anno_start anno_end anno_text entity_type sentence section 44 56 binding-site site Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger TITLE 74 98 sodium-calcium exchanger protein_type Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger TITLE 0 19 Na+/Ca2+ exchangers protein_type Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. ABSTRACT 32 35 Na+ chemical Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. ABSTRACT 113 117 Ca2+ chemical Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. ABSTRACT 146 150 Ca2+ chemical Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. ABSTRACT 92 111 structural analysis experimental_method Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 119 128 exchanger protein_type Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 134 158 Methanococcus jannaschii species Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 160 166 NCX_Mj protein Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 168 176 bound to protein_state Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 177 180 Na+ chemical Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 182 186 Ca2+ chemical Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 190 194 Sr2+ chemical Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 228 231 apo protein_state Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. ABSTRACT 130 133 Na+ chemical This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3Na+:1Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. ABSTRACT 135 139 Ca2+ chemical This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3Na+:1Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. ABSTRACT 44 80 conformational free-energy landscape evidence An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. ABSTRACT 84 90 NCX_Mj protein An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. ABSTRACT 104 117 ion-occupancy protein_state An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. ABSTRACT 135 183 enhanced-sampling molecular-dynamics simulations experimental_method An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. ABSTRACT 207 225 crystal structures evidence An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. ABSTRACT 6 18 calculations experimental_method These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. ABSTRACT 58 65 outward protein_state These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. ABSTRACT 69 75 inward protein_state These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. ABSTRACT 182 185 Na+ chemical These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. ABSTRACT 186 190 Ca2+ chemical These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. ABSTRACT 0 19 Na+/Ca2+ exchangers protein_type Na+/Ca2+ exchangers (NCX) play physiologically essential roles in Ca2+ signaling and homeostasis. INTRO 21 24 NCX protein_type Na+/Ca2+ exchangers (NCX) play physiologically essential roles in Ca2+ signaling and homeostasis. INTRO 66 70 Ca2+ chemical Na+/Ca2+ exchangers (NCX) play physiologically essential roles in Ca2+ signaling and homeostasis. INTRO 0 3 NCX protein_type NCX catalyzes the uphill extrusion of intracellular Ca2+ across the cell membrane, by coupling this process to the downhill permeation of Na+ into the cell, with a 3 Na+ to 1 Ca2+ stoichiometry. INTRO 52 56 Ca2+ chemical NCX catalyzes the uphill extrusion of intracellular Ca2+ across the cell membrane, by coupling this process to the downhill permeation of Na+ into the cell, with a 3 Na+ to 1 Ca2+ stoichiometry. INTRO 138 141 Na+ chemical NCX catalyzes the uphill extrusion of intracellular Ca2+ across the cell membrane, by coupling this process to the downhill permeation of Na+ into the cell, with a 3 Na+ to 1 Ca2+ stoichiometry. INTRO 166 169 Na+ chemical NCX catalyzes the uphill extrusion of intracellular Ca2+ across the cell membrane, by coupling this process to the downhill permeation of Na+ into the cell, with a 3 Na+ to 1 Ca2+ stoichiometry. INTRO 175 179 Ca2+ chemical NCX catalyzes the uphill extrusion of intracellular Ca2+ across the cell membrane, by coupling this process to the downhill permeation of Na+ into the cell, with a 3 Na+ to 1 Ca2+ stoichiometry. INTRO 17 20 NCX protein_type The mechanism of NCX proteins is therefore highly likely to be consistent with the alternating-access model of secondary-active transport. INTRO 47 50 NCX protein_type The basic functional unit for ion transport in NCX consists of ten membrane-spanning segments, comprising two homologous halves. INTRO 67 93 membrane-spanning segments structure_element The basic functional unit for ion transport in NCX consists of ten membrane-spanning segments, comprising two homologous halves. INTRO 121 127 halves structure_element The basic functional unit for ion transport in NCX consists of ten membrane-spanning segments, comprising two homologous halves. INTRO 14 20 halves structure_element Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 32 48 highly conserved protein_state Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 72 80 α-repeat structure_element Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 142 152 eukaryotic taxonomy_domain Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 153 156 NCX protein_type Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 166 172 halves structure_element Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 198 229 intracellular regulatory domain structure_element Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 240 246 absent protein_state Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 250 259 microbial taxonomy_domain Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 260 263 NCX protein_type Each of these halves contains a highly conserved region, referred to as α-repeat, known to be important for ion binding and translocation; in eukaryotic NCX, the two halves are connected by a large intracellular regulatory domain, which is absent in microbial NCX (Supplementary Fig. 1). INTRO 91 94 NCX protein_type Despite a long history of physiological and functional studies, the molecular mechanism of NCX has been elusive, owing to the lack of structural information. INTRO 29 38 structure evidence Our recent atomic-resolution structure of NCX_Mj from Methanococcus jannaschii provided the first view of the basic functional unit of an NCX protein. INTRO 42 48 NCX_Mj protein Our recent atomic-resolution structure of NCX_Mj from Methanococcus jannaschii provided the first view of the basic functional unit of an NCX protein. INTRO 54 78 Methanococcus jannaschii species Our recent atomic-resolution structure of NCX_Mj from Methanococcus jannaschii provided the first view of the basic functional unit of an NCX protein. INTRO 138 141 NCX protein_type Our recent atomic-resolution structure of NCX_Mj from Methanococcus jannaschii provided the first view of the basic functional unit of an NCX protein. INTRO 5 14 structure evidence This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 25 34 exchanger protein_type This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 41 55 outward-facing protein_state This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 95 112 ion-binding sites site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 126 134 internal site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 136 140 Sint site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 143 151 external site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 153 157 Sext site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 160 172 Ca2+-binding site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 174 177 SCa site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 183 189 middle site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 191 195 Smid site This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 241 254 occluded from protein_state This structure shows the exchanger in an outward-facing conformation and reveals four putative ion-binding sites, denominated internal (Sint), external (Sext), Ca2+-binding (SCa) and middle (Smid), clustered in the center of the protein and occluded from the solvent (Fig. 1a-b). INTRO 53 63 eukaryotic taxonomy_domain With similar ion exchange properties to those of its eukaryotic counterparts, NCX_Mj provides a compelling model system to investigate the structural basis for the specificity, stoichiometry and mechanism of the ion-exchange reaction catalyzed by NCX. INTRO 78 84 NCX_Mj protein With similar ion exchange properties to those of its eukaryotic counterparts, NCX_Mj provides a compelling model system to investigate the structural basis for the specificity, stoichiometry and mechanism of the ion-exchange reaction catalyzed by NCX. INTRO 247 250 NCX protein_type With similar ion exchange properties to those of its eukaryotic counterparts, NCX_Mj provides a compelling model system to investigate the structural basis for the specificity, stoichiometry and mechanism of the ion-exchange reaction catalyzed by NCX. INTRO 43 53 structures evidence In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 57 71 outward-facing protein_state In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 72 81 wild-type protein_state In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 82 88 NCX_Mj protein In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 89 104 in complex with protein_state In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 105 108 Na+ chemical In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 110 114 Ca2+ chemical In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 119 123 Sr2+ chemical In this study, we set out to determine the structures of outward-facing wild-type NCX_Mj in complex with Na+, Ca2+ and Sr2+, at various concentrations. INTRO 6 16 structures evidence These structures reveal the mode of recognition of these ions, their relative affinities, and the mechanism of extracellular ion exchange, for a well-defined, functional conformation in a membrane-like environment. INTRO 33 63 molecular-dynamics simulations experimental_method An independent analysis based on molecular-dynamics simulations demonstrates that the structures capture mechanistically relevant states. INTRO 86 96 structures evidence An independent analysis based on molecular-dynamics simulations demonstrates that the structures capture mechanistically relevant states. INTRO 6 18 calculations experimental_method These calculations also reveal how the ion occupancy state of the outward-facing exchanger determines the feasibility of the transition to the inward-facing conformation, thereby addressing a key outstanding question in secondary-active transport, namely how the transported substrates control the alternating-access mechanism. INTRO 66 80 outward-facing protein_state These calculations also reveal how the ion occupancy state of the outward-facing exchanger determines the feasibility of the transition to the inward-facing conformation, thereby addressing a key outstanding question in secondary-active transport, namely how the transported substrates control the alternating-access mechanism. INTRO 81 90 exchanger protein_type These calculations also reveal how the ion occupancy state of the outward-facing exchanger determines the feasibility of the transition to the inward-facing conformation, thereby addressing a key outstanding question in secondary-active transport, namely how the transported substrates control the alternating-access mechanism. INTRO 143 156 inward-facing protein_state These calculations also reveal how the ion occupancy state of the outward-facing exchanger determines the feasibility of the transition to the inward-facing conformation, thereby addressing a key outstanding question in secondary-active transport, namely how the transported substrates control the alternating-access mechanism. INTRO 14 17 Na+ chemical Extracellular Na+ binding RESULTS 27 48 central binding sites site The assignment of the four central binding sites identified in the previously reported NCX_Mj structure was hampered by the presence of both Na+ and Ca2+ in the protein crystals. RESULTS 87 93 NCX_Mj protein The assignment of the four central binding sites identified in the previously reported NCX_Mj structure was hampered by the presence of both Na+ and Ca2+ in the protein crystals. RESULTS 94 103 structure evidence The assignment of the four central binding sites identified in the previously reported NCX_Mj structure was hampered by the presence of both Na+ and Ca2+ in the protein crystals. RESULTS 141 144 Na+ chemical The assignment of the four central binding sites identified in the previously reported NCX_Mj structure was hampered by the presence of both Na+ and Ca2+ in the protein crystals. RESULTS 149 153 Ca2+ chemical The assignment of the four central binding sites identified in the previously reported NCX_Mj structure was hampered by the presence of both Na+ and Ca2+ in the protein crystals. RESULTS 169 177 crystals evidence The assignment of the four central binding sites identified in the previously reported NCX_Mj structure was hampered by the presence of both Na+ and Ca2+ in the protein crystals. RESULTS 73 76 Na+ chemical To conclusively clarify this assignment, we first set out to examine the Na+ occupancy of these sites without Ca2+. RESULTS 110 114 Ca2+ chemical To conclusively clarify this assignment, we first set out to examine the Na+ occupancy of these sites without Ca2+. RESULTS 0 8 Crystals evidence Crystals were grown in 150 mM NaCl using the lipidic cubic phase (LCP) technique. RESULTS 30 34 NaCl chemical Crystals were grown in 150 mM NaCl using the lipidic cubic phase (LCP) technique. RESULTS 45 64 lipidic cubic phase experimental_method Crystals were grown in 150 mM NaCl using the lipidic cubic phase (LCP) technique. RESULTS 66 69 LCP experimental_method Crystals were grown in 150 mM NaCl using the lipidic cubic phase (LCP) technique. RESULTS 41 44 LCP experimental_method The crystallization solutions around the LCP droplets were then slowly replaced by solutions containing different concentrations of NaCl and EGTA (Methods). RESULTS 132 136 NaCl chemical The crystallization solutions around the LCP droplets were then slowly replaced by solutions containing different concentrations of NaCl and EGTA (Methods). RESULTS 141 145 EGTA chemical The crystallization solutions around the LCP droplets were then slowly replaced by solutions containing different concentrations of NaCl and EGTA (Methods). RESULTS 0 17 X-ray diffraction experimental_method X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 34 42 crystals evidence X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 54 57 Na+ chemical X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 85 114 electron-density distribution evidence X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 124 128 Sext site X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 130 133 SCa site X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 138 142 Sint site X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 157 160 Na+ chemical X-ray diffraction of these soaked crystals revealed a Na+-dependent variation in the electron-density distribution at sites Sext, SCa and Sint, indicating a Na+ occupancy change (Fig. 1c). RESULTS 0 20 Occupancy refinement experimental_method Occupancy refinement indicated two Na+ ions bind to Sint and SCa at low Na+ concentrations (Fig. 1c), with a slight preference for Sint (Table 1). RESULTS 35 38 Na+ chemical Occupancy refinement indicated two Na+ ions bind to Sint and SCa at low Na+ concentrations (Fig. 1c), with a slight preference for Sint (Table 1). RESULTS 52 56 Sint site Occupancy refinement indicated two Na+ ions bind to Sint and SCa at low Na+ concentrations (Fig. 1c), with a slight preference for Sint (Table 1). RESULTS 61 64 SCa site Occupancy refinement indicated two Na+ ions bind to Sint and SCa at low Na+ concentrations (Fig. 1c), with a slight preference for Sint (Table 1). RESULTS 72 75 Na+ chemical Occupancy refinement indicated two Na+ ions bind to Sint and SCa at low Na+ concentrations (Fig. 1c), with a slight preference for Sint (Table 1). RESULTS 131 135 Sint site Occupancy refinement indicated two Na+ ions bind to Sint and SCa at low Na+ concentrations (Fig. 1c), with a slight preference for Sint (Table 1). RESULTS 19 22 Na+ chemical Binding of a third Na+ to Sext occurs at higher concentrations, as no density was observed there at 10 mM Na+ or lower (Fig. 1c); Sext is however partially occupied at 20 mM Na+, and fully occupied at 150 mM (Fig. 1c). RESULTS 26 30 Sext site Binding of a third Na+ to Sext occurs at higher concentrations, as no density was observed there at 10 mM Na+ or lower (Fig. 1c); Sext is however partially occupied at 20 mM Na+, and fully occupied at 150 mM (Fig. 1c). RESULTS 70 77 density evidence Binding of a third Na+ to Sext occurs at higher concentrations, as no density was observed there at 10 mM Na+ or lower (Fig. 1c); Sext is however partially occupied at 20 mM Na+, and fully occupied at 150 mM (Fig. 1c). RESULTS 106 109 Na+ chemical Binding of a third Na+ to Sext occurs at higher concentrations, as no density was observed there at 10 mM Na+ or lower (Fig. 1c); Sext is however partially occupied at 20 mM Na+, and fully occupied at 150 mM (Fig. 1c). RESULTS 130 134 Sext site Binding of a third Na+ to Sext occurs at higher concentrations, as no density was observed there at 10 mM Na+ or lower (Fig. 1c); Sext is however partially occupied at 20 mM Na+, and fully occupied at 150 mM (Fig. 1c). RESULTS 174 177 Na+ chemical Binding of a third Na+ to Sext occurs at higher concentrations, as no density was observed there at 10 mM Na+ or lower (Fig. 1c); Sext is however partially occupied at 20 mM Na+, and fully occupied at 150 mM (Fig. 1c). RESULTS 4 7 Na+ chemical The Na+ occupation at SCa, compounded with the expected 3Na+:1Ca2+ stoichiometry, implies our previous assignment of the Smid site must be re-evaluated. RESULTS 22 25 SCa site The Na+ occupation at SCa, compounded with the expected 3Na+:1Ca2+ stoichiometry, implies our previous assignment of the Smid site must be re-evaluated. RESULTS 57 60 Na+ chemical The Na+ occupation at SCa, compounded with the expected 3Na+:1Ca2+ stoichiometry, implies our previous assignment of the Smid site must be re-evaluated. RESULTS 62 66 Ca2+ chemical The Na+ occupation at SCa, compounded with the expected 3Na+:1Ca2+ stoichiometry, implies our previous assignment of the Smid site must be re-evaluated. RESULTS 121 125 Smid site The Na+ occupation at SCa, compounded with the expected 3Na+:1Ca2+ stoichiometry, implies our previous assignment of the Smid site must be re-evaluated. RESULTS 41 46 water chemical Indeed, two observations indicate that a water molecule rather than a Na+ ion occupies Smid, as was predicted in a recent simulation study. RESULTS 70 73 Na+ chemical Indeed, two observations indicate that a water molecule rather than a Na+ ion occupies Smid, as was predicted in a recent simulation study. RESULTS 87 91 Smid site Indeed, two observations indicate that a water molecule rather than a Na+ ion occupies Smid, as was predicted in a recent simulation study. RESULTS 122 132 simulation experimental_method Indeed, two observations indicate that a water molecule rather than a Na+ ion occupies Smid, as was predicted in a recent simulation study. RESULTS 11 27 electron density evidence First, the electron density at Smid does not depend significantly on the Na+ concentration. RESULTS 31 35 Smid site First, the electron density at Smid does not depend significantly on the Na+ concentration. RESULTS 73 76 Na+ chemical First, the electron density at Smid does not depend significantly on the Na+ concentration. RESULTS 45 49 Smid site Second, the protein coordination geometry at Smid is clearly suboptimal for Na+ (Supplementary Fig. 1d). RESULTS 76 79 Na+ chemical Second, the protein coordination geometry at Smid is clearly suboptimal for Na+ (Supplementary Fig. 1d). RESULTS 4 9 water chemical The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 22 26 Smid site The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 33 47 hydrogen-bonds bond_interaction The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 57 73 highly conserved protein_state