural I-experimental_method analyses I-experimental_method of O proteasome O variants O with O mutations O in O the O β5 B-protein propeptide B-structure_element and O the O active B-site site I-site strongly O support O the O model O and O deliver O novel O insights O into O the O structural O constraints O required O for O the O autocatalytic B-ptm activation I-ptm of O the O proteasome B-complex_assembly . O Inactivation O of O the O active B-site site I-site Thr1 B-residue_name_number by O mutation B-experimental_method to I-experimental_method Ala B-residue_name has O been O used O to O study O substrate O specificity O and O the O hierarchy O of O the O proteasome B-complex_assembly active B-site sites I-site . O These O results O indicate O that O the O β1 B-protein and O β2 B-protein proteolytic O activities O are O not O essential O for O cell O survival O . O By O contrast O , O the O T1A B-mutant mutation O in O subunit O β5 B-protein has O been O reported O to O be O lethal O or O nearly O so O . O Our O present O crystallographic B-experimental_method analysis I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state demonstrates O that O the O mutation B-experimental_method per O se O does O not O structurally O alter O the O catalytic B-site active I-site site I-site and O that O the O trans B-experimental_method - I-experimental_method expressed I-experimental_method β5 B-protein propeptide B-structure_element is O not B-protein_state bound I-protein_state in O the O β5 B-protein substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 1a O ). O The O extremely O weak O growth O of O the O β5 B-mutant - I-mutant T1A I-mutant mutant B-protein_state pp B-chemical cis B-protein_state described O by O Chen O and O Hochstrasser O compared O with O the O inviability O reported O by O Heinemeyer O et O al O . O prompted O us O to O analyse O this O discrepancy O . O In O subunit O β1 B-protein , O we O found O that O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number indeed O forms O a O sharp B-structure_element turn I-structure_element , O which O relaxes O on O prosegment B-ptm cleavage I-ptm ( O Fig O . O 1a O and O Supplementary O Fig O . O 2a O ). O Regarding O the O β2 B-protein propeptide B-structure_element , O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S1 B-site pocket I-site but O is O less O deeply O anchored O compared O with O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β1 B-protein , O which O might O be O due O to O the O rather O large O β2 B-protein - O S1 B-site pocket I-site created O by O Gly45 B-residue_name_number . O As O histidine B-residue_name commonly O functions O as O a O proton O shuttle O in O the O catalytic B-site triads I-site of O serine B-protein_type proteases I-protein_type , O we O investigated O the O role O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O processing O of O the O β5 B-protein propeptide B-structure_element by O exchanging B-experimental_method it I-experimental_method for I-experimental_method Asn B-residue_name , O Lys B-residue_name , O Phe B-residue_name and O Ala B-residue_name . O All O yeast B-taxonomy_domain mutants O were O viable O at O 30 O ° O C O , O but O suffered O from O growth O defects O at O 37 O ° O C O with O the O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutants O being O most O affected O ( O Supplementary O Fig O . O 3b O and O Table O 1 O ). O Nevertheless O , O both O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number and O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number were O found O to O occupy O the O S1 B-site specificity I-site pocket I-site formed O by O Met45 B-residue_name_number ( O Fig O . O 2a O , O b O and O Supplementary O Fig O . O 4f O – O h O ). O Bearing O in O mind O that O in O contrast O to O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β2 B-protein , O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O subunit O β1 B-protein is O not B-protein_state conserved I-protein_state among O species O ( O Supplementary O Fig O . O 3a O ), O we O created B-experimental_method a O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant proteasome B-complex_assembly mutant B-protein_state . O Instead O , O Lys33NH2 B-residue_name_number , O which O is O in O hydrogen B-bond_interaction - I-bond_interaction bonding I-bond_interaction distance O to O Thr1Oγ B-residue_name_number ( O 2 O . O 7 O Å O ) O in O all O catalytically B-protein_state active I-protein_state β B-protein subunits I-protein ( O Fig O . O 3a O , O b O ), O was O proposed O to O serve O as O the O proton O acceptor O . O In O contrast O to O the O cis B-protein_state - O construct O , O expression B-experimental_method of O the O β5 B-protein propeptide B-structure_element in O trans B-protein_state allowed O straightforward O isolation B-experimental_method and O crystallization B-experimental_method of O the O D17N B-mutant mutant B-protein_state proteasome B-complex_assembly . O The O ChT O - O L O activity O of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical in O trans B-protein_state CP B-complex_assembly towards O the O canonical O β5 B-protein model O substrates O N B-chemical - I-chemical succinyl I-chemical - I-chemical Leu I-chemical - I-chemical Leu I-chemical - I-chemical Val I-chemical - I-chemical Tyr I-chemical - I-chemical 7 I-chemical - I-chemical amino I-chemical - I-chemical 4 I-chemical - I-chemical methylcoumarin I-chemical ( O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical ) O and O carboxybenzyl B-chemical - I-chemical Gly I-chemical - I-chemical Gly I-chemical - I-chemical Leu I-chemical - I-chemical para I-chemical - I-chemical nitroanilide I-chemical ( O Z B-chemical - I-chemical GGL I-chemical - I-chemical pNA I-chemical ) O was O severely O reduced O ( O Supplementary O Fig O . O 6b O ), O confirming O that O Asp17 B-residue_name_number is O of O fundamental O importance O for O the O catalytic O activity O of O the O mature B-protein_state proteasome B-complex_assembly . O This O observation O is O consistent O with O a O strongly O reduced O reactivity O of O β5 B-protein - O Thr1 B-residue_name_number and O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical cis B-protein_state mutant B-protein_state in B-protein_state complex I-protein_state with I-protein_state carfilzomib B-chemical . O On O the O basis O of O these O results O , O we O propose O that O CPs B-complex_assembly from O all O domains O of O life O use O a O catalytic B-site triad I-site consisting O of O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number for O both O autocatalytic B-ptm precursor I-ptm processing I-ptm and O proteolysis O ( O Fig O . O 3d O ). O Soaking B-experimental_method the O β5 B-mutant - I-mutant D166N I-mutant crystals B-experimental_method with O carfilzomib B-chemical and O MG132 B-chemical resulted O in O covalent O modification O of O Thr1 B-residue_name_number at O high O occupancy O ( O Supplementary O Fig O . O 8c O ). O These O results O suggest O that O Asp166 B-residue_name_number and O Ser129 B-residue_name_number function O as O a O proton O shuttle O and O affect O the O protonation O state O of O Thr1N B-residue_name_number during O autolysis B-ptm and O catalysis O . O Despite O propeptide B-ptm hydrolysis I-ptm , O the O β5 B-mutant - I-mutant T1C I-mutant active B-site site I-site is O catalytically B-protein_state inactive I-protein_state ( O Fig O . O 4b O and O Supplementary O Fig O . O 9a O ). O Moreover O , O the O structural B-evidence data I-evidence reveal O that O the O thiol O group O of O Cys1 B-residue_name_number is O rotated O by O 74 O ° O with O respect O to O the O hydroxyl O side O chain O of O Thr1 B-residue_name_number ( O Fig O . O 4f O and O Supplementary O Fig O . O 9b O ). O Crystal B-evidence structure I-evidence analysis O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state confirmed O precursor B-ptm processing I-ptm ( O Fig O . O 4g O ), O and O ligand B-complex_assembly - I-complex_assembly complex I-complex_assembly structures B-evidence with O bortezomib B-chemical and O carfilzomib B-chemical unambiguously O corroborated O the O reactivity O of O Ser1 B-residue_name_number ( O Fig O . O 5 O ). O Because O both O conformations O of O Ser1Oγ B-residue_name_number are O hydrogen B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O Lys33NH2 B-residue_name_number ( O Fig O . O 4h O ), O the O relay O system O is O capable O of O hydrolysing O peptide O substrates O , O albeit O at O lower O rates O compared O with O Thr1 B-residue_name_number . O In O agreement O , O at O an O elevated O growing O temperature O of O 37 O ° O C O the O T1S B-mutant mutant B-protein_state is O unable O to O grow O ( O Fig O . O 4a O ). O These O observations O highlight O the O unique O function O and O importance O of O the O β5 B-protein propeptide B-structure_element as O well O as O the O β5 B-protein active B-site site I-site for O maturation O and O function O of O the O eukaryotic B-taxonomy_domain CP B-complex_assembly . O On O the O basis O of O the O numerous O CP B-complex_assembly : I-complex_assembly ligand I-complex_assembly complexes O solved O during O the O past O 18 O years O and O in O the O current O study O , O we O provide O a O revised O interpretation O of O proteasome B-complex_assembly active B-site - I-site site I-site architecture I-site . O In O this O new O view O of O the O proteasomal O active B-site site I-site , O the O positively O charged O Thr1NH3 B-residue_name_number +- O terminus O hydrogen B-bond_interaction bonds I-bond_interaction to O the O amide O nitrogen O of O incoming O peptide O substrates O and O stabilizes O as O well O as O activates O them O for O the O endoproteolytic B-ptm cleavage I-ptm by O Thr1Oγ B-residue_name_number ( O Fig O . O 3d O ). O Consistent O with O this O model O , O the O positively O charged O Thr1 B-residue_name_number N O terminus O is O engaged O in O hydrogen B-bond_interaction bonds I-bond_interaction with O inhibitory O compounds O like O fellutamide B-chemical B I-chemical ( O ref O .), O α B-chemical - I-chemical ketoamides I-chemical , O homobelactosin B-chemical C I-chemical ( O ref O .) O and O salinosporamide B-chemical A I-chemical ( O ref O .). O In O agreement O , O acetylation B-ptm of O the O Thr1 B-residue_name_number N O terminus O irreversibly O blocks O hydrolytic O activity O , O and O binding O of O substrates O is O prevented O for O steric O reasons