The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 74 79 Glu54 residue_name_number The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 84 90 Glu213 residue_name_number The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 158 168 coordinate bond_interaction The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 178 181 Na+ chemical The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 190 194 Sext site The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 196 199 SCa site The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 204 208 Sint site The water molecule at Smid forms hydrogen-bonds with the highly conserved Glu54 and Glu213 (Supplementary Fig. 1d), stabilizing their orientation to properly coordinate multiple Na+ ions at Sext, SCa and Sint. RESULTS 45 50 Glu54 residue_name_number It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 55 61 Glu213 residue_name_number It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 81 87 Asp240 residue_name_number It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 102 106 Smid site It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 127 130 Asn residue_name It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 134 144 eukaryotic taxonomy_domain It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 145 148 NCX protein_type It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 159 169 protonated protein_state It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 206 216 simulation experimental_method It can be inferred from this assignment that Glu54 and Glu213 are ionized, while Asp240, which flanks Smid (and is replaced by Asn in eukaryotic NCX) would be protonated, as indicated by the abovementioned simulation study. RESULTS 0 3 Na+ chemical Na+-dependent conformational change RESULTS 4 10 NCX_Mj protein The NCX_Mj structures in various Na+ concentrations also reveal that Na+ binding to Sext is coupled to a subtle but important conformational change (Fig. 2). RESULTS 11 21 structures evidence The NCX_Mj structures in various Na+ concentrations also reveal that Na+ binding to Sext is coupled to a subtle but important conformational change (Fig. 2). RESULTS 33 36 Na+ chemical The NCX_Mj structures in various Na+ concentrations also reveal that Na+ binding to Sext is coupled to a subtle but important conformational change (Fig. 2). RESULTS 69 72 Na+ chemical The NCX_Mj structures in various Na+ concentrations also reveal that Na+ binding to Sext is coupled to a subtle but important conformational change (Fig. 2). RESULTS 84 88 Sext site The NCX_Mj structures in various Na+ concentrations also reveal that Na+ binding to Sext is coupled to a subtle but important conformational change (Fig. 2). RESULTS 5 8 Na+ chemical When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 18 22 Sext site When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 26 30 high protein_state When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 51 66 N-terminal half structure_element When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 70 73 TM7 structure_element When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 91 104 short helices structure_element When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 106 110 TM7a structure_element When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 115 119 TM7b structure_element When Na+ binds to Sext at high concentrations, the N-terminal half of TM7 is bent into two short helices, TM7a and TM7b (Fig. 2a). RESULTS 0 4 TM7b structure_element TM7b occludes the four central binding sites from the external solution, with the backbone carbonyl of Ala206 coordinating the Na+ ion (Fig. 2b-d). RESULTS 23 44 central binding sites site TM7b occludes the four central binding sites from the external solution, with the backbone carbonyl of Ala206 coordinating the Na+ ion (Fig. 2b-d). RESULTS 103 109 Ala206 residue_name_number TM7b occludes the four central binding sites from the external solution, with the backbone carbonyl of Ala206 coordinating the Na+ ion (Fig. 2b-d). RESULTS 110 122 coordinating bond_interaction TM7b occludes the four central binding sites from the external solution, with the backbone carbonyl of Ala206 coordinating the Na+ ion (Fig. 2b-d). RESULTS 127 130 Na+ chemical TM7b occludes the four central binding sites from the external solution, with the backbone carbonyl of Ala206 coordinating the Na+ ion (Fig. 2b-d). RESULTS 14 18 Sext site However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 27 32 empty protein_state However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 36 39 low protein_state However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 40 43 Na+ chemical However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 60 64 TM7a structure_element However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 69 73 TM7b structure_element However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 103 108 helix structure_element However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 146 152 Ala206 residue_name_number However, when Sext becomes empty at low Na+ concentrations, TM7a and TM7b become a continuous straight helix (Fig. 2a), and the carbonyl group of Ala206 retracts away (Fig. 2b-d). RESULTS 0 4 TM7a structure_element TM7a also forms hydrophobic contacts with the C-terminal half of TM6. RESULTS 16 36 hydrophobic contacts bond_interaction TM7a also forms hydrophobic contacts with the C-terminal half of TM6. RESULTS 46 61 C-terminal half structure_element TM7a also forms hydrophobic contacts with the C-terminal half of TM6. RESULTS 65 68 TM6 structure_element TM7a also forms hydrophobic contacts with the C-terminal half of TM6. RESULTS 33 42 structure evidence These contacts are absent in the structure with Na+ at Sext, in which there is an open gap between the two helices (Fig. 2b). RESULTS 48 51 Na+ chemical These contacts are absent in the structure with Na+ at Sext, in which there is an open gap between the two helices (Fig. 2b). RESULTS 55 59 Sext site These contacts are absent in the structure with Na+ at Sext, in which there is an open gap between the two helices (Fig. 2b). RESULTS 107 114 helices structure_element These contacts are absent in the structure with Na+ at Sext, in which there is an open gap between the two helices (Fig. 2b). RESULTS 38 41 TM6 structure_element This difference is noteworthy because TM6 and TM1 are believed to undergo a sliding motion, relative to the rest of the protein, when the transporter switches to the inward-facing conformation. RESULTS 46 49 TM1 structure_element This difference is noteworthy because TM6 and TM1 are believed to undergo a sliding motion, relative to the rest of the protein, when the transporter switches to the inward-facing conformation. RESULTS 138 149 transporter protein_type This difference is noteworthy because TM6 and TM1 are believed to undergo a sliding motion, relative to the rest of the protein, when the transporter switches to the inward-facing conformation. RESULTS 166 179 inward-facing protein_state This difference is noteworthy because TM6 and TM1 are believed to undergo a sliding motion, relative to the rest of the protein, when the transporter switches to the inward-facing conformation. RESULTS 21 26 TM7ab structure_element The straightening of TM7ab also opens up a passageway from the external solution to Sext and Smid, while SCa and Sint remain occluded (Fig. 2d). RESULTS 84 88 Sext site The straightening of TM7ab also opens up a passageway from the external solution to Sext and Smid, while SCa and Sint remain occluded (Fig. 2d). RESULTS 93 97 Smid site The straightening of TM7ab also opens up a passageway from the external solution to Sext and Smid, while SCa and Sint remain occluded (Fig. 2d). RESULTS 105 108 SCa site The straightening of TM7ab also opens up a passageway from the external solution to Sext and Smid, while SCa and Sint remain occluded (Fig. 2d). RESULTS 113 117 Sint site The straightening of TM7ab also opens up a passageway from the external solution to Sext and Smid, while SCa and Sint remain occluded (Fig. 2d). RESULTS 125 133 occluded protein_state The straightening of TM7ab also opens up a passageway from the external solution to Sext and Smid, while SCa and Sint remain occluded (Fig. 2d). RESULTS 10 20 structures evidence Thus, the structures at high and low Na+ concentrations represent the outward-facing occluded and partially open states, respectively. RESULTS 24 28 high protein_state Thus, the structures at high and low Na+ concentrations represent the outward-facing occluded and partially open states, respectively. RESULTS 33 36 low protein_state Thus, the structures at high and low Na+ concentrations represent the outward-facing occluded and partially open states, respectively. RESULTS 37 40 Na+ chemical Thus, the structures at high and low Na+ concentrations represent the outward-facing occluded and partially open states, respectively. RESULTS 70 84 outward-facing protein_state Thus, the structures at high and low Na+ concentrations represent the outward-facing occluded and partially open states, respectively. RESULTS 85 93 occluded protein_state Thus, the structures at high and low Na+ concentrations represent the outward-facing occluded and partially open states, respectively. RESULTS 98 112 partially open protein_state Thus, the structures at high and low Na+ concentrations represent the outward-facing occluded and partially open states, respectively. RESULTS 47 50 Na+ chemical This conformational change is dependent on the Na+ occupancy of Sext and occurs when Na+ already occupies Sint and SCa. RESULTS 64 68 Sext site This conformational change is dependent on the Na+ occupancy of Sext and occurs when Na+ already occupies Sint and SCa. RESULTS 85 88 Na+ chemical This conformational change is dependent on the Na+ occupancy of Sext and occurs when Na+ already occupies Sint and SCa. RESULTS 106 110 Sint site This conformational change is dependent on the Na+ occupancy of Sext and occurs when Na+ already occupies Sint and SCa. RESULTS 115 118 SCa site This conformational change is dependent on the Na+ occupancy of Sext and occurs when Na+ already occupies Sint and SCa. RESULTS 4 41 crystallographic titration experiment experimental_method Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 61 65 K1/2 evidence Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 74 77 Na+ chemical Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 145 149 Sext site Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 153 171 partially occupied protein_state Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 180 186 NCX_Mj protein Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 187 194 crystal evidence Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 220 228 occluded protein_state Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 233 247 partially open protein_state Our crystallographic titration experiment indicates that the K1/2 of this Na+-driven conformational transition is ~20 mM. At this concentration, Sext is partially occupied and the NCX_Mj crystal is a mixture of both the occluded and partially open conformations. RESULTS 26 38 Na+ affinity evidence This structurally-derived Na+ affinity agrees well with the external Na+ concentration required for NCX activation in eukaryotes. RESULTS 69 72 Na+ chemical This structurally-derived Na+ affinity agrees well with the external Na+ concentration required for NCX activation in eukaryotes. RESULTS 100 103 NCX protein_type This structurally-derived Na+ affinity agrees well with the external Na+ concentration required for NCX activation in eukaryotes. RESULTS 118 128 eukaryotes taxonomy_domain This structurally-derived Na+ affinity agrees well with the external Na+ concentration required for NCX activation in eukaryotes. RESULTS 21 24 Na+ chemical The finding that the Na+ occupancy change from 2 to 3 ions coincides with a conformational change of the transporter also provides a rationale to the Hill coefficient of the Na+-dependent activation process in eukaryotic NCX. RESULTS 105 116 transporter protein_type The finding that the Na+ occupancy change from 2 to 3 ions coincides with a conformational change of the transporter also provides a rationale to the Hill coefficient of the Na+-dependent activation process in eukaryotic NCX. RESULTS 150 166 Hill coefficient evidence The finding that the Na+ occupancy change from 2 to 3 ions coincides with a conformational change of the transporter also provides a rationale to the Hill coefficient of the Na+-dependent activation process in eukaryotic NCX. RESULTS 174 177 Na+ chemical The finding that the Na+ occupancy change from 2 to 3 ions coincides with a conformational change of the transporter also provides a rationale to the Hill coefficient of the Na+-dependent activation process in eukaryotic NCX. RESULTS 210 220 eukaryotic taxonomy_domain The finding that the Na+ occupancy change from 2 to 3 ions coincides with a conformational change of the transporter also provides a rationale to the Hill coefficient of the Na+-dependent activation process in eukaryotic NCX. RESULTS 221 224 NCX protein_type The finding that the Na+ occupancy change from 2 to 3 ions coincides with a conformational change of the transporter also provides a rationale to the Hill coefficient of the Na+-dependent activation process in eukaryotic NCX. RESULTS 14 18 Ca2+ chemical Extracellular Ca2+ and Sr2+ binding and their competition with Na+ RESULTS 23 27 Sr2+ chemical Extracellular Ca2+ and Sr2+ binding and their competition with Na+ RESULTS 63 66 Na+ chemical Extracellular Ca2+ and Sr2+ binding and their competition with Na+ RESULTS 17 21 Ca2+ chemical To determine how Ca2+ binds to NCX_Mj and competes with Na+, we first titrated the crystals with Sr2+ (Methods). RESULTS 31 37 NCX_Mj protein To determine how Ca2+ binds to NCX_Mj and competes with Na+, we first titrated the crystals with Sr2+ (Methods). RESULTS 56 59 Na+ chemical To determine how Ca2+ binds to NCX_Mj and competes with Na+, we first titrated the crystals with Sr2+ (Methods). RESULTS 70 91 titrated the crystals experimental_method To determine how Ca2+ binds to NCX_Mj and competes with Na+, we first titrated the crystals with Sr2+ (Methods). RESULTS 97 101 Sr2+ chemical To determine how Ca2+ binds to NCX_Mj and competes with Na+, we first titrated the crystals with Sr2+ (Methods). RESULTS 0 4 Sr2+ chemical Sr2+ is transported by NCX similarly to Ca2+ , and is distinguishable from Na+ by its greater electron-density intensity. RESULTS 23 26 NCX protein_type Sr2+ is transported by NCX similarly to Ca2+ , and is distinguishable from Na+ by its greater electron-density intensity. RESULTS 40 44 Ca2+ chemical Sr2+ is transported by NCX similarly to Ca2+ , and is distinguishable from Na+ by its greater electron-density intensity. RESULTS 75 78 Na+ chemical Sr2+ is transported by NCX similarly to Ca2+ , and is distinguishable from Na+ by its greater electron-density intensity. RESULTS 94 120 electron-density intensity evidence Sr2+ is transported by NCX similarly to Ca2+ , and is distinguishable from Na+ by its greater electron-density intensity. RESULTS 0 23 Protein crystals soaked experimental_method Protein crystals soaked with 10 mM Sr2+ and 2.5 mM Na+ revealed a strong electron-density peak at site SCa, indicating binding of a single Sr2+ ion (Fig. 3a). RESULTS 35 39 Sr2+ chemical Protein crystals soaked with 10 mM Sr2+ and 2.5 mM Na+ revealed a strong electron-density peak at site SCa, indicating binding of a single Sr2+ ion (Fig. 3a). RESULTS 51 54 Na+ chemical Protein crystals soaked with 10 mM Sr2+ and 2.5 mM Na+ revealed a strong electron-density peak at site SCa, indicating binding of a single Sr2+ ion (Fig. 3a). RESULTS 73 94 electron-density peak evidence Protein crystals soaked with 10 mM Sr2+ and 2.5 mM Na+ revealed a strong electron-density peak at site SCa, indicating binding of a single Sr2+ ion (Fig. 3a). RESULTS 103 106 SCa site Protein crystals soaked with 10 mM Sr2+ and 2.5 mM Na+ revealed a strong electron-density peak at site SCa, indicating binding of a single Sr2+ ion (Fig. 3a). RESULTS 139 143 Sr2+ chemical Protein crystals soaked with 10 mM Sr2+ and 2.5 mM Na+ revealed a strong electron-density peak at site SCa, indicating binding of a single Sr2+ ion (Fig. 3a). RESULTS 4 15 Sr2+-loaded protein_state The Sr2+-loaded NCX_Mj structure adopts the partially open conformation observed at low Na+ concentrations. RESULTS 16 22 NCX_Mj protein The Sr2+-loaded NCX_Mj structure adopts the partially open conformation observed at low Na+ concentrations. RESULTS 23 32 structure evidence The Sr2+-loaded NCX_Mj structure adopts the partially open conformation observed at low Na+ concentrations. RESULTS 44 58 partially open protein_state The Sr2+-loaded NCX_Mj structure adopts the partially open conformation observed at low Na+ concentrations. RESULTS 88 91 Na+ chemical The Sr2+-loaded NCX_Mj structure adopts the partially open conformation observed at low Na+ concentrations. RESULTS 11 15 Sr2+ chemical Binding of Sr2+, however, excludes Na+ entirely. RESULTS 35 38 Na+ chemical Binding of Sr2+, however, excludes Na+ entirely. RESULTS 0 18 Crystal titrations experimental_method Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 24 34 decreasing experimental_method Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 35 39 Sr2+ chemical Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 43 53 increasing experimental_method Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 54 57 Na+ chemical Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 76 80 Sr2+ chemical Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 94 108 outward-facing protein_state Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 109 115 NCX_Mj protein Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 170 173 Na+ chemical Crystal titrations with decreasing Sr2+ or increasing Na+ demonstrated that Sr2+ binds to the outward-facing NCX_Mj with low affinity, and that it can be out-competed by Na+ even at low concentrations (Supplementary Note 1 and Supplementary Fig. 2a-b). RESULTS 16 19 Na+ chemical Thus, in 100 mM Na+ and 10 mM Sr2+, Na+ completely replaced Sr2+ (Fig. 3a) and reverted NCX_Mj to the Na+-loaded, fully occluded state. RESULTS 30 34 Sr2+ chemical Thus, in 100 mM Na+ and 10 mM Sr2+, Na+ completely replaced Sr2+ (Fig. 3a) and reverted NCX_Mj to the Na+-loaded, fully occluded state. RESULTS 36 39 Na+ chemical Thus, in 100 mM Na+ and 10 mM Sr2+, Na+ completely replaced Sr2+ (Fig. 3a) and reverted NCX_Mj to the Na+-loaded, fully occluded state. RESULTS 60 64 Sr2+ chemical Thus, in 100 mM Na+ and 10 mM Sr2+, Na+ completely replaced Sr2+ (Fig. 3a) and reverted NCX_Mj to the Na+-loaded, fully occluded state. RESULTS 88 94 NCX_Mj protein Thus, in 100 mM Na+ and 10 mM Sr2+, Na+ completely replaced Sr2+ (Fig. 3a) and reverted NCX_Mj to the Na+-loaded, fully occluded state. RESULTS 102 112 Na+-loaded protein_state Thus, in 100 mM Na+ and 10 mM Sr2+, Na+ completely replaced Sr2+ (Fig. 3a) and reverted NCX_Mj to the Na+-loaded, fully occluded state. RESULTS 114 128 fully occluded protein_state Thus, in 100 mM Na+ and 10 mM Sr2+, Na+ completely replaced Sr2+ (Fig. 3a) and reverted NCX_Mj to the Na+-loaded, fully occluded state. RESULTS 8 29 titration experiments experimental_method Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 42 46 Ca2+ chemical Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 51 55 Sr2+ chemical Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 67 73 NCX_Mj protein Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 100 129 electron density distribution evidence Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 135 153 crystals soaked in experimental_method Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 154 158 high protein_state Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 159 163 Ca2+ chemical Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 168 171 low protein_state Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 172 175 Na+ chemical Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 192 196 Ca2+ chemical Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 209 213 Smid site Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 225 228 SCa site Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 252 255 SCa site Similar titration experiments showed that Ca2+ and Sr2+ binding to NCX_Mj are not exactly alike The electron density distribution from crystals soaked in high Ca2+ and low Na+, indicates that Ca2+ can bind to Smid as well as SCa, with a preference for SCa (Fig. 3b). RESULTS 11 15 Ca2+ chemical Binding of Ca2+ to both sites simultaneously is highly improbable due to their close proximity, and at least one water molecule can be discerned coordinating the ion (Fig. 3b). RESULTS 113 118 water chemical Binding of Ca2+ to both sites simultaneously is highly improbable due to their close proximity, and at least one water molecule can be discerned coordinating the ion (Fig. 3b). RESULTS 145 157 coordinating bond_interaction Binding of Ca2+ to both sites simultaneously is highly improbable due to their close proximity, and at least one water molecule can be discerned coordinating the ion (Fig. 3b). RESULTS 4 11 partial protein_state The partial Ca2+ occupancy at Smid is likely caused by Asp240, which flanks this site and can in principle coordinate Ca2+. RESULTS 12 16 Ca2+ chemical The partial Ca2+ occupancy at Smid is likely caused by Asp240, which flanks this site and can in principle coordinate Ca2+. RESULTS 17 26 occupancy protein_state The partial Ca2+ occupancy at Smid is likely caused by Asp240, which flanks this site and can in principle coordinate Ca2+. RESULTS 30 34 Smid site The partial Ca2+ occupancy at Smid is likely caused by Asp240, which flanks this site and can in principle coordinate Ca2+. RESULTS 55 61 Asp240 residue_name_number The partial Ca2+ occupancy at Smid is likely caused by Asp240, which flanks this site and can in principle coordinate Ca2+. RESULTS 107 117 coordinate bond_interaction The partial Ca2+ occupancy at Smid is likely caused by Asp240, which flanks this site and can in principle coordinate Ca2+. RESULTS 118 122 Ca2+ chemical The partial Ca2+ occupancy at Smid is likely caused by Asp240, which flanks this site and can in principle coordinate Ca2+. RESULTS 9 45 functional and computational studies experimental_method Previous functional and computational studies, however, indicate Asp240 becomes protonated during transport. RESULTS 65 71 Asp240 residue_name_number Previous functional and computational studies, however, indicate Asp240 becomes protonated during transport. RESULTS 80 90 protonated protein_state Previous functional and computational studies, however, indicate Asp240 becomes protonated during transport. RESULTS 16 19 NCX protein_type Indeed, in most NCX proteins Asp240 is substituted by Asn, which would likely weaken or abrogate Ca2+ binding to Smid. RESULTS 29 35 Asp240 residue_name_number Indeed, in most NCX proteins Asp240 is substituted by Asn, which would likely weaken or abrogate Ca2+ binding to Smid. RESULTS 39 50 substituted experimental_method Indeed, in most NCX proteins Asp240 is substituted by Asn, which would likely weaken or abrogate Ca2+ binding to Smid. RESULTS 54 57 Asn residue_name Indeed, in most NCX proteins Asp240 is substituted by Asn, which would likely weaken or abrogate Ca2+ binding to Smid. RESULTS 97 101 Ca2+ chemical Indeed, in most NCX proteins Asp240 is substituted by Asn, which would likely weaken or abrogate Ca2+ binding to Smid. RESULTS 113 117 Smid site Indeed, in most NCX proteins Asp240 is substituted by Asn, which would likely weaken or abrogate Ca2+ binding to Smid. RESULTS 0 3 SCa site SCa is therefore the functional Ca2+ site. RESULTS 32 41 Ca2+ site site SCa is therefore the functional Ca2+ site. RESULTS 13 17 Sr2+ chemical Similarly to Sr2+, Ca2+ binds with low affinity to outward-facing NCX_Mj and can be readily displaced by Na+ (Supplementary Note 1 and Supplementary Fig. 2c). RESULTS 19 23 Ca2+ chemical Similarly to Sr2+, Ca2+ binds with low affinity to outward-facing NCX_Mj and can be readily displaced by Na+ (Supplementary Note 1 and Supplementary Fig. 2c). RESULTS 39 47 affinity evidence Similarly to Sr2+, Ca2+ binds with low affinity to outward-facing NCX_Mj and can be readily displaced by Na+ (Supplementary Note 1 and Supplementary Fig. 2c). RESULTS 51 65 outward-facing protein_state Similarly to Sr2+, Ca2+ binds with low affinity to outward-facing NCX_Mj and can be readily displaced by Na+ (Supplementary Note 1 and Supplementary Fig. 2c). RESULTS 66 72 NCX_Mj protein Similarly to Sr2+, Ca2+ binds with low affinity to outward-facing NCX_Mj and can be readily displaced by Na+ (Supplementary Note 1 and Supplementary Fig. 2c). RESULTS 105 108 Na+ chemical Similarly to Sr2+, Ca2+ binds with low affinity to outward-facing NCX_Mj and can be readily displaced by Na+ (Supplementary Note 1 and Supplementary Fig. 2c). RESULTS 32 66 physiological and biochemical data evidence This finding is consistent with physiological and biochemical data for both eukaryotic NCX and NCX_Mj indicating that the apparent Ca2+ affinity is much lower on the extracellular than the cytoplasmic side. RESULTS 76 86 eukaryotic taxonomy_domain This finding is consistent with physiological and biochemical data for both eukaryotic NCX and NCX_Mj indicating that the apparent Ca2+ affinity is much lower on the extracellular than the cytoplasmic side. RESULTS 87 90 NCX protein_type This finding is consistent with physiological and biochemical data for both eukaryotic NCX and NCX_Mj indicating that the apparent Ca2+ affinity is much lower on the extracellular than the cytoplasmic side. RESULTS 95 101 NCX_Mj protein This finding is consistent with physiological and biochemical data for both eukaryotic NCX and NCX_Mj indicating that the apparent Ca2+ affinity is much lower on the extracellular than the cytoplasmic side. RESULTS 131 144 Ca2+ affinity evidence This finding is consistent with physiological and biochemical data for both eukaryotic NCX and NCX_Mj indicating that the apparent Ca2+ affinity is much lower on the extracellular than the cytoplasmic side. RESULTS 18 50 crystallographic titration assay experimental_method Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 61 65 Ca2+ chemical Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 92 100 affinity evidence Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 147 162 Ca2+ affinities evidence Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 196 199 NCX protein_type Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 201 203 Km evidence Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 219 225 NCX_Mj protein Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 227 229 Km evidence Specifically, our crystallographic titration assay indicates Ca2+ binds with sub-millimolar affinity, in good agreement with the external apparent Ca2+ affinities deduced functionally for cardiac NCX (Km ~ 0.32 mM) and NCX_Mj (Km ~ 0.175 mM). RESULTS 22 51 crystal titration experiments experimental_method Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 78 91 binding sites site Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 95 109 outward-facing protein_state Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 110 116 NCX_Mj protein Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 148 152 Sint site Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 157 161 Sext site Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 166 169 Na+ chemical Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 187 190 SCa site Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 222 226 Ca2+ chemical Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 251 254 Na+ chemical Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 279 289 simulation experimental_method Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 308 312 Sr2+ chemical Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 314 318 Smid site Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 352 356 Ca2+ chemical Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 378 382 Smid site Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 410 415 water chemical Taken together, these crystal titration experiments demonstrate that the four binding sites in outward-facing NCX_Mj exhibit different specificity: Sint and Sext are Na+ specific whereas SCa, previously hypothesized to be Ca2+ specific, can also bind Na+, confirming our earlier simulation study, as well as Sr2+; Smid can also transiently accommodate Ca2+ but during transport Smid is most likely occupied by water. RESULTS 4 21 ion-binding sites site The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 25 31 NCX_Mj protein The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 70 73 Na+ chemical The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 122 125 Na+ chemical The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 130 134 Ca2+ chemical The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 139 143 Sr2+ chemical The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 188 198 eukaryotic taxonomy_domain The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 199 209 exchangers protein_type The ion-binding sites in NCX_Mj can therefore accommodate up to three Na+ ions or a single divalent ion, and occupancy by Na+ and Ca2+ (or Sr2+) are mutually exclusive, as was deduced for eukaryotic exchangers. RESULTS 2 11 structure evidence A structure of NCX_Mj without Na+ or Ca2+ bound RESULTS 15 21 NCX_Mj protein A structure of NCX_Mj without Na+ or Ca2+ bound RESULTS 22 29 without protein_state A structure of NCX_Mj without Na+ or Ca2+ bound RESULTS 30 33 Na+ chemical A structure of NCX_Mj without Na+ or Ca2+ bound RESULTS 37 41 Ca2+ chemical A structure of NCX_Mj without Na+ or Ca2+ bound RESULTS 42 47 bound protein_state A structure of NCX_Mj without Na+ or Ca2+ bound RESULTS 3 6 apo protein_state An apo state of outward-facing NCX_Mj is likely to exist transiently in physiological conditions, despite the high amounts of extracellular Na+ (~150 mM) and Ca2+ (~2 mM). RESULTS 16 30 outward-facing protein_state An apo state of outward-facing NCX_Mj is likely to exist transiently in physiological conditions, despite the high amounts of extracellular Na+ (~150 mM) and Ca2+ (~2 mM). RESULTS 31 37 NCX_Mj protein An apo state of outward-facing NCX_Mj is likely to exist transiently in physiological conditions, despite the high amounts of extracellular Na+ (~150 mM) and Ca2+ (~2 mM). RESULTS 140 143 Na+ chemical An apo state of outward-facing NCX_Mj is likely to exist transiently in physiological conditions, despite the high amounts of extracellular Na+ (~150 mM) and Ca2+ (~2 mM). RESULTS 158 162 Ca2+ chemical An apo state of outward-facing NCX_Mj is likely to exist transiently in physiological conditions, despite the high amounts of extracellular Na+ (~150 mM) and Ca2+ (~2 mM). RESULTS 29 32 apo protein_state We were able to determine an apo-state structure of NCX_Mj, by crystallizing the protein at lower pH and in the absence of Na+ (Methods). RESULTS 39 48 structure evidence We were able to determine an apo-state structure of NCX_Mj, by crystallizing the protein at lower pH and in the absence of Na+ (Methods). RESULTS 52 58 NCX_Mj protein We were able to determine an apo-state structure of NCX_Mj, by crystallizing the protein at lower pH and in the absence of Na+ (Methods). RESULTS 63 76 crystallizing experimental_method We were able to determine an apo-state structure of NCX_Mj, by crystallizing the protein at lower pH and in the absence of Na+ (Methods). RESULTS 92 100 lower pH protein_state We were able to determine an apo-state structure of NCX_Mj, by crystallizing the protein at lower pH and in the absence of Na+ (Methods). RESULTS 112 122 absence of protein_state We were able to determine an apo-state structure of NCX_Mj, by crystallizing the protein at lower pH and in the absence of Na+ (Methods). RESULTS 123 126 Na+ chemical We were able to determine an apo-state structure of NCX_Mj, by crystallizing the protein at lower pH and in the absence of Na+ (Methods). RESULTS 5 14 structure evidence This structure is similar to the partially open structure with two Na+ or either one Ca2+ or one Sr2+ ion, with two noticeable differences. RESULTS 33 47 partially open protein_state This structure is similar to the partially open structure with two Na+ or either one Ca2+ or one Sr2+ ion, with two noticeable differences. RESULTS 48 57 structure evidence This structure is similar to the partially open structure with two Na+ or either one Ca2+ or one Sr2+ ion, with two noticeable differences. RESULTS 67 70 Na+ chemical This structure is similar to the partially open structure with two Na+ or either one Ca2+ or one Sr2+ ion, with two noticeable differences. RESULTS 85 89 Ca2+ chemical This structure is similar to the partially open structure with two Na+ or either one Ca2+ or one Sr2+ ion, with two noticeable differences. RESULTS 97 101 Sr2+ chemical This structure is similar to the partially open structure with two Na+ or either one Ca2+ or one Sr2+ ion, with two noticeable differences. RESULTS 7 12 TM7ab structure_element First, TM7ab along with the extracellular half of the TM6 and TM1 swing further away from the protein core (Fig. 3c), resulting in a slightly wider passageway into the binding sites. RESULTS 28 46 extracellular half structure_element First, TM7ab along with the extracellular half of the TM6 and TM1 swing further away from the protein core (Fig. 3c), resulting in a slightly wider passageway into the binding sites. RESULTS 54 57 TM6 structure_element First, TM7ab along with the extracellular half of the TM6 and TM1 swing further away from the protein core (Fig. 3c), resulting in a slightly wider passageway into the binding sites. RESULTS 62 65 TM1 structure_element First, TM7ab along with the extracellular half of the TM6 and TM1 swing further away from the protein core (Fig. 3c), resulting in a slightly wider passageway into the binding sites. RESULTS 168 181 binding sites site First, TM7ab along with the extracellular half of the TM6 and TM1 swing further away from the protein core (Fig. 3c), resulting in a slightly wider passageway into the binding sites. RESULTS 8 13 Glu54 residue_name_number Second, Glu54 and Glu213 side chains rotate away from the binding sites and appear to form hydrogen-bonds with residues involved in ion coordination in the fully Na+-loaded structure (Fig. 3d). RESULTS 18 24 Glu213 residue_name_number Second, Glu54 and Glu213 side chains rotate away from the binding sites and appear to form hydrogen-bonds with residues involved in ion coordination in the fully Na+-loaded structure (Fig. 3d). RESULTS 58 71 binding sites site Second, Glu54 and Glu213 side chains rotate away from the binding sites and appear to form hydrogen-bonds with residues involved in ion coordination in the fully Na+-loaded structure (Fig. 3d). RESULTS 91 105 hydrogen-bonds bond_interaction Second, Glu54 and Glu213 side chains rotate away from the binding sites and appear to form hydrogen-bonds with residues involved in ion coordination in the fully Na+-loaded structure (Fig. 3d). RESULTS 132 148 ion coordination bond_interaction Second, Glu54 and Glu213 side chains rotate away from the binding sites and appear to form hydrogen-bonds with residues involved in ion coordination in the fully Na+-loaded structure (Fig. 3d). RESULTS 156 172 fully Na+-loaded protein_state Second, Glu54 and Glu213 side chains rotate away from the binding sites and appear to form hydrogen-bonds with residues involved in ion coordination in the fully Na+-loaded structure (Fig. 3d). RESULTS 173 182 structure evidence Second, Glu54 and Glu213 side chains rotate away from the binding sites and appear to form hydrogen-bonds with residues involved in ion coordination in the fully Na+-loaded structure (Fig. 3d). RESULTS 13 26 binding sites site Although the binding sites are thus fully accessible to the external solution (Fig. 3e), the lack of electron density therein indicates no ions or ordered solvent molecules. RESULTS 36 52 fully accessible protein_state Although the binding sites are thus fully accessible to the external solution (Fig. 3e), the lack of electron density therein indicates no ions or ordered solvent molecules. RESULTS 101 117 electron density evidence Although the binding sites are thus fully accessible to the external solution (Fig. 3e), the lack of electron density therein indicates no ions or ordered solvent molecules. RESULTS 5 8 apo protein_state This apo structure might therefore represent the unloaded, open state of outward-facing NCX_Mj. RESULTS 9 18 structure evidence This apo structure might therefore represent the unloaded, open state of outward-facing NCX_Mj. RESULTS 49 57 unloaded protein_state This apo structure might therefore represent the unloaded, open state of outward-facing NCX_Mj. RESULTS 59 63 open protein_state This apo structure might therefore represent the unloaded, open state of outward-facing NCX_Mj. RESULTS 73 87 outward-facing protein_state This apo structure might therefore represent the unloaded, open state of outward-facing NCX_Mj. RESULTS 88 94 NCX_Mj protein This apo structure might therefore represent the unloaded, open state of outward-facing NCX_Mj. RESULTS 20 29 structure evidence Alternatively, this structure might capture a fully protonated state of the transporter, to which Na+ and Ca2+ cannot bind. RESULTS 46 62 fully protonated protein_state Alternatively, this structure might capture a fully protonated state of the transporter, to which Na+ and Ca2+ cannot bind. RESULTS 76 87 transporter protein_type Alternatively, this structure might capture a fully protonated state of the transporter, to which Na+ and Ca2+ cannot bind. RESULTS 98 101 Na+ chemical Alternatively, this structure might capture a fully protonated state of the transporter, to which Na+ and Ca2+ cannot bind. RESULTS 106 110 Ca2+ chemical Alternatively, this structure might capture a fully protonated state of the transporter, to which Na+ and Ca2+ cannot bind. RESULTS 49 69 computer simulations experimental_method Such interpretation would be consistent with the computer simulations reported below. RESULTS 8 24 transport assays experimental_method Indeed, transport assays of NCX_Mj have shown that even in the presence of Na+ or Ca2+, low pH inactivates the transport cycle. RESULTS 28 34 NCX_Mj protein Indeed, transport assays of NCX_Mj have shown that even in the presence of Na+ or Ca2+, low pH inactivates the transport cycle. RESULTS 63 74 presence of protein_state Indeed, transport assays of NCX_Mj have shown that even in the presence of Na+ or Ca2+, low pH inactivates the transport cycle. RESULTS 75 78 Na+ chemical Indeed, transport assays of NCX_Mj have shown that even in the presence of Na+ or Ca2+, low pH inactivates the transport cycle. RESULTS 82 86 Ca2+ chemical Indeed, transport assays of NCX_Mj have shown that even in the presence of Na+ or Ca2+, low pH inactivates the transport cycle. RESULTS 88 94 low pH protein_state Indeed, transport assays of NCX_Mj have shown that even in the presence of Na+ or Ca2+, low pH inactivates the transport cycle. RESULTS 95 106 inactivates protein_state Indeed, transport assays of NCX_Mj have shown that even in the presence of Na+ or Ca2+, low pH inactivates the transport cycle. RESULTS 54 60 NCX_Mj protein Ion occupancy determines the free-energy landscape of NCX_Mj RESULTS 5 34 secondary-active transporters protein_type That secondary-active transporters are able to harness an electrochemical gradient of one substrate to power the uphill transport of another relies on a seemingly simple principle: they must not transition between outward- and inward-open conformations unless in two precise substrate occupancy states. RESULTS 214 222 outward- protein_state That secondary-active transporters are able to harness an electrochemical gradient of one substrate to power the uphill transport of another relies on a seemingly simple principle: they must not transition between outward- and inward-open conformations unless in two precise substrate occupancy states. RESULTS 227 238 inward-open protein_state That secondary-active transporters are able to harness an electrochemical gradient of one substrate to power the uphill transport of another relies on a seemingly simple principle: they must not transition between outward- and inward-open