O . O Activity B-experimental_method assays I-experimental_method with O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state revealed O reduced O turnover O of O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical . O The O greater O suitability O of O threonine B-residue_name for O the O proteasome B-complex_assembly active B-site site I-site , O which O has O been O noted O in O biochemical O as O well O as O in O kinetic O studies O , O constitutes O a O likely O reason O for O the O conservation B-protein_state of O the O Thr1 B-residue_name_number residue O in O all O proteasomes B-complex_assembly from O bacteria B-taxonomy_domain to O eukaryotes B-taxonomy_domain . O Conformation O of O proteasomal O propeptides B-structure_element . O Note O the O tight O conformation O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala1 B-residue_name_number before O propeptide B-structure_element removal O ( O G B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number turn O ; O cyan O double O arrow O ) O compared O with O the O relaxed O , O processed B-protein_state WT B-protein_state active B-site - I-site site I-site Thr1 B-residue_name_number ( O red O double O arrow O ). O ( O b O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-protein propeptides B-structure_element in O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant , O β5 B-mutant -( I-mutant H I-mutant - I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state proteasomes B-complex_assembly . O ( O d O ) O Structural B-experimental_method superposition I-experimental_method of O the O matured B-protein_state β2 B-protein active B-site site I-site , O the O WT B-protein_state β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant mutant B-protein_state propeptide B-structure_element . O ( O c O ) O Illustration O of O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence ( O blue O mesh O contoured O at O 1σ O ) O for O the O β5 B-mutant - I-mutant T1C I-mutant propeptide B-structure_element fragment O . O Ser1 B-residue_name_number lacks B-protein_state this O stabilization O and O is O therefore O rotated O by O 60 O °. O The O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence ( O blue O mesh O ) O for O Ser1 B-residue_name_number ( O brown O ) O and O the O covalently O bound O ligands O ( O green O ; O only O the O P1 B-site site I-site ( O Leu1 B-residue_name_number ) O is O shown O ) O are O contoured O at O 1σ O . O Crotonylation B-ptm of O lysine B-residue_name residues O ( O crotonyllysine B-residue_name , O Kcr B-residue_name ) O has O emerged O as O one O of O the O fundamental O histone B-protein_type post O - O translational O modifications O ( O PTMs O ) O found O in O mammalian B-taxonomy_domain chromatin O . O While O a O number O of O acetyllysine B-residue_name readers O have O been O identified O and O characterized O , O a O specific O reader O of O the O crotonyllysine B-residue_name mark O remains O unknown O ( O reviewed O in O ). O The O acetyllysine B-residue_name binding O function O of O the O AF9 B-protein YEATS B-structure_element domain I-structure_element is O essential O for O the O recruitment O of O the O histone B-protein_type methyltransferase I-protein_type DOT1L B-protein to O H3K9ac B-protein_type - O containing O chromatin O and O for O DOT1L B-protein - O mediated O H3K79 B-protein_type methylation B-ptm and O transcription O . O In O this O study O , O we O identified O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element as O a O reader O of O crotonyllysine B-residue_name that O binds O to O histone B-protein_type H3 B-protein_type crotonylated B-protein_state at O lysine B-residue_name_number 9 I-residue_name_number ( O H3K9cr B-protein_type ) O via O a O distinctive O binding O mechanism O . O The O planar O crotonyl B-chemical group O is O inserted O between O Trp81 B-residue_name_number and O Phe62 B-residue_name_number of O the O protein O , O the O aromatic O rings O of O which O are O positioned O strictly O parallel O to O each O other O and O at O equal O distance O from O the O crotonyl B-chemical group O , O yielding O a O novel O aromatic O - O amide O / O aliphatic O - O aromatic O π B-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction stacking I-bond_interaction system O that O , O to O our O knowledge O , O has O not O been O reported O previously O for O any O protein O - O protein O interaction O ( O Fig O . O 1d O and O Supplementary O Fig O . O 1c O ). O In O addition O to O π B-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction π I-bond_interaction stacking I-bond_interaction , O the O crotonyl B-chemical group O is O stabilized O by O a O set O of O hydrogen B-bond_interaction bonds I-bond_interaction and O electrostatic B-bond_interaction interactions I-bond_interaction . O The O fixed O position O of O the O Thr61 B-residue_name_number hydroxyl O group O , O which O facilitates O interactions O with O both O the O amide O and O Cα O of O K9cr B-ptm , O is O achieved O through O a O hydrogen B-bond_interaction bond I-bond_interaction with O imidazole O ring O of O His59 B-residue_name_number . O Binding O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element to O H3K9cr B-protein_type is O robust O . O Binding O of O H3K9cr B-protein_type induced O resonance B-evidence changes I-evidence in O slow O exchange O regime O on O the O NMR B-experimental_method time O scale O , O indicative O of O strong O interaction O . O To O establish O whether O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element is O able O to O recognize O other O recently O identified O acyllysine B-residue_name marks O , O we O performed O solution B-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method using O H3 B-protein_type peptides O acetylated B-protein_state , O propionylated B-protein_state , O butyrylated B-protein_state , O and O crotonylated B-protein_state at O lysine B-residue_name_number 9 I-residue_name_number ( O residues O 1 B-residue_range – I-residue_range 20 I-residue_range of O H3 B-protein_type ). O We O concluded O that O H3K9cr B-protein_type is O the O preferred O target O of O this O domain O . O In O contrast O , O mutation B-experimental_method of O Val24 B-residue_name_number , O a O residue O located O on O another O side O of O Trp81 B-residue_name_number , O had O no O effect O on O binding O ( O Fig O . O 2d O and O Supplementary O Fig O . O 5a O , O c O ). O As O we O previously O showed O the O importance O of O acyllysine B-residue_name binding O by O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element for O the O DNA O damage O response O and O gene O transcription O , O it O will O be O essential O in O the O future O to O define O the O physiological O role O of O crotonyllysine B-residue_name recognition O and O to O differentiate O the O activities O of O Taf14 B-protein that O are O due O to O binding O to O crotonyllysine B-residue_name and O acetyllysine B-residue_name modifications O . O NMR B-experimental_method data O was O recorded O using O a O Bruker O 800 O MHz O Data O format O PDB O format O text O file O . O Tom1 O GAT B-structure_element structural O data O is O publicly O available O in O the O RCSB O Protein O Data O Bank O ( O http O :// O www O . O rscb O . O org O /) O under O the O accession O number O PDB O : O 2n9d O NMR B-experimental_method and O refinement B-evidence statistics I-evidence for O the O Tom1 B-protein GAT B-structure_element domain O . O PGRMC1 B-protein binds O to O EGFR B-protein_type and O cytochromes B-protein_type P450 I-protein_type , O and O is O known O to O be O involved O in O cancer O proliferation O and O in O drug O resistance O . O Previous O studies O showed O that O deprivation B-protein_state of I-protein_state iron B-chemical or O haem B-chemical suppresses O tumourigenesis O . O The O dimer B-oligomeric_state binds O to O EGFR B-protein_type and O cytochromes B-protein_type P450 I-protein_type to O enhance O tumour O cell O proliferation O and O chemoresistance O . O However O , O at O the O interfaces B-site of O the O other O possible O dimeric B-oligomeric_state structures B-evidence ( O Supplementary O Fig O . O 6a O , O chain O A O – O A O ″; O cyan O and O chain O A O – O B O ; O violet O ), O no O significant O difference O was O observed O . O We O analysed O the O haem B-chemical - O dependent O dimerization B-oligomeric_state of O the O PGRMC1 B-protein cytosolic B-structure_element domain I-structure_element ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ) O in O solution O ( O Fig O . O 2 O and O Table O 2 O ). O The O C129S B-mutant mutant B-protein_state of O PGRMC1 B-protein also O interacted O with O endogenous B-protein_state PGRMC1 B-protein and O EGFR B-protein_type ( O Supplementary O Fig O . O 16 O ). O Similarly O , O EGFR B-protein_type signaling O was O suppressed O by O treatment O of O HCT116 O cells O with O SA B-chemical ( O Fig O . O 4g O ) O or O CORM3 B-chemical ( O Fig O . O 4h O ). O We O examined O the O role O of O PGRMC1 B-protein in O metastatic O progression O by O xenograft B-experimental_method transplantation I-experimental_method assays I-experimental_method using O super O - O immunodeficient O NOD O / O scid O / O γnull O ( O NOG O ) O mice O . O This O effect O was O reversed O by O co B-experimental_method - I-experimental_method expression I-experimental_method of O the O wild B-protein_state - I-protein_state type I-protein_state PGRMC1 B-protein but O not O of O the O Y113F B-mutant mutant B-protein_state , O suggesting O that O PGRMC1 B-protein enhances O doxorubicin B-chemical resistance O of O cancer O cells O by O facilitating O its O degradation O via O cytochromes B-protein_type P450 I-protein_type . O In O the O current O study O , O the O Y113 B-residue_name_number residue O plays O a O crucial O role O for O the O haem B-chemical - O dependent O dimerization B-oligomeric_state of O PGRMC1 B-protein and O resultant O regulation O of O cancer O proliferation O and O chemoresistance O ( O Figs O 5c O and O 6e O ). O Recently O , O Peluso O et O al O . O reported O that O PGRMC1 B-protein binds O to O PGRMC2 B-protein , O suggesting O that O MAPR B-protein_type family O members O may O also O undergo O haem B-chemical - O mediated O heterodimerization O . O While O the O effects O of O structural O diversity O of O CYP B-protein_type family O proteins O and O interactions O with O different O xenobiotic O substrates O should O