conformations unless in two precise substrate occupancy states. RESULTS 0 3 NCX protein_type NCX must be loaded either with 3 Na+ or 1 Ca2+, and therefore functions as an antiporter; symporters, by contrast, undergo the alternating-access transition only when all substrates and coupling ions are concurrently bound, or in the apo state. RESULTS 33 36 Na+ chemical NCX must be loaded either with 3 Na+ or 1 Ca2+, and therefore functions as an antiporter; symporters, by contrast, undergo the alternating-access transition only when all substrates and coupling ions are concurrently bound, or in the apo state. RESULTS 42 46 Ca2+ chemical NCX must be loaded either with 3 Na+ or 1 Ca2+, and therefore functions as an antiporter; symporters, by contrast, undergo the alternating-access transition only when all substrates and coupling ions are concurrently bound, or in the apo state. RESULTS 78 88 antiporter protein_type NCX must be loaded either with 3 Na+ or 1 Ca2+, and therefore functions as an antiporter; symporters, by contrast, undergo the alternating-access transition only when all substrates and coupling ions are concurrently bound, or in the apo state. RESULTS 90 100 symporters protein_type NCX must be loaded either with 3 Na+ or 1 Ca2+, and therefore functions as an antiporter; symporters, by contrast, undergo the alternating-access transition only when all substrates and coupling ions are concurrently bound, or in the apo state. RESULTS 217 222 bound protein_state NCX must be loaded either with 3 Na+ or 1 Ca2+, and therefore functions as an antiporter; symporters, by contrast, undergo the alternating-access transition only when all substrates and coupling ions are concurrently bound, or in the apo state. RESULTS 234 237 apo protein_state NCX must be loaded either with 3 Na+ or 1 Ca2+, and therefore functions as an antiporter; symporters, by contrast, undergo the alternating-access transition only when all substrates and coupling ions are concurrently bound, or in the apo state. RESULTS 64 100 conformational free-energy landscape evidence To examine this central question, we sought to characterize the conformational free-energy landscape of NCX_Mj and to examine its dependence on the ion-occupancy state, using molecular dynamics (MD) simulations. RESULTS 104 110 NCX_Mj protein To examine this central question, we sought to characterize the conformational free-energy landscape of NCX_Mj and to examine its dependence on the ion-occupancy state, using molecular dynamics (MD) simulations. RESULTS 175 193 molecular dynamics experimental_method To examine this central question, we sought to characterize the conformational free-energy landscape of NCX_Mj and to examine its dependence on the ion-occupancy state, using molecular dynamics (MD) simulations. RESULTS 195 197 MD experimental_method To examine this central question, we sought to characterize the conformational free-energy landscape of NCX_Mj and to examine its dependence on the ion-occupancy state, using molecular dynamics (MD) simulations. RESULTS 199 210 simulations experimental_method To examine this central question, we sought to characterize the conformational free-energy landscape of NCX_Mj and to examine its dependence on the ion-occupancy state, using molecular dynamics (MD) simulations. RESULTS 62 71 structure evidence This computational analysis was based solely on the published structure of NCX_Mj, independently of the crystallographic studies described above. RESULTS 75 81 NCX_Mj protein This computational analysis was based solely on the published structure of NCX_Mj, independently of the crystallographic studies described above. RESULTS 104 128 crystallographic studies experimental_method This computational analysis was based solely on the published structure of NCX_Mj, independently of the crystallographic studies described above. RESULTS 44 54 structures evidence As it happens, the results confirm that the structures now available are representing interconverting states of the functional cycle of NCX_Mj, while revealing how the alternating-access mechanism is controlled by the ion-occupancy state. RESULTS 136 142 NCX_Mj protein As it happens, the results confirm that the structures now available are representing interconverting states of the functional cycle of NCX_Mj, while revealing how the alternating-access mechanism is controlled by the ion-occupancy state. RESULTS 24 38 MD simulations experimental_method A series of exploratory MD simulations was initially carried out to examine what features of the NCX_Mj structure might depend on the ion-binding sites occupancy. RESULTS 97 103 NCX_Mj protein A series of exploratory MD simulations was initially carried out to examine what features of the NCX_Mj structure might depend on the ion-binding sites occupancy. RESULTS 104 113 structure evidence A series of exploratory MD simulations was initially carried out to examine what features of the NCX_Mj structure might depend on the ion-binding sites occupancy. RESULTS 134 151 ion-binding sites site A series of exploratory MD simulations was initially carried out to examine what features of the NCX_Mj structure might depend on the ion-binding sites occupancy. RESULTS 23 32 simulated experimental_method Specifically, we first simulated the outward-occluded form, in the ion configuration we previously predicted, now confirmed by the high-Na+ crystal structure described above (Fig. 1b). RESULTS 37 53 outward-occluded protein_state Specifically, we first simulated the outward-occluded form, in the ion configuration we previously predicted, now confirmed by the high-Na+ crystal structure described above (Fig. 1b). RESULTS 131 139 high-Na+ protein_state Specifically, we first simulated the outward-occluded form, in the ion configuration we previously predicted, now confirmed by the high-Na+ crystal structure described above (Fig. 1b). RESULTS 140 157 crystal structure evidence Specifically, we first simulated the outward-occluded form, in the ion configuration we previously predicted, now confirmed by the high-Na+ crystal structure described above (Fig. 1b). RESULTS 9 12 Na+ chemical That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 25 29 Sext site That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 31 34 SCa site That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 40 44 Sint site That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 52 56 D240 residue_name_number That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 60 70 protonated protein_state That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 77 82 water chemical That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 101 105 Smid site That is, Na+ ions occupy Sext, SCa, and Sint, while D240 is protonated and a water molecule occupies Smid. RESULTS 4 7 Na+ chemical The Na+ ion at Sext was then relocated from the site to the bulk solution (Methods), and this system was then allowed to evolve freely in time. RESULTS 15 19 Sext site The Na+ ion at Sext was then relocated from the site to the bulk solution (Methods), and this system was then allowed to evolve freely in time. RESULTS 4 7 Na+ chemical The Na+ ions at SCa and Sint were displaced subsequently, and an analogous simulation was then carried out. RESULTS 16 19 SCa site The Na+ ions at SCa and Sint were displaced subsequently, and an analogous simulation was then carried out. RESULTS 24 28 Sint site The Na+ ions at SCa and Sint were displaced subsequently, and an analogous simulation was then carried out. RESULTS 75 85 simulation experimental_method The Na+ ions at SCa and Sint were displaced subsequently, and an analogous simulation was then carried out. RESULTS 14 25 simulations experimental_method These initial simulations revealed noticeable changes in the transporter, consistent with those observed in the new crystal structures. RESULTS 61 72 transporter protein_type These initial simulations revealed noticeable changes in the transporter, consistent with those observed in the new crystal structures. RESULTS 116 134 crystal structures evidence These initial simulations revealed noticeable changes in the transporter, consistent with those observed in the new crystal structures. RESULTS 45 48 Na+ chemical The most notable change upon displacement of Na+ from Sext was the straightening of TM7ab (Fig. 4a). RESULTS 54 58 Sext site The most notable change upon displacement of Na+ from Sext was the straightening of TM7ab (Fig. 4a). RESULTS 84 89 TM7ab structure_element The most notable change upon displacement of Na+ from Sext was the straightening of TM7ab (Fig. 4a). RESULTS 7 10 Na+ chemical When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 20 25 bound protein_state When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 27 32 TM7ab structure_element When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 80 99 α-helical fragments structure_element When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 150 164 hydrogen-bonds bond_interaction When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 173 177 F202 residue_name_number When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 182 186 A206 residue_name_number When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 192 196 T203 residue_name_number When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 201 205 F207 residue_name_number When 3 Na+ ions are bound, TM7ab primarily folds as two distinct, non-collinear α-helical fragments, owing to the loss of the backbone carbonyl-amide hydrogen-bonds between F202 and A206, and T203 and F207 (Fig. 4b). RESULTS 25 29 Sext site This distortion occludes Sext from the exterior (Fig. 4d, 4h-i) and appears to be induced by the Na+ ion itself, which pulls the carbonyl group of A206 into its coordination sphere (Fig. 4g). RESULTS 97 100 Na+ chemical This distortion occludes Sext from the exterior (Fig. 4d, 4h-i) and appears to be induced by the Na+ ion itself, which pulls the carbonyl group of A206 into its coordination sphere (Fig. 4g). RESULTS 147 151 A206 residue_name_number This distortion occludes Sext from the exterior (Fig. 4d, 4h-i) and appears to be induced by the Na+ ion itself, which pulls the carbonyl group of A206 into its coordination sphere (Fig. 4g). RESULTS 5 9 Sext site With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 10 15 empty protein_state With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 26 31 TM7ab structure_element With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 50 57 α-helix structure_element With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 111 114 TM3 structure_element With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 119 122 TM7 structure_element With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 145 150 water chemical With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 202 206 Sext site With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 233 244 transporter protein_type With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 248 266 no longer occluded protein_state With Sext empty, however, TM7ab forms a canonical α-helix (Fig. 4a-b, 4g), thereby creating an opening between TM3 and TM7, which in turn allows water molecules from the external solution to reach into Sext (Fig. 4e, 4h-i), i.e. the transporter is no longer occluded. RESULTS 16 19 Na+ chemical Displacement of Na+ from SCa and Sint induces further changes (Fig. 4c). RESULTS 25 28 SCa site Displacement of Na+ from SCa and Sint induces further changes (Fig. 4c). RESULTS 33 37 Sint site Displacement of Na+ from SCa and Sint induces further changes (Fig. 4c). RESULTS 55 58 TM7 structure_element The most noticeable is an increased separation between TM7 and TM2 (Fig. 4f), previously brought together by concurrent backbone interactions with the Na+ ion at SCa (Fig. 4d-e). RESULTS 63 66 TM2 structure_element The most noticeable is an increased separation between TM7 and TM2 (Fig. 4f), previously brought together by concurrent backbone interactions with the Na+ ion at SCa (Fig. 4d-e). RESULTS 151 154 Na+ chemical The most noticeable is an increased separation between TM7 and TM2 (Fig. 4f), previously brought together by concurrent backbone interactions with the Na+ ion at SCa (Fig. 4d-e). RESULTS 162 165 SCa site The most noticeable is an increased separation between TM7 and TM2 (Fig. 4f), previously brought together by concurrent backbone interactions with the Na+ ion at SCa (Fig. 4d-e). RESULTS 0 3 TM1 structure_element TM1 and TM6 also slide further towards the membrane center, relative to the outward-occluded state (Fig. 4c). RESULTS 8 11 TM6 structure_element TM1 and TM6 also slide further towards the membrane center, relative to the outward-occluded state (Fig. 4c). RESULTS 76 92 outward-occluded protein_state TM1 and TM6 also slide further towards the membrane center, relative to the outward-occluded state (Fig. 4c). RESULTS 38 53 aqueous channel site Together, these changes open a second aqueous channel leading directly into SCa and Sint (Fig. 4f, Fig. 4h-i). RESULTS 76 79 SCa site Together, these changes open a second aqueous channel leading directly into SCa and Sint (Fig. 4f, Fig. 4h-i). RESULTS 84 88 Sint site Together, these changes open a second aqueous channel leading directly into SCa and Sint (Fig. 4f, Fig. 4h-i). RESULTS 4 15 transporter protein_type The transporter thus becomes fully outward-open. RESULTS 29 47 fully outward-open protein_state The transporter thus becomes fully outward-open. RESULTS 111 120 exchanger protein_type To more rigorously characterize the influence of the ion-occupancy state on the conformational dynamics of the exchanger, we carried out a series of enhanced-sampling MD calculations designed to reversibly simulate the transition between the outward-occluded and fully outward-open states, and thus quantify the free-energy landscape encompassing these states (Methods). RESULTS 167 182 MD calculations experimental_method To more rigorously characterize the influence of the ion-occupancy state on the conformational dynamics of the exchanger, we carried out a series of enhanced-sampling MD calculations designed to reversibly simulate the transition between the outward-occluded and fully outward-open states, and thus quantify the free-energy landscape encompassing these states (Methods). RESULTS 242 258 outward-occluded protein_state To more rigorously characterize the influence of the ion-occupancy state on the conformational dynamics of the exchanger, we carried out a series of enhanced-sampling MD calculations designed to reversibly simulate the transition between the outward-occluded and fully outward-open states, and thus quantify the free-energy landscape encompassing these states (Methods). RESULTS 263 281 fully outward-open protein_state To more rigorously characterize the influence of the ion-occupancy state on the conformational dynamics of the exchanger, we carried out a series of enhanced-sampling MD calculations designed to reversibly simulate the transition between the outward-occluded and fully outward-open states, and thus quantify the free-energy landscape encompassing these states (Methods). RESULTS 312 333 free-energy landscape evidence To more rigorously characterize the influence of the ion-occupancy state on the conformational dynamics of the exchanger, we carried out a series of enhanced-sampling MD calculations designed to reversibly simulate the transition between the outward-occluded and fully outward-open states, and thus quantify the free-energy landscape encompassing these states (Methods). RESULTS 68 71 Na+ chemical As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 75 79 Sext site As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 81 84 SCa site As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 89 93 Sint site As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 100 103 Na+ chemical As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 112 115 SCa site As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 120 124 Sint site As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 130 137 without protein_state As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 138 141 Na+ chemical As above, we initially examined three occupancy states, namely with Na+ in Sext, SCa and Sint, with Na+ only at SCa and Sint, and without Na+. RESULTS 6 18 calculations experimental_method These calculations demonstrate that the Na+ occupancy state of the transporter has a profound effect on its conformational free-energy landscape. RESULTS 40 43 Na+ chemical These calculations demonstrate that the Na+ occupancy state of the transporter has a profound effect on its conformational free-energy landscape. RESULTS 67 78 transporter protein_type These calculations demonstrate that the Na+ occupancy state of the transporter has a profound effect on its conformational free-energy landscape. RESULTS 108 144 conformational free-energy landscape evidence These calculations demonstrate that the Na+ occupancy state of the transporter has a profound effect on its conformational free-energy landscape. RESULTS 9 18 Na+ sites site When all Na+ sites are occupied, the global free-energy minimum corresponds to a conformation in which the ions are maximally coordinated by the protein (Fig. 5a, 5c); TM7ab is bent and packs closely with TM2 and TM3, and so the binding sites are occluded from the solvent (Fig. 5b). RESULTS 44 63 free-energy minimum evidence When all Na+ sites are occupied, the global free-energy minimum corresponds to a conformation in which the ions are maximally coordinated by the protein (Fig. 5a, 5c); TM7ab is bent and packs closely with TM2 and TM3, and so the binding sites are occluded from the solvent (Fig. 5b). RESULTS 168 173 TM7ab structure_element When all Na+ sites are occupied, the global free-energy minimum corresponds to a conformation in which the ions are maximally coordinated by the protein (Fig. 5a, 5c); TM7ab is bent and packs closely with TM2 and TM3, and so the binding sites are occluded from the solvent (Fig. 5b). RESULTS 205 208 TM2 structure_element When all Na+ sites are occupied, the global free-energy minimum corresponds to a conformation in which the ions are maximally coordinated by the protein (Fig. 5a, 5c); TM7ab is bent and packs closely with TM2 and TM3, and so the binding sites are occluded from the solvent (Fig. 5b). RESULTS 213 216 TM3 structure_element When all Na+ sites are occupied, the global free-energy minimum corresponds to a conformation in which the ions are maximally coordinated by the protein (Fig. 5a, 5c); TM7ab is bent and packs closely with TM2 and TM3, and so the binding sites are occluded from the solvent (Fig. 5b). RESULTS 229 242 binding sites site When all Na+ sites are occupied, the global free-energy minimum corresponds to a conformation in which the ions are maximally coordinated by the protein (Fig. 5a, 5c); TM7ab is bent and packs closely with TM2 and TM3, and so the binding sites are occluded from the solvent (Fig. 5b). RESULTS 40 51 transporter protein_type At a small energetic cost, however, the transporter can adopt a metastable ‘half-open’ conformation in which TM7ab is completely straight and Sext is open to the exterior (Fig. 5a, 5b). RESULTS 64 74 metastable protein_state At a small energetic cost, however, the transporter can adopt a metastable ‘half-open’ conformation in which TM7ab is completely straight and Sext is open to the exterior (Fig. 5a, 5b). RESULTS 76 85 half-open protein_state At a small energetic cost, however, the transporter can adopt a metastable ‘half-open’ conformation in which TM7ab is completely straight and Sext is open to the exterior (Fig. 5a, 5b). RESULTS 109 114 TM7ab structure_element At a small energetic cost, however, the transporter can adopt a metastable ‘half-open’ conformation in which TM7ab is completely straight and Sext is open to the exterior (Fig. 5a, 5b). RESULTS 142 146 Sext site At a small energetic cost, however, the transporter can adopt a metastable ‘half-open’ conformation in which TM7ab is completely straight and Sext is open to the exterior (Fig. 5a, 5b). RESULTS 150 154 open protein_state At a small energetic cost, however, the transporter can adopt a metastable ‘half-open’ conformation in which TM7ab is completely straight and Sext is open to the exterior (Fig. 5a, 5b). RESULTS 4 7 Na+ chemical The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 15 19 Sext site The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 28 45 fully coordinated protein_state The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 62 67 water chemical The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 111 115 A206 residue_name_number The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 147 151 F202 residue_name_number The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 154 158 A206 residue_name_number The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 161 174 hydrogen-bond bond_interaction The Na+ ion at Sext remains fully coordinated, but an ordered water molecule now mediates its interaction with A206:O, relieving the strain on the F202:O–A206:N hydrogen-bond (Fig. 5c). RESULTS 5 14 semi-open protein_state This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 91 94 Na+ chemical This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 109 112 SCa site This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 117 121 Sint site This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 127 130 Na+ chemical This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 185 188 Na+ chemical This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 192 196 Sext site This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 212 222 metastable protein_state This semi-open conformation is nearly identical to that found to be the most probable when Na+ occupies only SCa and Sint (2 × Na+, Fig. 5a), demonstrating that binding (or release) of Na+ to Sext occurs in this metastable conformation. RESULTS 92 107 aqueous channel site Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 141 144 SCa site Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 153 156 TM7 structure_element Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 161 164 TM2 structure_element Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 178 192 gating helices structure_element Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 193 196 TM1 structure_element Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 201 204 TM6 structure_element Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 219 223 open protein_state Interestingly, this doubly occupied state can also access conformations in which the second aqueous channel mentioned above, i.e. leading to SCa between TM7 and TM2 and over the gating helices TM1 and TM6, also becomes open (Fig. 5b-c). RESULTS 23 44 free-energy landscape evidence Crucially, though, the free-energy landscape for this partially occupied state demonstrates that the occluded conformation is no longer energetically feasible (Fig. 5a). RESULTS 54 72 partially occupied protein_state Crucially, though, the free-energy landscape for this partially occupied state demonstrates that the occluded conformation is no longer energetically feasible (Fig. 5a). RESULTS 101 109 occluded protein_state Crucially, though, the free-energy landscape for this partially occupied state demonstrates that the occluded conformation is no longer energetically feasible (Fig. 5a). RESULTS 34 37 Na+ chemical Displacement of the two remaining Na+ ions from SCa and Sint further reshapes the free-energy landscape of the transporter (No ions, Fig. 5a), which now can only adopt a fully open state featuring the two aqueous channels (Fig. 5b-c). RESULTS 48 51 SCa site Displacement of the two remaining Na+ ions from SCa and Sint further reshapes the free-energy landscape of the transporter (No ions, Fig. 5a), which now can only adopt a fully open state featuring the two aqueous channels (Fig. 5b-c). RESULTS 56 60 Sint site Displacement of the two remaining Na+ ions from SCa and Sint further reshapes the free-energy landscape of the transporter (No ions, Fig. 5a), which now can only adopt a fully open state featuring the two aqueous channels (Fig. 5b-c). RESULTS 82 103 free-energy landscape evidence Displacement of the two remaining Na+ ions from SCa and Sint further reshapes the free-energy landscape of the transporter (No ions, Fig. 5a), which now can only adopt a fully open state featuring the two aqueous channels (Fig. 5b-c). RESULTS 111 122 transporter protein_type Displacement of the two remaining Na+ ions from SCa and Sint further reshapes the free-energy landscape of the transporter (No ions, Fig. 5a), which now can only adopt a fully open state featuring the two aqueous channels (Fig. 5b-c). RESULTS 170 180 fully open protein_state Displacement of the two remaining Na+ ions from SCa and Sint further reshapes the free-energy landscape of the transporter (No ions, Fig. 5a), which now can only adopt a fully open state featuring the two aqueous channels (Fig. 5b-c). RESULTS 205 221 aqueous channels site Displacement of the two remaining Na+ ions from SCa and Sint further reshapes the free-energy landscape of the transporter (No ions, Fig. 5a), which now can only adopt a fully open state featuring the two aqueous channels (Fig. 5b-c). RESULTS 22 30 occluded protein_state The transition to the occluded state in this apo state is again energetically unfeasible. RESULTS 45 48 apo protein_state The transition to the occluded state in this apo state is again energetically unfeasible. RESULTS 67 71 open protein_state From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 76 85 semi-open protein_state From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 132 135 Na+ chemical From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 175 178 Na+ chemical From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 287 308 free-energy landscape evidence From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 316 327 transporter protein_type From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 346 354 occluded protein_state From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 392 417 Na+ occupancy is complete protein_state From a mechanistic standpoint, it is satisfying to observe how the open and semi-open states are each compatible with two different Na+ occupancies, explaining how sequential Na+ binding to energetically accessible conformations (prior to those binding events) progressively reshape the free-energy landscape of the transporter; by contrast, the occluded conformation is forbidden unless the Na+ occupancy is complete. RESULTS 41 44 Na+ chemical This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 93 103 Ca2+-bound protein_state This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 144 155 transporter protein_type This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 223 235 outward-open protein_state This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 276 280 Ca2+ chemical This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 295 303 occluded protein_state This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 331 340 semi-open protein_state This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 385 396 inward-open protein_state This processivity is logical since three Na+ ions are involved, but also implies that in the Ca2+-bound state, which includes a single ion, the transporter ought to be able to access all three major conformations, i.e. the outward-open state, in order to release (or re-bind) Ca2+, but also the occluded conformation, and thus the semi-open intermediate, in order to transition to the inward-open state. RESULTS 26 28 H+ chemical By contrast, occupancy by H+, which as mentioned are not transported, might be compatible with a semi-open state as well as with the fully open conformation, but should not be conducive to occlusion. RESULTS 97 106 semi-open protein_state By contrast, occupancy by H+, which as mentioned are not transported, might be compatible with a semi-open state as well as with the fully open conformation, but should not be conducive to occlusion. RESULTS 133 143 fully open protein_state By contrast, occupancy by H+, which as mentioned are not transported, might be compatible with a semi-open state as well as with the fully open conformation, but should not be conducive to occlusion. RESULTS 42 71 enhanced-sampling simulations experimental_method To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 80 84 Ca2+ protein_state To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 89 97 H+-bound protein_state To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 108 122 outward-facing protein_state To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 123 129 NCX_Mj protein To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 169 172 Na+ chemical To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 249 259 structures evidence To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 267 277 Ca2+-bound protein_state To assess this hypothesis, we carried out enhanced-sampling simulations for the Ca2+ and H+-bound states of outward-facing NCX_Mj analogous to those described above for Na+ (see Supplementary Note 2 and Supplementary Fig. 3-4 for details on how the structures of the Ca2+-bound state was predicted). RESULTS 4 14 calculated experimental_method The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 15 36 free-energy landscape evidence The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 41 51 Ca2+-bound protein_state The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 52 58 NCX_Mj protein The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 103 107 Ca2+ chemical The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 149 155 NCX_Mj protein The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 176 180 Ca2+ chemical The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 186 194 occluded protein_state The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 196 206 dehydrated protein_state The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 274 283 exchanger protein_type The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 303 312 semi-open protein_state The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 317 321 open protein_state The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 356 360 Ca2+ chemical The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 373 376 Na+ chemical The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 402 425 aqueous access channels site The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 439 443 Sext site The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 448 451 SCa site The calculated free-energy landscape for Ca2+-bound NCX_Mj confirms the hypothesis outlined above (1 × Ca2+, Fig. 6a): consistent with the fact that NCX_Mj transports a single Ca2+, the occluded, dehydrated conformation is one of the major energetic minima, but clearly the exchanger can also adopt the semi-open and open states that would be required for Ca2+ release and Na+ entry, via either of the aqueous access channels that lead to Sext and SCa (Fig. 6b-c). RESULTS 13 24 protonation protein_state By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 28 33 Glu54 residue_name_number By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 38 44 Glu213 residue_name_number By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 55 63 occluded protein_state By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 133 139 NCX_Mj protein By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 159 166 protons chemical By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 176 184 H+-bound protein_state By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 204 213 exchanger protein_type By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 228 237 semi-open protein_state By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 267 273 low pH protein_state By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 275 278 apo protein_state By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 279 296 crystal structure evidence By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 302 304 H+ chemical By contrast, protonation of Glu54 and Glu213 makes the occluded conformation energetically unfeasible, consistent with the fact that NCX_Mj does not transport protons; in this H+-bound state, though, the exchanger can adopt the semi-open conformation captured in the low pH, apo crystal structure (2 × H+, Fig. 6a-c). RESULTS 21 54 systematic computational analysis experimental_method Taken together, this systematic computational analysis of outward-facing NCX_Mj clearly demonstrates that the alternating-access and ion-recognition mechanisms in this Na+/Ca2+ exchanger are coupled through the influence that the bound ions have on the free-energy landscape of the protein, which in turn determines whether or not the occluded conformation is energetically feasible. RESULTS 58 72 outward-facing protein_state Taken together, this systematic computational analysis of outward-facing NCX_Mj clearly demonstrates that the alternating-access and ion-recognition mechanisms in this Na+/Ca2+ exchanger are coupled through the influence that the bound ions have on the free-energy landscape of the protein, which in turn determines whether or not the occluded conformation is energetically feasible. RESULTS 73 79 NCX_Mj protein Taken together, this systematic computational analysis of outward-facing NCX_Mj clearly demonstrates that the alternating-access and ion-recognition mechanisms in this Na+/Ca2+ exchanger are coupled through the influence that the bound ions have on the free-energy landscape of the protein, which in turn determines whether or not the occluded conformation is energetically feasible. RESULTS 168 186 Na+/Ca2+ exchanger protein_type Taken together, this systematic computational analysis of outward-facing NCX_Mj clearly demonstrates that the alternating-access and ion-recognition mechanisms in this Na+/Ca2+ exchanger are coupled through the influence that the bound ions have on the free-energy landscape of the protein, which in turn determines whether or not the occluded conformation is energetically feasible. RESULTS 253 274 free-energy landscape evidence Taken together, this systematic computational analysis of outward-facing NCX_Mj clearly demonstrates that the alternating-access and ion-recognition mechanisms in this Na+/Ca2+ exchanger are coupled through the influence that the bound ions have on the free-energy landscape of the protein, which in turn determines whether or not the occluded conformation is energetically feasible. RESULTS 335 343 occluded protein_state Taken together, this systematic computational analysis of outward-facing NCX_Mj clearly demonstrates that the alternating-access and ion-recognition mechanisms in this Na+/Ca2+ exchanger are coupled through the influence that the bound ions have on the free-energy landscape of the protein, which in turn determines whether or not the occluded conformation is energetically feasible. RESULTS 5 13 occluded protein_state This occluded conformation, which is a necessary intermediate between the outward and inward-open states, and which entails the internal dehydration of the protein, is only attainable upon complete occupancy of the binding sites. RESULTS 74 81 outward protein_state This occluded conformation, which is a necessary intermediate between the outward and inward-open states, and which entails the internal dehydration of the protein, is only attainable upon complete occupancy of the binding sites. RESULTS 86 97 inward-open protein_state This occluded conformation, which is a necessary intermediate between the outward and inward-open states, and which entails the internal dehydration of the protein, is only attainable upon complete occupancy of the binding sites. RESULTS 137 148 dehydration protein_state This occluded conformation, which is a necessary intermediate between the outward and inward-open states, and which entails the internal dehydration of the protein, is only attainable upon complete occupancy of the binding sites. RESULTS 189 207 complete occupancy protein_state This occluded conformation, which is a necessary intermediate between the outward and inward-open states, and which entails the internal dehydration of the protein, is only attainable upon complete occupancy of the binding sites. RESULTS 215 228 binding sites site This occluded conformation, which is a necessary intermediate between the outward and inward-open states, and which entails the internal dehydration of the protein, is only attainable upon complete occupancy of the binding sites. RESULTS 78 85 outward protein_state The alternating-access hypothesis implicitly dictates that the switch between outward- and inward-open conformations of a given secondary-active transporter must not occur unless the appropriate type and number of substrates are recognized. DISCUSS 91 102 inward-open protein_state The alternating-access hypothesis implicitly dictates that the switch between outward- and inward-open conformations of a given secondary-active transporter must not occur unless the appropriate type and number of substrates are recognized. DISCUSS 128 144 secondary-active protein_state The alternating-access hypothesis implicitly dictates that the switch between outward- and inward-open conformations of a given secondary-active transporter must not occur unless the appropriate type and number of substrates are recognized. DISCUSS 145 156 transporter protein_type The alternating-access hypothesis implicitly dictates that the switch between outward- and inward-open conformations of a given secondary-active transporter must not occur unless the appropriate type and number of substrates are recognized. DISCUSS 32 43 antiporters protein_type It is however also non-trivial: antiporters, for example, do not undergo the alternating-access transition without a cargo, but this is precisely how membrane symporters reset their transport cycles. DISCUSS 150 169 membrane symporters protein_type It is however also non-trivial: antiporters, for example, do not undergo the alternating-access transition without a cargo, but this is precisely how membrane symporters reset their transport cycles. DISCUSS 35 45 antiporter protein_type Similarly puzzling is that a given antiporter will undergo this transition upon recognition of substrates of different charge, size and number. DISCUSS 67 77 antiporter protein_type Yet, when multiple species are to be co-translocated, by either an antiporter or a symporter, partial occupancies must not be conducive to the alternating-access switch. DISCUSS 83 92 symporter protein_type Yet, when multiple species are to be co-translocated, by either an antiporter or a symporter, partial occupancies must not be conducive to the alternating-access switch. DISCUSS 143 168 alternating-access switch site Yet, when multiple species are to be co-translocated, by either an antiporter or a symporter, partial occupancies must not be conducive to the alternating-access switch. DISCUSS 103 121 structural studies experimental_method Here, we have provided novel insights into this intriguing mechanism of conformational control through structural studies and quantitative molecular simulations of a Na+/Ca2+ exchanger. DISCUSS 126 160 quantitative molecular simulations experimental_method Here, we have provided novel insights into this intriguing mechanism of conformational control through structural studies and quantitative molecular simulations of a Na+/Ca2+ exchanger. DISCUSS 166 184 Na+/Ca2+ exchanger protein_type Here, we have provided novel insights into this intriguing mechanism of conformational control through structural studies and quantitative molecular simulations of a Na+/Ca2+ exchanger. DISCUSS 29 35 NCX_Mj protein Specifically, our studies of NCX_Mj reveal the mechanism of forward ion exchange (Fig. 7). DISCUSS 25 39 outward-facing protein_state The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 40 46 NCX_Mj protein The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 55 68 inward-facing protein_state The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 69 87 crystal structures evidence The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 99 117 Ca2+/H+ exchangers protein_type The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 168 171 NCX protein_type The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 209 212 TM1 structure_element