further O be O examined O , O the O current O results O suggest O that O the O interaction O of O drug O - O metabolizing O CYPs B-protein_type with O the O haem B-chemical - O mediated O dimer B-oligomeric_state of O PGRMC1 B-protein plays O a O crucial O role O in O regulating O their O activities O . O Considering O microenvironments O in O and O around O malignant O tumours O , O the O haem B-chemical concentration O in O cancer O cells O is O likely O to O be O elevated O through O multiple O mechanisms O , O such O as O ( O i O ) O an O increased O intake O of O haem B-chemical , O ( O ii O ) O mutation O of O enzymes O in O TCA O cycle O ( O for O example O , O fumarate B-protein_type hydratase I-protein_type ) O that O increases O the O level O of O succinyl B-chemical CoA I-chemical , O a O substrate O for O haem B-chemical biosynthesis O and O ( O iii O ) O metastasis O to O haem B-chemical - O rich O organs O such O as O liver O , O brain O and O bone O marrow O . O Furthermore O , O Sigma B-protein - I-protein 2 I-protein ligand O - O binding O is O decreased O in O transgenic O amyloid O beta O deposition O model O APP O / O PS1 O female O mice O . O These O results O suggest O a O possible O involvement O of O PGRMC1 B-protein in O Alzheimer O ' O s O disease O . O Comparison O of O PGRMC1 B-protein ( O blue O ) O and O cytochrome B-protein_type b5 I-protein_type ( O yellow O , O ID O : O 3NER O ). O ( O c O ) O PGRMC1 B-protein has O a O longer O helix B-structure_element ( O a O . O a O . O 147 B-residue_range – I-residue_range 163 I-residue_range ), O which O is O shifted O away O from O the O haem B-chemical ( O arrow O ). O SV B-experimental_method - I-experimental_method AUC I-experimental_method experiments O were O performed O with O 1 O . O 5 O mg O ml O − O 1 O of O PGRMC1 B-protein proteins O . O The O major O peak O with O sedimentation B-evidence coefficient I-evidence S20 B-evidence , I-evidence w I-evidence of O 1 O . O 9 O ∼ O 2 O . O 0 O S O ( O monomer B-oligomeric_state ) O or O 3 O . O 1 O S O ( O dimer B-oligomeric_state ) O was O detected O . O ( O b O ) O Close O - O up O view O of O haem B-bond_interaction stacking I-bond_interaction . O ( O a O ) O FLAG O - O PGRMC1 B-protein wild B-protein_state - I-protein_state type I-protein_state ( O wt B-protein_state ) O and O Y113F B-mutant mutant B-protein_state proteins O ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ), O in O either O apo B-protein_state - O or O haem B-protein_state - I-protein_state bound I-protein_state form O , O were O incubated B-experimental_method with O purified O EGFR B-protein_type and O co B-experimental_method - I-experimental_method immunoprecipitated I-experimental_method with O anti O - O FLAG O antibody O - O conjugated O beads O . O of O 10 O separate O experiments O . O * B-evidence P I-evidence < O 0 O . O 05 O using O unpaired O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method - I-experimental_method test I-experimental_method . O CO B-chemical interferes O with O the O stacking B-bond_interaction interactions I-bond_interaction of O the O haems B-chemical and O thereby O inhibits O PGRMC1 B-protein functions O . O Recent O data O supports O the O notion O that O , O to O perform O this O role O , O the O highly B-protein_state variable I-protein_state αβ B-complex_assembly T I-complex_assembly cell I-complex_assembly antigen I-complex_assembly receptor I-complex_assembly ( O TCR B-complex_assembly ) O must O be O able O to O recognize O thousands O , O if O not O millions O , O of O different O peptide O ligands O . O We O recently O reported O that O the O 1E6 O human B-species CD8 O + O T O cell O clone O — O which O mediates O the O destruction O of O β O cells O through O the O recognition O of O a O major O , O HLA B-protein - I-protein A I-protein * I-protein 0201 I-protein – O restricted O , O preproinsulin B-protein signal B-structure_element peptide I-structure_element ( O ALWGPDPAAA15 B-chemical – I-chemical 24 I-chemical ) O — O can O recognize O upwards O of O 1 O million O different O peptides O . O From O this O large O functional O scan O , O we O selected O 7 O different O APLs B-chemical that O activated O the O 1E6 O T O cell O clone O across O a O wide O ( O 4 O - O log O ) O functional O range O ( O Table O 1 O ). O As O with O the O 3D B-evidence affinity I-evidence measurements O , O the O 2D B-evidence affinity I-evidence measurements O correlated O well O with O the O EC50 B-evidence values O for O each O ligand O ( O Figure O 2K O ) O demonstrating O a O strong O correlation O ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence = O 0 O . O 8 O , O P B-evidence = O 0 O . O 01 O ) O between O T O cell O antigen O sensitivity O and O TCR B-evidence binding I-evidence affinity I-evidence . O The O low O number O of O contacts O between O the O 2 O molecules O most O likely O contributed O to O the O weak O binding B-evidence affinity I-evidence of O the O interaction O . O In O order O to O examine O the O mechanism O by O which O the O 1E6 B-complex_assembly TCR I-complex_assembly engaged O a O wide O range O of O peptides O with O divergent O binding B-evidence affinities I-evidence , O we O solved B-experimental_method the O structure B-evidence of O the O 1E6 B-complex_assembly TCR I-complex_assembly in B-protein_state complex I-protein_state with I-protein_state all O 7 O APLs B-chemical used O in O Figure O 2 O . O The O relatively O broad O range O of O buried O surface O areas O ( O 1 O , O 670 O – O 1 O , O 920 O Å2 O ) O did O not O correlate O well O with O TCR B-evidence binding I-evidence affinity I-evidence ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence = O 0 O . O 45 O , O P B-evidence = O 0 O . O 2 O ). O Although O the O number O of O peptide O contacts O was O a O good O predictor O of O TCR B-evidence binding I-evidence affinity I-evidence for O some O of O the O APLs B-chemical , O for O others O , O the O correlation O was O poor O ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence = O 0 O . O 045 O , O P O = O 0 O . O 92 O ), O possibly O because O of O different O resolutions O for O each O complex O structure B-evidence . O The O stronger O ligands O all O encoded O larger O side O chains O ( O Arg B-residue_name or O Tyr B-residue_name ) O at O peptide O position O 1 B-residue_number ( O Figure O 5 O , O E O – O H O ), O enabling O interactions O with O 1E6 O that O were O not O present O in O the O weaker O APLs B-chemical that O lacked O large O side O chains O in O this O position O ( O Figure O 5 O , O A O , O C O , O and O D O ). O These O data O demonstrated O that O the O unligated B-protein_state structure B-evidence of O the O 1E6 B-complex_assembly TCR I-complex_assembly was O virtually O identical O to O its O ligated B-protein_state counterparts O . O The O unligated B-protein_state structures B-evidence of O A2 B-chemical - I-chemical AQWGPDAAA I-chemical , O A2 B-chemical - I-chemical RQWGPDPAAV I-chemical , O A2 B-chemical - I-chemical YQFGPDFPIA I-chemical , O and O A2 B-chemical - I-chemical RQFGPDFPTI I-chemical were O virtually O identical O when O in B-protein_state complex I-protein_state with I-protein_state 1E6 O ( O Figure O 6 O , O D O and O F O – O H O ). O Peptide O modifications O alter O the O interaction O between O the O 1E6 B-complex_assembly TCR I-complex_assembly and O the O MHC B-site surface I-site . O An O energetic O switch O from O unfavorable O to O favorable O entropy B-evidence ( O order O - O to O - O disorder O ) O correlates O with O antigen O potency O . O The O weak O binding B-evidence affinity I-evidence between O 1E6 O and O A2 B-chemical - I-chemical MVWGPDPLYV I-chemical and O A2 B-chemical - I-chemical YLGGPDFPTI I-chemical generated O thermodynamic O data O that O were O not O robust O enough O to O gain O insight O into O the O enthalpic B-evidence ( O ΔH B-evidence °) I-evidence and O entropic B-evidence ( O TΔS B-evidence °) I-evidence changes O that O contributed O to O the O different O binding B-evidence affinities I-evidence / O potencies O for O each O APL B-chemical . O Flexibility O at O the O interface B-site between O the O TCR B-complex_assembly and O pMHC B-complex_assembly , O demonstrated O in O various O studies O , O has O been O suggested O as O a O mechanism O mediating O T O cell O cross O - O reactivity O with O multiple O distinct O epitopes O . O This O motif O was O conserved B-protein_state in O at O least O 2 O potential O foreign O peptides O , O originating O from O Herpes B-species simplex I-species virus I-species and O Pseudomonas B-species aeruginosa I-species , O enabling O TCR B-complex_assembly recognition O of O foreign O epitopes O . O Second O , O molecular O studies O have O not O yet O revealed O a O broad O set O of O rules O that O determine O TCR B-complex_assembly cross O - O reactivity O because O , O with O the O exception O of O the O allo B-protein_state – O TCR B-complex_assembly - I-complex_assembly MHC I-complex_assembly pair O of O the O 42F3 B-protein TCR B-complex_assembly and O H2 B-protein - I-protein Ld I-protein that O did O not O encounter O each O other O during O T O cell O development O , O studies O have O been O limited O to O structures B-evidence of O a O TCR B-complex_assembly with O only O 2 O or O 3 O different O ligands O . O Although O the O 1E6 O T O cell O was O able O to O activate O weakly O with O peptides O that O lacked B-protein_state this O motif O , O we O were O unable O to O robustly O measure O binding B-evidence affinities I-evidence or O generate O complex O structures B-evidence with O these O ligands O , O highlighting O the O central O role O of O this O interaction O during O 1E6 O T O cell O antigen O recognition O . O The O binding O mechanism O utilized O by O the O 1E6 B-complex_assembly TCR I-complex_assembly during O pMHC B-complex_assembly recognition O is O consistent O with O both O of O these O models O . O Combined O with O evidence O demonstrating O that O aromatic O side O chains O are O conserved O in O the O CDR2 B-structure_element loops I-structure_element of O TCRs B-complex_assembly from O many O species O , O we O speculate O that O these O aromatic O residues O could O impart O a O level O of O “ O stickiness O ” O to O TCRs B-complex_assembly , O which O might O be O enriched O in O an O autoimmune O setting O when O the O TCR B-complex_assembly often O binds O in O a O nonoptimal O fashion O . O Early