The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 217 220 TM6 structure_element The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 249 260 transporter protein_type The internal symmetry of outward-facing NCX_Mj and the inward-facing crystal structures of several Ca2+/H+ exchangers indicate that the alternating-access mechanism of NCX proteins entails a sliding motion of TM1 and TM6 relative to the rest of the transporter. DISCUSS 56 76 extracellular region structure_element Here, we demonstrate that conformational changes in the extracellular region of the TM2-TM3 and TM7-TM8 bundle precede and are necessary for the transition, and are associated with ion recognition and/or release. DISCUSS 84 91 TM2-TM3 structure_element Here, we demonstrate that conformational changes in the extracellular region of the TM2-TM3 and TM7-TM8 bundle precede and are necessary for the transition, and are associated with ion recognition and/or release. DISCUSS 96 110 TM7-TM8 bundle structure_element Here, we demonstrate that conformational changes in the extracellular region of the TM2-TM3 and TM7-TM8 bundle precede and are necessary for the transition, and are associated with ion recognition and/or release. DISCUSS 48 63 N-terminal half structure_element The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 67 70 TM7 structure_element The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 72 77 TM7ab structure_element The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 123 126 TM2 structure_element The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 131 134 TM3 structure_element The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 151 156 TM7ab structure_element The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 213 229 aqueous channels site The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 247 264 ion-binding sites site The most apparent of these changes involves the N-terminal half of TM7 (TM7ab); together with more subtle displacements in TM2 and TM3, this change in TM7ab correlates with the opening and closing of two distinct aqueous channels leading into the ion-binding sites from the extracellular solution. DISCUSS 30 33 TM7 structure_element Interestingly, the bending of TM7 associated with the occlusion of the ion-binding sites also unlocks its interaction with TM6, and thus enables TM6 and TM1 to freely slide to the inward-facing conformation. DISCUSS 71 88 ion-binding sites site Interestingly, the bending of TM7 associated with the occlusion of the ion-binding sites also unlocks its interaction with TM6, and thus enables TM6 and TM1 to freely slide to the inward-facing conformation. DISCUSS 123 126 TM6 structure_element Interestingly, the bending of TM7 associated with the occlusion of the ion-binding sites also unlocks its interaction with TM6, and thus enables TM6 and TM1 to freely slide to the inward-facing conformation. DISCUSS 145 148 TM6 structure_element Interestingly, the bending of TM7 associated with the occlusion of the ion-binding sites also unlocks its interaction with TM6, and thus enables TM6 and TM1 to freely slide to the inward-facing conformation. DISCUSS 153 156 TM1 structure_element Interestingly, the bending of TM7 associated with the occlusion of the ion-binding sites also unlocks its interaction with TM6, and thus enables TM6 and TM1 to freely slide to the inward-facing conformation. DISCUSS 180 193 inward-facing protein_state Interestingly, the bending of TM7 associated with the occlusion of the ion-binding sites also unlocks its interaction with TM6, and thus enables TM6 and TM1 to freely slide to the inward-facing conformation. DISCUSS 4 22 crystal structures evidence The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 26 32 NCX_Mj protein The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 60 64 Na+, chemical The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 65 70 Ca2+, chemical The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 71 75 Sr2+ chemical The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 79 81 H+ chemical The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 82 87 bound protein_state The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 101 110 exchanger protein_type The crystal structures of NCX_Mj reported here, with either Na+, Ca2+, Sr2+ or H+ bound, capture the exchanger in different conformational states. DISCUSS 115 126 transporter protein_type These states can only represent a subset among all possible, but they ought to reflect inherent preferences of the transporter, modulated by the experimental conditions. DISCUSS 20 27 crystal evidence For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 31 37 NCX_Mj protein For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 41 44 LCP experimental_method For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 50 68 extracellular half structure_element For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 76 90 gating helices structure_element For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 92 95 TM6 structure_element For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 100 103 TM1 structure_element For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 190 207 ion-binding sites site For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 235 238 apo protein_state For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 240 246 low pH protein_state For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 247 256 structure evidence For example, in the crystal of NCX_Mj in LCP, the extracellular half of the gating helices (TM6 and TM1) form a lattice contact, which might ultimately restrict the degree of opening of the ion-binding sites in some cases (e.g. in the apo, low pH structure). DISCUSS 17 50 calculated free-energy landscapes evidence Nonetheless, the calculated free-energy landscapes, derived without knowledge of the experimental data, reassuringly confirm that the crystallized structures correspond to mechanistically relevant, interconverting states. DISCUSS 134 157 crystallized structures evidence Nonetheless, the calculated free-energy landscapes, derived without knowledge of the experimental data, reassuringly confirm that the crystallized structures correspond to mechanistically relevant, interconverting states. DISCUSS 4 15 simulations experimental_method The simulations also demonstrate how this landscape is drastically re-shaped upon each ion-binding event. DISCUSS 58 66 occluded protein_state Indeed, we show that it is the presence or absence of the occluded state in this landscape that explains the antiport function of NCX_Mj and its 3Na+:1Ca2+ stoichiometry. DISCUSS 130 136 NCX_Mj protein Indeed, we show that it is the presence or absence of the occluded state in this landscape that explains the antiport function of NCX_Mj and its 3Na+:1Ca2+ stoichiometry. DISCUSS 146 149 Na+ chemical Indeed, we show that it is the presence or absence of the occluded state in this landscape that explains the antiport function of NCX_Mj and its 3Na+:1Ca2+ stoichiometry. DISCUSS 151 155 Ca2+ chemical Indeed, we show that it is the presence or absence of the occluded state in this landscape that explains the antiport function of NCX_Mj and its 3Na+:1Ca2+ stoichiometry. DISCUSS 89 101 transporters protein_type We posit that a similar principle might govern the alternating-access mechanism in other transporters; that is, we anticipate that for both symporters and antiporters, it is the feasibility of the occluded state, encoded in the protein conformational free-energy landscape and its dependence on substrate binding, that ultimately explains their specific coupling mechanisms. DISCUSS 140 150 symporters protein_type We posit that a similar principle might govern the alternating-access mechanism in other transporters; that is, we anticipate that for both symporters and antiporters, it is the feasibility of the occluded state, encoded in the protein conformational free-energy landscape and its dependence on substrate binding, that ultimately explains their specific coupling mechanisms. DISCUSS 155 166 antiporters protein_type We posit that a similar principle might govern the alternating-access mechanism in other transporters; that is, we anticipate that for both symporters and antiporters, it is the feasibility of the occluded state, encoded in the protein conformational free-energy landscape and its dependence on substrate binding, that ultimately explains their specific coupling mechanisms. DISCUSS 197 205 occluded protein_state We posit that a similar principle might govern the alternating-access mechanism in other transporters; that is, we anticipate that for both symporters and antiporters, it is the feasibility of the occluded state, encoded in the protein conformational free-energy landscape and its dependence on substrate binding, that ultimately explains their specific coupling mechanisms. DISCUSS 228 272 protein conformational free-energy landscape evidence We posit that a similar principle might govern the alternating-access mechanism in other transporters; that is, we anticipate that for both symporters and antiporters, it is the feasibility of the occluded state, encoded in the protein conformational free-energy landscape and its dependence on substrate binding, that ultimately explains their specific coupling mechanisms. DISCUSS 122 128 NCX_Mj protein In multiple ways, our findings provide an explanation for, existing functional, biochemical and biophysical data for both NCX_Mj and its eukaryotic homologues. DISCUSS 137 147 eukaryotic taxonomy_domain In multiple ways, our findings provide an explanation for, existing functional, biochemical and biophysical data for both NCX_Mj and its eukaryotic homologues. DISCUSS 48 70 ion-binding affinities evidence The striking quantitative agreement between the ion-binding affinities inferred from our crystallographic titrations and the Km and K1/2 values previously deduced from functional assays has been discussed above. DISCUSS 89 116 crystallographic titrations experimental_method The striking quantitative agreement between the ion-binding affinities inferred from our crystallographic titrations and the Km and K1/2 values previously deduced from functional assays has been discussed above. DISCUSS 125 127 Km evidence The striking quantitative agreement between the ion-binding affinities inferred from our crystallographic titrations and the Km and K1/2 values previously deduced from functional assays has been discussed above. DISCUSS 132 143 K1/2 values evidence The striking quantitative agreement between the ion-binding affinities inferred from our crystallographic titrations and the Km and K1/2 values previously deduced from functional assays has been discussed above. DISCUSS 168 185 functional assays experimental_method The striking quantitative agreement between the ion-binding affinities inferred from our crystallographic titrations and the Km and K1/2 values previously deduced from functional assays has been discussed above. DISCUSS 113 119 NCX_Mj protein Consistent with that finding, mutations that have been shown to inactivate or diminish the transport activity of NCX_Mj and cardiac NCX perfectly map to the first ion-coordination shell in our NCX_Mj structures (Supplementary Fig. 4c-d). DISCUSS 132 135 NCX protein_type Consistent with that finding, mutations that have been shown to inactivate or diminish the transport activity of NCX_Mj and cardiac NCX perfectly map to the first ion-coordination shell in our NCX_Mj structures (Supplementary Fig. 4c-d). DISCUSS 193 199 NCX_Mj protein Consistent with that finding, mutations that have been shown to inactivate or diminish the transport activity of NCX_Mj and cardiac NCX perfectly map to the first ion-coordination shell in our NCX_Mj structures (Supplementary Fig. 4c-d). DISCUSS 200 210 structures evidence Consistent with that finding, mutations that have been shown to inactivate or diminish the transport activity of NCX_Mj and cardiac NCX perfectly map to the first ion-coordination shell in our NCX_Mj structures (Supplementary Fig. 4c-d). DISCUSS 4 25 crystallographic data evidence The crystallographic data also provides the long-sought structural basis for the ‘two-site’ model proposed to describe competitive cation binding in eukaryotic NCX, underscoring the relevance of these studies of NCX_Mj as a prototypical Na+/Ca2+ exchanger. DISCUSS 149 159 eukaryotic taxonomy_domain The crystallographic data also provides the long-sought structural basis for the ‘two-site’ model proposed to describe competitive cation binding in eukaryotic NCX, underscoring the relevance of these studies of NCX_Mj as a prototypical Na+/Ca2+ exchanger. DISCUSS 160 163 NCX protein_type The crystallographic data also provides the long-sought structural basis for the ‘two-site’ model proposed to describe competitive cation binding in eukaryotic NCX, underscoring the relevance of these studies of NCX_Mj as a prototypical Na+/Ca2+ exchanger. DISCUSS 212 218 NCX_Mj protein The crystallographic data also provides the long-sought structural basis for the ‘two-site’ model proposed to describe competitive cation binding in eukaryotic NCX, underscoring the relevance of these studies of NCX_Mj as a prototypical Na+/Ca2+ exchanger. DISCUSS 237 255 Na+/Ca2+ exchanger protein_type The crystallographic data also provides the long-sought structural basis for the ‘two-site’ model proposed to describe competitive cation binding in eukaryotic NCX, underscoring the relevance of these studies of NCX_Mj as a prototypical Na+/Ca2+ exchanger. DISCUSS 18 36 crystal titrations experimental_method Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 66 69 Na+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 70 74 Ca2+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 91 95 Sint site Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 100 103 SCa site Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 111 115 Ca2+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 120 123 Na+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 162 165 Na+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 211 214 Na+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 239 242 Na+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 261 266 water chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 280 284 Smid site Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 313 317 Ca2+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 334 350 Hill coefficient evidence Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 361 364 Na+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 389 393 Ca2+ chemical Specifically, our crystal titrations suggest that, during forward Na+/Ca2+ exchange, sites Sint and SCa, which Ca2+ and Na+ compete for, can be grouped into one; Na+ binding to these sites does not require high Na+ concentrations, and two Na+ ions along with a water molecule (at Smid) are sufficient to displace Ca2+, explaining the Hill coefficient of ~2 for Na+-dependent inhibition of Ca2+ fluxes. DISCUSS 4 8 Sext site The Sext site, by contrast, might be thought as an activation site for inward Na+ translocation, since this is where the third Na+ ion binds at high Na+ concentration, enabling the transition to the occluded state. DISCUSS 51 66 activation site site The Sext site, by contrast, might be thought as an activation site for inward Na+ translocation, since this is where the third Na+ ion binds at high Na+ concentration, enabling the transition to the occluded state. DISCUSS 78 81 Na+ chemical The Sext site, by contrast, might be thought as an activation site for inward Na+ translocation, since this is where the third Na+ ion binds at high Na+ concentration, enabling the transition to the occluded state. DISCUSS 127 130 Na+ chemical The Sext site, by contrast, might be thought as an activation site for inward Na+ translocation, since this is where the third Na+ ion binds at high Na+ concentration, enabling the transition to the occluded state. DISCUSS 149 152 Na+ chemical The Sext site, by contrast, might be thought as an activation site for inward Na+ translocation, since this is where the third Na+ ion binds at high Na+ concentration, enabling the transition to the occluded state. DISCUSS 199 207 occluded protein_state The Sext site, by contrast, might be thought as an activation site for inward Na+ translocation, since this is where the third Na+ ion binds at high Na+ concentration, enabling the transition to the occluded state. DISCUSS 26 30 Ca2+ chemical Interestingly, binding of Ca2+ to Smid appears to be also possible, but available evidence indicates that this event transiently blocks the exchange cycle. DISCUSS 34 38 Smid site Interestingly, binding of Ca2+ to Smid appears to be also possible, but available evidence indicates that this event transiently blocks the exchange cycle. DISCUSS 8 18 structures evidence Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 22 28 NCX_Mj protein Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 29 37 bound to protein_state Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 38 42 Cd2+ chemical Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 46 50 Mn2+ chemical Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 104 108 Smid site Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 123 127 Sr2+ chemical Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 142 145 SCa site Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 182 185 NCX protein_type Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 199 206 calcium chemical Indeed, structures of NCX_Mj bound to Cd2+ or Mn2+, both of which inhibit transport, show these ions at Smid; by contrast, Sr2+ binds only to SCa, and accordingly, is transported by NCX similarly to calcium. DISCUSS 37 43 NCX_Mj protein Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 72 76 Ca2+ chemical Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 80 83 Na+ chemical Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 147 174 hydrogen-deuterium exchange experimental_method Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 176 179 HDX experimental_method Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 184 190 NCX_Mj protein Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 199 207 presence protein_state Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 211 221 absence of protein_state Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 259 273 outward-facing protein_state Lastly, our theory that occlusion of NCX_Mj is selectively induced upon Ca2+ or Na+ recognition is consonant with a recent analysis of the rate of hydrogen-deuterium exchange (HDX) in NCX_Mj, in the presence or absence of these ions, in conditions that favor outward-facing conformations. DISCUSS 36 40 Ca2+ chemical Specifically, saturating amounts of Ca2+ or Na+ resulted in a noticeable slowdown in the HDX rate for extracellular portions of the α-repeat helices. DISCUSS 44 47 Na+ chemical Specifically, saturating amounts of Ca2+ or Na+ resulted in a noticeable slowdown in the HDX rate for extracellular portions of the α-repeat helices. DISCUSS 89 97 HDX rate evidence Specifically, saturating amounts of Ca2+ or Na+ resulted in a noticeable slowdown in the HDX rate for extracellular portions of the α-repeat helices. DISCUSS 132 148 α-repeat helices structure_element Specifically, saturating amounts of Ca2+ or Na+ resulted in a noticeable slowdown in the HDX rate for extracellular portions of the α-repeat helices. DISCUSS 231 248 ion-binding sites site We interpret these observations as reflecting that the solvent accessibility of the protein interior is diminished upon ion recognition, consistent with our finding that opening and closing of extracellular aqueous pathways to the ion-binding sites depend on ion occupancy state. DISCUSS 80 88 occluded protein_state In addition, the increased compactness of the protein tertiary structure in the occluded state would also slow down the dynamics of the secondary-structure elements, and thus further reduce the HDX rate. DISCUSS 194 202 HDX rate evidence In addition, the increased compactness of the protein tertiary structure in the occluded state would also slow down the dynamics of the secondary-structure