O thermodynamic B-experimental_method analysis I-experimental_method of O TCR B-complex_assembly - I-complex_assembly pMHC I-complex_assembly interactions O suggested O a O common O energetic O signature O , O driven O by O favorable O enthalpy B-evidence ( O generally O mediated O through O an O increase O in O electrostatic O interactions O ) O and O unfavorable O entropy B-evidence ( O changes O from O disorder O to O order O ). O This O analysis O demonstrated O a O strong O relationship O ( O according O to O the O Pearson B-experimental_method ’ I-experimental_method s I-experimental_method correlation I-experimental_method analysis I-experimental_method ) O between O the O energetic O signature O used O by O the O 1E6 B-complex_assembly TCR I-complex_assembly and O the O sensitivity O of O the O 1E6 O T O cell O clone O to O different O APLs B-chemical . O These O differences O were O consistent O with O a O greater O degree O of O movement O between O the O unligated B-protein_state and O ligated B-protein_state pMHCs B-complex_assembly for O the O weaker O ligands O , O suggesting O a O greater O requirement O for O disorder O - O to O - O order O changes O during O TCR B-complex_assembly binding O . O Importantly O , O the O preproinsulin B-protein - O derived O epitope O was O one O of O the O least O potent O peptides O , O demonstrating O that O the O 1E6 O T O cell O clone O had O the O ability O to O respond O to O different O peptide O sequences O with O far O greater O potency O . O Finally O , O TCR B-complex_assembly ligand O discrimination O was O characterized O by O an O energetic O shift O from O an O enthalpically O to O entropically O driven O interaction O . O ( O C O ) O The O 1E6 O T O cell O clone O was O stained O , O in O duplicate O , O with O tetramers B-oligomeric_state composed O of O each O APL B-chemical ( O colored O as O above O ) O presented O by O HLA B-protein - I-protein A I-protein * I-protein 0201 I-protein . O ( O D O ) O The O stability O of O each O APL B-chemical ( O colored O as O above O ) O was O tested O , O in O duplicate O , O using O CD B-experimental_method by O recording O the O peak O at O 218 O nm O absorbance O from O 5 O ° O C O – O 90 O ° O C O . O ( O A O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly MVWGPDPLYV I-complex_assembly ( O approximate O value O ); O ( O B O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly YLGGPDFPTI I-complex_assembly ( O approximate O value O ); O ( O C O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly ALWGPDPAAA I-complex_assembly ; O ( O D O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly AQWGPDPAAA I-complex_assembly ; O ( O E O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly RQFGPDWIVA I-complex_assembly ; O ( O F O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly RQWGPDPAAV I-complex_assembly ; O ( O G O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly YQFGPDFPTA I-complex_assembly ; O and O ( O H O ) O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly RQFGPDFPTI I-complex_assembly . O ( O I O ) O ΔG B-evidence values I-evidence , O calculated O from O SPR B-experimental_method experiments O , O plotted O against O 1 O / O EC50 B-evidence ( O the O reciprocal O peptide O concentration O required O to O reach O half O - O maximal O 1E6 O T O cell O killing O ) O showing O Pearson B-experimental_method ’ I-experimental_method s I-experimental_method coefficient I-experimental_method analysis I-experimental_method ( O r B-evidence ) O and O P B-evidence value O ( O including O approximate O values O from O A O and O B O ). O ( O A O ) O Interaction O between O the O 1E6 B-complex_assembly TCR I-complex_assembly ( O black O illustration O and O sticks O ) O and O A2 B-chemical - I-chemical MVWGPDPLYV I-chemical ( O black O illustration O and O sticks O ). O ( O B O ) O Interaction O between O the O 1E6 B-complex_assembly TCR I-complex_assembly ( O red O illustration O and O sticks O ) O and O A2 B-chemical - I-chemical YLGGPDFPTI I-chemical ( O red O illustration O and O sticks O ). O ( O C O ) O Interaction O between O the O 1E6 B-complex_assembly TCR I-complex_assembly ( O blue O illustration O and O sticks O ) O and O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical ( O blue O illustration O and O sticks O ) O reproduced O from O previous O published O data O . O Superposition B-experimental_method of O each O APL B-chemical in O unligated B-protein_state form O and O ligated B-protein_state to O the O 1E6 B-complex_assembly TCR I-complex_assembly . O Interactions O between O the O 1E6 B-complex_assembly TCR I-complex_assembly and O the O MHC B-complex_assembly α1 B-structure_element helix I-structure_element residues O Arg65 B-residue_name_number , O Lys66 B-residue_name_number , O and O Gln72 B-residue_name_number . O Hydrogen B-bond_interaction bonds I-bond_interaction are O shown O as O red O dotted O lines O ; O vdW B-bond_interaction contacts O are O shown O as O black O dotted O lines O . O Further O dimerization O contacts O involve O switch B-site II I-site , O the O G4 B-structure_element helix I-structure_element and O the O trans B-structure_element stabilizing I-structure_element loop I-structure_element . O Extensive