elements, and thus further reduce the HDX rate. DISCUSS 70 78 HDX rate evidence Our data would also explain the observation that the reduction in the HDX rate is comparable for Na+ and Ca2+, as well as the finding that the degree of deuterium incorporation remains non-negligible even under saturating ion concentrations. DISCUSS 97 100 Na+ chemical Our data would also explain the observation that the reduction in the HDX rate is comparable for Na+ and Ca2+, as well as the finding that the degree of deuterium incorporation remains non-negligible even under saturating ion concentrations. DISCUSS 105 109 Ca2+ chemical Our data would also explain the observation that the reduction in the HDX rate is comparable for Na+ and Ca2+, as well as the finding that the degree of deuterium incorporation remains non-negligible even under saturating ion concentrations. DISCUSS 7 40 calculated free-energy landscapes evidence As the calculated free-energy landscapes show, Na+ and Ca2+ induce the occlusion of the transporter in a comparable manner, and yet the ion-bound states retain the ability to explore conformations that are partially or fully open to the extracellular solution, precisely so as to be able to unload and re-load the substrates. DISCUSS 47 50 Na+ chemical As the calculated free-energy landscapes show, Na+ and Ca2+ induce the occlusion of the transporter in a comparable manner, and yet the ion-bound states retain the ability to explore conformations that are partially or fully open to the extracellular solution, precisely so as to be able to unload and re-load the substrates. DISCUSS 55 59 Ca2+ chemical As the calculated free-energy landscapes show, Na+ and Ca2+ induce the occlusion of the transporter in a comparable manner, and yet the ion-bound states retain the ability to explore conformations that are partially or fully open to the extracellular solution, precisely so as to be able to unload and re-load the substrates. DISCUSS 88 99 transporter protein_type As the calculated free-energy landscapes show, Na+ and Ca2+ induce the occlusion of the transporter in a comparable manner, and yet the ion-bound states retain the ability to explore conformations that are partially or fully open to the extracellular solution, precisely so as to be able to unload and re-load the substrates. DISCUSS 136 145 ion-bound protein_state As the calculated free-energy landscapes show, Na+ and Ca2+ induce the occlusion of the transporter in a comparable manner, and yet the ion-bound states retain the ability to explore conformations that are partially or fully open to the extracellular solution, precisely so as to be able to unload and re-load the substrates. DISCUSS 219 229 fully open protein_state As the calculated free-energy landscapes show, Na+ and Ca2+ induce the occlusion of the transporter in a comparable manner, and yet the ion-bound states retain the ability to explore conformations that are partially or fully open to the extracellular solution, precisely so as to be able to unload and re-load the substrates. DISCUSS 0 3 Na+ chemical Na+ binding to outward-facing NCX_Mj. FIG 15 29 outward-facing protein_state Na+ binding to outward-facing NCX_Mj. FIG 30 36 NCX_Mj protein Na+ binding to outward-facing NCX_Mj. FIG 12 21 structure evidence (a) Overall structure of native outward-facing NCX_Mj from crystals grown in 150 mM Na+. FIG 25 31 native protein_state (a) Overall structure of native outward-facing NCX_Mj from crystals grown in 150 mM Na+. FIG 32 46 outward-facing protein_state (a) Overall structure of native outward-facing NCX_Mj from crystals grown in 150 mM Na+. FIG 47 53 NCX_Mj protein (a) Overall structure of native outward-facing NCX_Mj from crystals grown in 150 mM Na+. FIG 59 73 crystals grown experimental_method (a) Overall structure of native outward-facing NCX_Mj from crystals grown in 150 mM Na+. FIG 84 87 Na+ chemical (a) Overall structure of native outward-facing NCX_Mj from crystals grown in 150 mM Na+. FIG 36 39 Na+ chemical Colored spheres represent the bound Na+ (green) and water (red). FIG 52 57 water chemical Colored spheres represent the bound Na+ (green) and water (red). FIG 50 71 central binding sites site (b) Structural details and definition of the four central binding sites. FIG 4 20 electron density evidence The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 39 57 Fo-Fc ion omit map evidence The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 78 82 Smid site The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 98 103 water chemical The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 130 134 Sext site The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 136 139 SCa site The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 144 148 Sint site The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 152 155 Na+ chemical The electron density (grey mesh, 1.9 Å Fo-Fc ion omit map contoured at 4σ) at Smid was modeled as water (red sphere) and those at Sext, SCa and Sint as Na+ ions (green spheres). FIG 89 92 Na+ chemical Further details are shown in Supplementary Fig. 1. (c) Concentration-dependent change in Na+ occupancy (see also Table 1). FIG 4 25 Fo – Fc ion-omit maps evidence All Fo – Fc ion-omit maps are calculated to 2.4 Å and contoured at 3σ for comparison. FIG 20 24 A206 residue_name_number The displacement of A206 reflects the [Na+]-dependent conformational change from the partially open to the occluded state (observed at low and high Na+ concentrations, respectively). FIG 39 42 Na+ chemical The displacement of A206 reflects the [Na+]-dependent conformational change from the partially open to the occluded state (observed at low and high Na+ concentrations, respectively). FIG 85 99 partially open protein_state The displacement of A206 reflects the [Na+]-dependent conformational change from the partially open to the occluded state (observed at low and high Na+ concentrations, respectively). FIG 107 115 occluded protein_state The displacement of A206 reflects the [Na+]-dependent conformational change from the partially open to the occluded state (observed at low and high Na+ concentrations, respectively). FIG 148 151 Na+ chemical The displacement of A206 reflects the [Na+]-dependent conformational change from the partially open to the occluded state (observed at low and high Na+ concentrations, respectively). FIG 9 12 Na+ chemical At 20 mM Na+, both conformations co-exist. FIG 75 80 water chemical No significant changes were observed in the side-chains involved in ion or water coordination at the SCa, Sint and Smid sites. FIG 101 104 SCa site No significant changes were observed in the side-chains involved in ion or water coordination at the SCa, Sint and Smid sites. FIG 106 110 Sint site No significant changes were observed in the side-chains involved in ion or water coordination at the SCa, Sint and Smid sites. FIG 115 119 Smid site No significant changes were observed in the side-chains involved in ion or water coordination at the SCa, Sint and Smid sites. FIG 0 3 Na+ chemical Na+-occupancy dependent conformational change in NCX_Mj. FIG 49 55 NCX_Mj protein Na+-occupancy dependent conformational change in NCX_Mj. FIG 4 19 Superimposition experimental_method (a) Superimposition of the NCX_Mj crystal structures obtained in high (100 mM, cyan cylinders) and low (10 mM, brown cylinders) Na+ concentrations. FIG 27 33 NCX_Mj protein (a) Superimposition of the NCX_Mj crystal structures obtained in high (100 mM, cyan cylinders) and low (10 mM, brown cylinders) Na+ concentrations. FIG 34 52 crystal structures evidence (a) Superimposition of the NCX_Mj crystal structures obtained in high (100 mM, cyan cylinders) and low (10 mM, brown cylinders) Na+ concentrations. FIG 128 131 Na+ chemical (a) Superimposition of the NCX_Mj crystal structures obtained in high (100 mM, cyan cylinders) and low (10 mM, brown cylinders) Na+ concentrations. FIG 25 34 interface site (b) Close-up view of the interface between TM6 and TM7ab in the NCX_Mj structures obtained at high and low Na+ concentrations (top and lower panels, respectively). FIG 43 46 TM6 structure_element (b) Close-up view of the interface between TM6 and TM7ab in the NCX_Mj structures obtained at high and low Na+ concentrations (top and lower panels, respectively). FIG 51 56 TM7ab structure_element (b) Close-up view of the interface between TM6 and TM7ab in the NCX_Mj structures obtained at high and low Na+ concentrations (top and lower panels, respectively). FIG 64 70 NCX_Mj protein (b) Close-up view of the interface between TM6 and TM7ab in the NCX_Mj structures obtained at high and low Na+ concentrations (top and lower panels, respectively). FIG 71 81 structures evidence (b) Close-up view of the interface between TM6 and TM7ab in the NCX_Mj structures obtained at high and low Na+ concentrations (top and lower panels, respectively). FIG 107 110 Na+ chemical (b) Close-up view of the interface between TM6 and TM7ab in the NCX_Mj structures obtained at high and low Na+ concentrations (top and lower panels, respectively). FIG 47 56 structure evidence Residues forming van-der-Waals contacts in the structure at low Na+ concentration are shown in detail. FIG 60 63 low protein_state Residues forming van-der-Waals contacts in the structure at low Na+ concentration are shown in detail. FIG 64 67 Na+ chemical Residues forming van-der-Waals contacts in the structure at low Na+ concentration are shown in detail. FIG 25 42 Na+-binding sites site (c) Close-up view of the Na+-binding sites. FIG 11 15 Sext site The vacant Sext site in the structure at low Na+ concentration is indicated with a white sphere. FIG 28 37 structure evidence The vacant Sext site in the structure at low Na+ concentration is indicated with a white sphere. FIG 41 44 low protein_state The vacant Sext site in the structure at low Na+ concentration is indicated with a white sphere. FIG 45 48 Na+ chemical The vacant Sext site in the structure at low Na+ concentration is indicated with a white sphere. FIG 56 60 A206 residue_name_number Residues surrounding this site are also indicated; note A206 (labeled in red) coordinates Na+ at Sext via its backbone carbonyl oxygen. FIG 78 89 coordinates bond_interaction Residues surrounding this site are also indicated; note A206 (labeled in red) coordinates Na+ at Sext via its backbone carbonyl oxygen. FIG 90 93 Na+ chemical Residues surrounding this site are also indicated; note A206 (labeled in red) coordinates Na+ at Sext via its backbone carbonyl oxygen. FIG 97 101 Sext site Residues surrounding this site are also indicated; note A206 (labeled in red) coordinates Na+ at Sext via its backbone carbonyl oxygen. FIG 47 64 ion binding sites site (d) Extracellular solvent accessibility of the ion binding sites in the structures at high and low [Na+]. FIG 72 82 structures evidence (d) Extracellular solvent accessibility of the ion binding sites in the structures at high and low [Na+]. FIG 86 90 high protein_state (d) Extracellular solvent accessibility of the ion binding sites in the structures at high and low [Na+]. FIG 95 98 low protein_state (d) Extracellular solvent accessibility of the ion binding sites in the structures at high and low [Na+]. FIG 100 103 Na+ chemical (d) Extracellular solvent accessibility of the ion binding sites in the structures at high and low [Na+]. FIG 9 25 solvent channels site Putative solvent channels are represented as light-purple surfaces. FIG 28 31 apo protein_state Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 32 41 structure evidence Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 45 51 NCX_Mj protein Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 66 70 Sr2+ chemical Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 99 102 SCa site Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 106 123 crystals titrated experimental_method Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 135 139 Sr2+ chemical Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 151 154 Na+ chemical Divalent cation binding and apo structure of NCX_Mj. (a) A single Sr2+ (dark blue sphere) binds at SCa in crystals titrated with 10 mM Sr2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 21 25 Sr2+ chemical Residues involved in Sr2+ coordination are labeled. FIG 98 107 Na+-bound protein_state There are no significant changes in the side-chains involved in ion coordination, relative to the Na+-bound state. FIG 0 3 T50 residue_name_number T50 and T209 (labeled in red) coordinate Sr2+ through their backbone carbonyl-oxygen atoms. FIG 8 12 T209 residue_name_number T50 and T209 (labeled in red) coordinate Sr2+ through their backbone carbonyl-oxygen atoms. FIG 30 40 coordinate bond_interaction T50 and T209 (labeled in red) coordinate Sr2+ through their backbone carbonyl-oxygen atoms. FIG 41 45 Sr2+ chemical T50 and T209 (labeled in red) coordinate Sr2+ through their backbone carbonyl-oxygen atoms. FIG 5 8 Na+ chemical High Na+ concentration (100 mM) completely displaces Sr2+ and reverts NCX_Mj to the occluded state (right panel). FIG 53 57 Sr2+ chemical High Na+ concentration (100 mM) completely displaces Sr2+ and reverts NCX_Mj to the occluded state (right panel). FIG 70 76 NCX_Mj protein High Na+ concentration (100 mM) completely displaces Sr2+ and reverts NCX_Mj to the occluded state (right panel). FIG 84 92 occluded protein_state High Na+ concentration (100 mM) completely displaces Sr2+ and reverts NCX_Mj to the occluded state (right panel). FIG 25 41 Fo – Fc omit map evidence The contour level of the Fo – Fc omit map of the structure at high Na+ concentration was lowered (to 4σ) so as to visualize the density from Na+ ions and H2O. FIG 49 58 structure evidence The contour level of the Fo – Fc omit map of the structure at high Na+ concentration was lowered (to 4σ) so as to visualize the density from Na+ ions and H2O. FIG 67 70 Na+ chemical The contour level of the Fo – Fc omit map of the structure at high Na+ concentration was lowered (to 4σ) so as to visualize the density from Na+ ions and H2O. FIG 128 135 density evidence The contour level of the Fo – Fc omit map of the structure at high Na+ concentration was lowered (to 4σ) so as to visualize the density from Na+ ions and H2O. FIG 141 144 Na+ chemical The contour level of the Fo – Fc omit map of the structure at high Na+ concentration was lowered (to 4σ) so as to visualize the density from Na+ ions and H2O. FIG 154 157 H2O chemical The contour level of the Fo – Fc omit map of the structure at high Na+ concentration was lowered (to 4σ) so as to visualize the density from Na+ ions and H2O. FIG 4 8 Ca2+ chemical (b) Ca2+ (tanned spheres) binds either to SCa or Smid in crystals titrated with 10 mM Ca2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 42 45 SCa site (b) Ca2+ (tanned spheres) binds either to SCa or Smid in crystals titrated with 10 mM Ca2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 49 53 Smid site (b) Ca2+ (tanned spheres) binds either to SCa or Smid in crystals titrated with 10 mM Ca2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 57 74 crystals titrated experimental_method (b) Ca2+ (tanned spheres) binds either to SCa or Smid in crystals titrated with 10 mM Ca2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 86 90 Ca2+ chemical (b) Ca2+ (tanned spheres) binds either to SCa or Smid in crystals titrated with 10 mM Ca2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 102 105 Na+ chemical (b) Ca2+ (tanned spheres) binds either to SCa or Smid in crystals titrated with 10 mM Ca2+ and 2.5 mM Na+ (see also Supplementary Fig. 2). FIG 60 75 Superimposition experimental_method The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 79 85 NCX_Mj protein The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 86 96 structures evidence The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 113 116 Na+ chemical The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 169 179 absence of protein_state The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 180 183 Na+ chemical The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 188 192 pH 4 protein_state The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 223 226 apo protein_state The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 259 276 ion-binding sites site The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 284 287 apo protein_state The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 292 299 high H+ protein_state The relative occupancies are 55% and 45%, respectively. (c) Superimposition of NCX_Mj structures obtained at low Na+ concentration (10 mM) and pH 6.5 (brown) and in the absence of Na+ and pH 4 (light green), referred to as apo state. (d) Close-up view of the ion-binding sites in the apo (or high H+) state. FIG 19 22 E54 residue_name_number The side chains of E54 and E213 from the low Na+ structure are also shown (light brown) for comparison. FIG 27 31 E213 residue_name_number The side chains of E54 and E213 from the low Na+ structure are also shown (light brown) for comparison. FIG 41 48 low Na+ protein_state The side chains of E54 and E213 from the low Na+ structure are also shown (light brown) for comparison. FIG 49 58 structure evidence The side chains of E54 and E213 from the low Na+ structure are also shown (light brown) for comparison. FIG 36 40 Sint site White spheres indicate the location Sint, Smid SCa. (e) Extracellular solvent accessibility of the ion-binding sites in apo NCX_Mj. FIG 42 46 Smid site White spheres indicate the location Sint, Smid SCa. (e) Extracellular solvent accessibility of the ion-binding sites in apo NCX_Mj. FIG 47 50 SCa site White spheres indicate the location Sint, Smid SCa. (e) Extracellular solvent accessibility of the ion-binding sites in apo NCX_Mj. FIG 99 116 ion-binding sites site White spheres indicate the location Sint, Smid SCa. (e) Extracellular solvent accessibility of the ion-binding sites in apo NCX_Mj. FIG 120 123 apo protein_state White spheres indicate the location Sint, Smid SCa. (e) Extracellular solvent accessibility of the ion-binding sites in apo NCX_Mj. FIG 124 130 NCX_Mj protein White spheres indicate the location Sint, Smid SCa. (e) Extracellular solvent accessibility of the ion-binding sites in apo NCX_Mj. FIG 27 36 structure evidence Spontaneous changes in the structure of outward-occluded, fully Na+-occupied NCX_Mj (PDB code 3V5U) upon sequential displacement of Na+. FIG 40 56 outward-occluded protein_state Spontaneous changes in the structure of outward-occluded, fully Na+-occupied NCX_Mj (PDB code 3V5U) upon sequential displacement of Na+. FIG 58 76 fully Na+-occupied protein_state Spontaneous changes in the structure of outward-occluded, fully Na+-occupied NCX_Mj (PDB code 3V5U) upon sequential displacement of Na+. FIG 77 83 NCX_Mj protein Spontaneous changes in the structure of outward-occluded, fully Na+-occupied NCX_Mj (PDB code 3V5U) upon sequential displacement of Na+. FIG 132 135 Na+ chemical Spontaneous changes in the structure of outward-occluded, fully Na+-occupied NCX_Mj (PDB code 3V5U) upon sequential displacement of Na+. FIG 19 29 simulation experimental_method (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 43 49 NCX_Mj protein (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 65 68 Na+ chemical (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 69 77 bound at protein_state (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 78 82 Sext site (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 84 87 SCa site (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 92 96 Sint site (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 139 142 Na+ chemical (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 143 156 bound only at protein_state (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 157 160 SCa site (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 165 169 Sint site (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 240 255 N-terminal half structure_element (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 259 262 TM7 structure_element (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 264 269 TM7ab structure_element (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 284 287 Na+ chemical (a) Representative simulation snapshots of NCX_Mj (Methods) with Na+ bound at Sext, SCa and Sint (orange cartoons, green spheres) and with Na+ bound only at SCa and Sint (marine cartoons, yellow spheres) (b) Close-up of the backbone of the N-terminal half of TM7 (TM7ab), in the same Na+ occupancy states depicted in (a). FIG 19 39 simulation snapshots evidence (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 61 64 Na+ chemical (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 65 73 bound at protein_state (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 74 77 SCa site (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 82 86 Sint site (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 125 132 without protein_state (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 137 140 Na+ chemical (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 141 146 bound protein_state (c) Representative simulation snapshots (same as above) with Na+ bound at SCa and Sint (marine cartoons, yellow spheres) and without any Na+ bound (grey cartoons). FIG 20 38 ion-binding region site (d) Close-up of the ion-binding region in the fully Na+-occupied state. FIG 46 64 fully Na+-occupied protein_state (d) Close-up of the ion-binding region in the fully Na+-occupied state. FIG 30 33 TM2 structure_element Approximate distances between TM2, TM3 and TM7 are indicated in Å. (e) Close-up of the ion-binding region in the partially Na+-occupied state. FIG 35 38 TM3 structure_element Approximate distances between TM2, TM3 and TM7 are indicated in Å. (e) Close-up of the ion-binding region in the partially Na+-occupied state. FIG 43 46 TM7 structure_element Approximate distances between TM2, TM3 and TM7 are indicated in Å. (e) Close-up of the ion-binding region in the partially Na+-occupied state. FIG 87 105 ion-binding region site Approximate distances between TM2, TM3 and TM7 are indicated in Å. (e) Close-up of the ion-binding region in the partially Na+-occupied state. FIG 113 135 partially Na+-occupied protein_state Approximate distances between TM2, TM3 and TM7 are indicated in Å. (e) Close-up of the ion-binding region in the partially Na+-occupied state. FIG 20 38 ion-binding region site (f) Close-up of the ion-binding region in the Na+-free state. (g-i) Analytical descriptors of the changes just described, calculated from the simulations of each Na+-occupancy state depicted in panels (a-f). FIG 46 54 Na+-free protein_state (f) Close-up of the ion-binding region in the Na+-free state. (g-i) Analytical descriptors of the changes just described, calculated from the simulations of each Na+-occupancy state depicted in panels (a-f). FIG 142 153 simulations experimental_method (f) Close-up of the ion-binding region in the Na+-free state. (g-i) Analytical descriptors of the changes just described, calculated from the simulations of each Na+-occupancy state depicted in panels (a-f). FIG 162 175 Na+-occupancy protein_state (f) Close-up of the ion-binding region in the Na+-free state. (g-i) Analytical descriptors of the changes just described, calculated from the simulations of each Na+-occupancy state depicted in panels (a-f). FIG 63 101 Bias-Exchange Metadynamics simulations experimental_method These descriptors were employed as collective variables in the Bias-Exchange Metadynamics simulations (Methods). FIG 4 29 Probability distributions evidence (g) Probability distributions of an analytical descriptor of the backbone hydrogen-bonding pattern in TM7ab (Eq. 2). (h) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the Sext site (Eq. 1). (i) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the SCa site (Eq. 1). FIG 74 90 hydrogen-bonding bond_interaction (g) Probability distributions of an analytical descriptor of the backbone hydrogen-bonding pattern in TM7ab (Eq. 2). (h) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the Sext site (Eq. 1). (i) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the SCa site (Eq. 1). FIG 102 107 TM7ab structure_element (g) Probability distributions of an analytical descriptor of the backbone hydrogen-bonding pattern in TM7ab (Eq. 2). (h) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the Sext site (Eq. 1). (i) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the SCa site (Eq. 1). FIG 223 227 Sext site (g) Probability distributions of an analytical descriptor of the backbone hydrogen-bonding pattern in TM7ab (Eq. 2). (h) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the Sext site (Eq. 1). (i) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the SCa site (Eq. 1). FIG 348 351 SCa site (g) Probability distributions of an analytical descriptor of the backbone hydrogen-bonding pattern in TM7ab (Eq. 2). (h) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the Sext site (Eq. 1). (i) Mean value (with standard deviation) of a quantitative descriptor of the solvent accessibility of the SCa site (Eq. 1). FIG 108 111 NCX protein_type Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated conformational free-energy landscapes for outward-facing NCX_Mj, for two different Na+-occupancy states, and for a state with no ions bound. FIG 117 165 Calculated conformational free-energy landscapes evidence Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated conformational free-energy landscapes for outward-facing NCX_Mj, for two different Na+-occupancy states, and for a state with no ions bound. FIG 170 184 outward-facing protein_state Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated conformational free-energy landscapes for outward-facing NCX_Mj, for two different Na+-occupancy states, and for a state with no ions bound. FIG 185 191 NCX_Mj protein Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated conformational free-energy landscapes for outward-facing NCX_Mj, for two different Na+-occupancy states, and for a state with no ions bound. FIG 211 214 Na+ chemical Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated conformational free-energy landscapes for outward-facing NCX_Mj, for two different Na+-occupancy states, and for a state with no ions bound. FIG 254 267 no ions bound protein_state Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated conformational free-energy landscapes for outward-facing NCX_Mj, for two different Na+-occupancy states, and for a state with no ions bound. FIG 4 15 free energy evidence The free energy is plotted as a function of two coordinates, each describing the degree of opening of the aqueous channels leading to the Sext and SCa sites, respectively (see Methods). FIG 106 122 aqueous channels site The free energy is plotted as a function of two coordinates, each describing the degree of opening of the aqueous channels leading to the Sext and SCa sites, respectively (see Methods). FIG 138 142 Sext site The free energy is plotted as a function of two coordinates, each describing the degree of opening of the aqueous channels leading to the Sext and SCa sites, respectively (see Methods). FIG 147 150 SCa site The free energy is plotted as a function of two coordinates, each describing the degree of opening of the aqueous channels leading to the Sext and SCa sites, respectively (see Methods). FIG 22 38 X-ray structures evidence Black circles map the X-ray structures of NCX_Mj obtained at high and low Na+ concentration, as well as that at low pH, reported in this study. FIG 42 48 NCX_Mj protein Black circles map the X-ray structures of NCX_Mj obtained at high and low Na+ concentration, as well as that at low pH, reported in this study. FIG 61 65 high protein_state Black circles map the X-ray structures of NCX_Mj obtained at high and low Na+ concentration, as well as that at low pH, reported in this study. FIG 70 73 low protein_state Black circles map the X-ray structures of NCX_Mj obtained at high and low Na+ concentration, as well as that at low pH, reported in this study. FIG 74 77 Na+ chemical Black circles map the X-ray structures of NCX_Mj obtained at high and low Na+ concentration, as well as that at low pH, reported in this study. FIG 112 118 low pH protein_state Black circles map the X-ray structures of NCX_Mj obtained at high and low Na+ concentration, as well as that at low pH, reported in this study. FIG 4 23 Density isosurfaces evidence (b) Density isosurfaces for water molecules within 12 Å of the ion-binding region (grey volumes), for each of the major conformational free-energy minima in each ion-occupancy state. FIG 28 33 water chemical (b) Density isosurfaces for water molecules within 12 Å of the ion-binding region (grey volumes), for each of the major conformational free-energy minima in each ion-occupancy state. FIG 63 81 ion-binding region site (b) Density isosurfaces for water molecules within 12 Å of the ion-binding region (grey volumes), for each of the major conformational free-energy minima in each ion-occupancy state. FIG 120 153 conformational free-energy minima evidence (b) Density isosurfaces for water molecules within 12 Å of the ion-binding region (grey volumes), for each of the major conformational free-energy minima in each ion-occupancy state. FIG 0 3 Na+ chemical Na+ ions are shown as green spheres. FIG 8 33 inverted-topology repeats structure_element The two inverted-topology repeats in the transporter structure (transparent cartoons) are colored differently (TM1-5, orange; TM6-10, marine). FIG 41 52 transporter protein_type The two inverted-topology repeats in the transporter structure (transparent cartoons) are colored differently (TM1-5, orange; TM6-10, marine). FIG 53 62 structure evidence The two inverted-topology repeats in the transporter structure (transparent cartoons) are colored differently (TM1-5, orange; TM6-10, marine). FIG 111 116 TM1-5 structure_element The two inverted-topology repeats in the transporter structure (transparent cartoons) are colored differently (TM1-5, orange; TM6-10, marine). FIG 126 132 TM6-10 structure_element The two inverted-topology repeats in the transporter structure (transparent cartoons) are colored differently (TM1-5, orange; TM6-10, marine). FIG 26 44 ion-binding region site (c) Close-up views of the ion-binding region in the same conformational free-energy minima. FIG 57 90 conformational free-energy minima evidence (c) Close-up views of the ion-binding region in the same conformational free-energy minima. FIG 25 28 Na+ chemical Key residues involved in Na+ and water coordination (W) are highlighted (sticks, black lines). FIG 33 38 water chemical Key residues involved in Na+ and water coordination (W) are highlighted (sticks, black lines). FIG 4 22 water-density maps evidence The water-density maps in (b) is shown here as a grey mesh. FIG 5 9 D240 residue_name_number Note D240 is protonated, while E54 and E213 are ionized. FIG 31 34 E54 residue_name_number Note D240 is protonated, while E54 and E213 are ionized. FIG 39 43 E213 residue_name_number Note D240 is protonated, while E54 and E213 are ionized. FIG 108 111 NCX protein_type Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated free-energy landscapes for outward-facing NCX_Mj, for the Ca2+ and the fully protonated state. FIG 117 150 Calculated free-energy landscapes evidence Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated free-energy landscapes for outward-facing NCX_Mj, for the Ca2+ and the fully protonated state. FIG 155 169 outward-facing protein_state Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated free-energy landscapes for outward-facing NCX_Mj, for the Ca2+ and the fully protonated state. FIG 170 176 NCX_Mj protein Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated free-energy landscapes for outward-facing NCX_Mj, for the Ca2+ and the fully protonated state. FIG 186 190 Ca2+ chemical Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated free-energy landscapes for outward-facing NCX_Mj, for the Ca2+ and the fully protonated state. FIG 199 215 fully protonated protein_state Thermodynamic basis for the proposed mechanism of substrate control of the alternating-access transition of NCX. (a) Calculated free-energy landscapes for outward-facing NCX_Mj, for the Ca2+ and the fully protonated state. FIG 4 15 free energy evidence The free energy is plotted as in Fig. 5. FIG 4 8 Ca2+ chemical For Ca2+, a map is shown in which a correction for the charge-transfer between the ion and the protein is introduced, alongside the uncorrected map (see Supplementary Notes 3-4 and Supplementary Fig. 5-6). FIG 12 15 map evidence For Ca2+, a map is shown in which a correction for the charge-transfer between the ion and the protein is introduced, alongside the uncorrected map (see Supplementary Notes 3-4 and Supplementary Fig. 5-6). FIG 144 147 map evidence For Ca2+, a map is shown in which a correction for the charge-transfer between the ion and the protein is introduced, alongside the uncorrected map (see Supplementary Notes 3-4 and Supplementary Fig. 5-6). FIG 16 19 map evidence The uncorrected map overstabilizes the open state relative to the semi-open and occluded because it also overestimates the cost of dehydration of the ion, once it is bound to the protein (this effect is negligible for Na+). FIG 39 43 open protein_state The uncorrected map overstabilizes the open state relative to the semi-open and occluded because it also overestimates the cost of dehydration of the ion, once it is bound to the protein (this effect is negligible for Na+). FIG 66 75 semi-open protein_state The uncorrected map overstabilizes the open state relative to the semi-open and occluded because it also overestimates the cost of dehydration of the ion, once it is bound to the protein (this effect is negligible for Na+). FIG 80 88 occluded protein_state The uncorrected map overstabilizes the open state relative to the semi-open and occluded because it also overestimates the cost of dehydration of the ion, once it is bound to the protein (this effect is negligible for Na+). FIG 166 174 bound to protein_state The uncorrected map overstabilizes the open state relative to the semi-open and occluded because it also overestimates the cost of dehydration of the ion, once it is bound to the protein (this effect is negligible for Na+). FIG 218 221 Na+ chemical The uncorrected map overstabilizes the open state relative to the semi-open and occluded because it also overestimates the cost of dehydration of the ion, once it is bound to the protein (this effect is negligible for Na+). FIG 22 40 crystal structures evidence Black circles map the crystal structures obtained at high Ca2+ concentration and at low pH (or high H+) reported in this study. FIG 58 62 Ca2+ chemical Black circles map the crystal structures obtained at high Ca2+ concentration and at low pH (or high H+) reported in this study. FIG 84 90 low pH protein_state Black circles map the crystal structures obtained at high Ca2+ concentration and at low pH (or high H+) reported in this study. FIG 95 102 high H+ protein_state Black circles map the crystal structures obtained at high Ca2+ concentration and at low pH (or high H+) reported in this study. FIG 4 29 Water-density isosurfaces evidence (b) Water-density isosurfaces analogous to those in Fig. 5 are shown for each of the major conformational free-energy minima in the free-energy maps. FIG 106 124 free-energy minima evidence (b) Water-density isosurfaces analogous to those in Fig. 5 are shown for each of the major conformational free-energy minima in the free-energy maps. FIG 132 148 free-energy maps evidence (b) Water-density isosurfaces analogous to those in Fig. 5 are shown for each of the major conformational free-energy minima in the free-energy maps. FIG 4 8 Ca2+ chemical The Ca2+ ion is shown as a red sphere; the protein is shown as in Fig. 5. (c) Close-up views of the ion-binding region in the same conformational free-energy minima. FIG 100 118 ion-binding region site The Ca2+ ion is shown as a red sphere; the protein is shown as in Fig. 5. (c) Close-up views of the ion-binding region in the same conformational free-energy minima. FIG 131 164 conformational free-energy minima evidence The Ca2+ ion is shown as a red sphere; the protein is shown as in Fig. 5. (c) Close-up views of the ion-binding region in the same conformational free-energy minima. FIG 25 29 Ca2+ chemical Key residues involved in Ca2+ and water coordination (W) are highlighted (sticks, black lines). FIG 34 39 water chemical Key residues involved in Ca2+ and water coordination (W) are highlighted (sticks, black lines). FIG 4 22 water-density maps evidence The water-density maps in (b) are shown here as a grey mesh. FIG 7 15 occluded protein_state In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 27 31 Ca2+ chemical In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 32 37 bound protein_state In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 39 44 helix structure_element In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 45 50 TM7ab structure_element In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 83 97 fully occupied protein_state In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 98 101 Na+ chemical In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 128 134 Ala206 residue_name_number In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 143 171 hydrogen-bonding interaction bond_interaction In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 177 183 Ser210 residue_name_number In the occluded state with Ca2+ bound, helix TM7ab bends in the same way as in the fully occupied Na+ state, as the carbonyl of Ala206 forms a hydrogen-bonding interaction with Ser210. FIG 62 65 NCX protein_type Structural mechanism of extracellular forward ion exchange in NCX. FIG 23 28 Ala47 residue_name_number The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 33 37 TM2b structure_element The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 43 49 Ala206 residue_name_number The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 54 58 TM7b structure_element The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 84 89 Glu54 residue_name_number The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 94 98 TM2c structure_element The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 104 110 Glu213 residue_name_number The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 115 119 TM7c structure_element The carbonyl groups of Ala47 (on TM2b) and Ala206 (on TM7b), and the side chains of Glu54 (on TM2c) and Glu213 (on TM7c) are highlighted; these are four of the key residues for ion chelation and conformational changes. FIG 39 53 gating helices structure_element The green open cylinders represent the gating helices TM1 and TM6. FIG 54 57 TM1 structure_element The green open cylinders represent the gating helices TM1 and TM6. FIG 62 65 TM6 structure_element The green open cylinders represent the gating helices TM1 and TM6. FIG 32 50 crystal structures evidence Asterisks mark the states whose crystal structures have been determined in this study. FIG 65 98 calculated free-energy landscapes evidence These states and their connectivity can also be deduced from the calculated free-energy landscapes, which also reveal a Ca2+-loaded outward-facing occluded state, and an unloaded, fully open state. FIG 120 131 Ca2+-loaded protein_state These states and their connectivity can also be deduced from the calculated free-energy landscapes, which also reveal a Ca2+-loaded outward-facing occluded state, and an unloaded, fully open state. FIG 132 146 outward-facing protein_state These states and their connectivity can also be deduced from the calculated free-energy landscapes, which also reveal a Ca2+-loaded outward-facing occluded state, and an unloaded, fully open state. FIG 147 155 occluded protein_state These states and their connectivity can also be deduced from the calculated free-energy landscapes, which also reveal a Ca2+-loaded outward-facing occluded state, and an unloaded, fully open state. FIG 170 178 unloaded protein_state These states and their connectivity can also be deduced from the calculated free-energy landscapes, which also reveal a Ca2+-loaded outward-facing occluded state, and an unloaded, fully open state. FIG 180 190 fully open protein_state These states and their connectivity can also be deduced from the calculated free-energy landscapes, which also reveal a Ca2+-loaded outward-facing occluded state, and an unloaded, fully open state. FIG