O biochemical B-experimental_method studies I-experimental_method suggested O that O GTP B-chemical - O induced O oligomerization O of O Irga6 B-protein requires O an O interface B-site in O the O GTPase B-structure_element domain I-structure_element across O the O nucleotide B-site - I-site binding I-site site I-site . O Since O the O signal B-protein_type recognition I-protein_type particle I-protein_type GTPase I-protein_type and O its O homologous O receptor B-protein_type ( O called O FfH B-protein and O FtsY B-protein in O bacteria B-taxonomy_domain ) O also O employ O the O 3 O '- O OH O ribose O group O to O dimerize B-oligomeric_state in O an O anti B-protein_state - I-protein_state parallel I-protein_state orientation O therefore O activating O its O GTPase B-protein_type , O an O analogous O dimerization O model O was O proposed O for O Irga6 B-protein . O The O structure B-evidence revealed O that O Irga6 B-protein can O dimerize B-oligomeric_state via O the O G B-site interface I-site in O a O parallel B-protein_state head I-protein_state - I-protein_state to I-protein_state - I-protein_state head I-protein_state fashion O . O Our O data O suggest O that O a O parallel B-protein_state dimerization O mode O may O be O a O unifying O feature O in O all O dynamin B-protein_type and O septin B-protein_type superfamily O proteins O . O Crystals B-evidence diffracted O to O 3 O . O 2 O Å O resolution O and O displayed O one O exceptionally O long O unit O cell O axis O of O 1289 O Å O ( O Additional O file O 1 O : O Table O S1 O ). O The O structure B-evidence was O solved O by O molecular B-experimental_method replacement I-experimental_method and O refined O to O Rwork B-evidence / O Rfree B-evidence of O 29 O . O 7 O %/ O 31 O . O 7 O % O ( O Additional O file O 1 O : O Table O S2 O ). O Secondary O structure O was O numbered O according O to O ref O .. O c O Top O view O on O the O GTPase B-structure_element domain I-structure_element dimer B-oligomeric_state . O The O structures B-evidence of O the O seven O molecules O also O agree O well O with O the O previously O determined O structure B-evidence of O native B-protein_state GMPPNP B-protein_state - I-protein_state bound I-protein_state Irga6 B-protein ( O PDB O : O 1TQ6 O ; O rmsd B-evidence of O 1 O . O 00 O - O 1 O . O 13 O Å O over O all O Cα O atoms O ). O This O indicates O that O the O introduced O mutations B-experimental_method in O the O secondary B-site patch I-site , O from O which O only O Lys176 B-residue_name_number is O part O of O the O backside B-site interface I-site , O do O , O in O fact O , O not O prevent O this O interaction O . O Strikingly O , O molecule O A B-structure_element of O one O asymmetric O unit O assembled O with O an O equivalent O molecule O of O the O adjacent O asymmetric O unit O via O the O G B-site - I-site interface I-site in O a O symmetric O parallel B-protein_state fashion O via O a O 470 O Å2 O interface O . O Contact B-site site I-site II I-site features O polar B-bond_interaction and I-bond_interaction hydrophobic I-bond_interaction interactions I-bond_interaction formed O by O switch B-site I I-site ( O V104 B-residue_name_number , O V107 B-residue_name_number ) O with O a O helix B-structure_element following O the O guanine B-structure_element specificity I-structure_element motif I-structure_element ( O G4 B-structure_element helix I-structure_element , O K184 B-residue_name_number and O S187 B-residue_name_number ) O and O the O trans B-structure_element stabilizing I-structure_element loop I-structure_element ( O T158 B-residue_name_number ) O of O the O opposing O GTPase B-structure_element domain I-structure_element . O The O GTPase B-structure_element domains I-structure_element of O the O left O molecules O are O shown O in O orange O , O helical B-structure_element domains I-structure_element or O extensions O in O blue O . O Our O structural B-experimental_method analysis I-experimental_method of O an O oligomerization B-protein_state - I-protein_state and I-protein_state GTPase I-protein_state - I-protein_state defective I-protein_state Irga6 B-protein mutant B-protein_state indicates O that O Irga6 B-protein dimerizes B-oligomeric_state via O the O G B-site interface I-site in O a O parallel B-protein_state orientation O . O In O the O crystals B-evidence , O dimerization O via O the O G B-site interface I-site is O promoted O by O the O high O protein O concentrations O which O may O mimic O a O situation O when O Irga6 B-protein oligomerizes O on O a O membrane O surface O . O Irga6 B-protein bears O Gly79 B-residue_name_number at O this O position O , O which O in O the O dimerizing B-oligomeric_state molecule O A B-structure_element appears O to O approach O the O bridging O imido O group O of O GMPPNP B-chemical via O a O main O chain O hydrogen B-bond_interaction bond I-bond_interaction . O For O Irga6 B-protein , O additional O interfaces B-site in O the O helical B-structure_element domain I-structure_element are O presumably O involved O in O oligomerization O , O such O as O the O secondary B-site patch I-site residues O whose O mutation B-experimental_method prevented O oligomerization O in O the O crystallized B-evidence mutant B-protein_state . O