PMC 20201216 pmc.key 4822561 CC BY no 0 0 Quinolone-stabilized cleavage complex of topoisomerase IV ACSDAD 10.1107/S2059798316001212 S2059798316001212 4822561 27050128 mn5108 488 Pt 4 Klebsiella pneumoniae cleavage complex quinolone levofloxacin topoisomerase IV DNA binding isomerase isomerase–DNA complex topoisomerases Gram-negative complexes X-ray crystallography protein–DNA–drug complexes This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. 496 surname:Veselkov;given-names:Dennis A. surname:Laponogov;given-names:Ivan surname:Pan;given-names:Xiao-Su surname:Selvarajah;given-names:Jogitha surname:Skamrova;given-names:Galyna B. surname:Branstrom;given-names:Arthur surname:Narasimhan;given-names:Jana surname:Prasad;given-names:Josyula V. N. Vara surname:Fisher;given-names:L. Mark surname:Sanderson;given-names:Mark R. TITLE front 72 2016 0 Structure of a quinolone-stabilized cleavage complex of topoisomerase IV from Klebsiella pneumoniae and comparison with a related Streptococcus pneumoniae complex 0.9950353 evidence cleaner0 2023-07-25T14:48:09Z DUMMY: Structure 0.83335567 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.9984047 species cleaner0 2023-07-25T13:55:59Z MESH: Klebsiella pneumoniae 0.99826175 species cleaner0 2023-07-25T13:56:04Z MESH: Streptococcus pneumoniae ABSTRACT abstract 163 Crystal structures of the cleavage complexes of topoisomerase IV from Gram-negative (K. pneumoniae) and Gram-positive (S. pneumoniae) bacterial pathogens stabilized by the clinically important antibacterial drug levofloxacin are presented, analysed and compared. For K. pneumoniae, this is the first high-resolution cleavage complex structure to be reported. 0.9985715 evidence cleaner0 2023-07-25T14:48:17Z DUMMY: Crystal structures 0.8690473 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.9693932 taxonomy_domain cleaner0 2023-07-25T13:56:13Z DUMMY: Gram-negative 0.9980283 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.96933335 taxonomy_domain cleaner0 2023-07-25T13:56:18Z DUMMY: Gram-positive 0.9981567 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9947513 taxonomy_domain cleaner0 2023-07-25T13:56:23Z DUMMY: bacterial 0.9992244 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.99786574 species cleaner0 2023-07-25T13:56:27Z MESH: K. pneumoniae 0.9451186 evidence cleaner0 2023-07-25T14:48:19Z DUMMY: structure ABSTRACT abstract 522 Klebsiella pneumoniae is a Gram-negative bacterium that is responsible for a range of common infections, including pulmonary pneumonia, bloodstream infections and meningitis. Certain strains of Klebsiella have become highly resistant to antibiotics. Despite the vast amount of research carried out on this class of bacteria, the molecular structure of its topoisomerase IV, a type II topoisomerase essential for catalysing chromosomal segregation, had remained unknown. In this paper, the structure of its DNA-cleavage complex is reported at 3.35 Å resolution. The complex is comprised of ParC breakage-reunion and ParE TOPRIM domains of K. pneumoniae topoisomerase IV with DNA stabilized by levofloxacin, a broad-spectrum fluoroquinolone antimicrobial agent. This complex is compared with a similar complex from Streptococcus pneumoniae, which has recently been solved. 0.9980265 species cleaner0 2023-07-25T13:55:59Z MESH: Klebsiella pneumoniae 0.978526 taxonomy_domain cleaner0 2023-07-25T13:56:41Z DUMMY: Gram-negative bacterium 0.8935523 taxonomy_domain cleaner0 2023-07-25T13:56:53Z DUMMY: Klebsiella 0.9746953 taxonomy_domain cleaner0 2023-07-25T13:56:49Z DUMMY: bacteria 0.9873208 evidence cleaner0 2023-07-25T14:48:23Z DUMMY: structure 0.81394833 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.99805975 protein_type cleaner0 2023-07-25T13:59:39Z MESH: type II topoisomerase 0.9964181 evidence cleaner0 2023-07-25T14:48:25Z DUMMY: structure chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA protein PR: cleaner0 2023-07-25T14:03:41Z ParC structure_element SO: cleaner0 2023-07-25T14:06:01Z breakage-reunion protein PR: cleaner0 2023-07-25T14:03:46Z ParE structure_element SO: cleaner0 2023-07-25T14:06:16Z TOPRIM 0.99839836 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.60313827 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.99501544 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9991844 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9865645 chemical cleaner0 2023-07-25T14:01:12Z CHEBI: fluoroquinolone 0.998348 species cleaner0 2023-07-25T13:56:04Z MESH: Streptococcus pneumoniae INTRO title_1 1397 Introduction   INTRO paragraph 1414 Klebsiella is a genus belonging to the Enterobacteriaceae family of Gram-negative bacilli, which is divided into seven species with demonstrated similarities in DNA homology: K. pneumoniae, K. ozaenae, K. rhinoscleromatis, K. oxytoca, K. planticola, K. terrigena and K. ornithinolytica. K. pneumoniae is the most medically important species of the genus owing to its high resistance to antibiotics. Significant morbidity and mortality has been associated with an emerging, highly drug-resistant strain of K. pneumoniae characterized as producing the carbapenemase enzyme (KPC-producing bacteria; Nordmann et al., 2009). The best therapeutic approach to KPC-producing organisms has yet to be defined. However, common treatments (based on in vitro susceptibility testing) are the polymyxins, tigecycline and, less frequently, aminoglycoside antibiotics (Arnold et al., 2011). Another effective strategy involves the limited use of certain antimicrobials, specifically fluoroquinolones and cephalo­sporins (Gasink et al., 2009). Several new antibiotics are under development for KPC producers. These include combinations of existing β-lactam antibiotics with new β-lactamase inhibitors able to circumvent KPC resistance. Neoglycosides are novel aminoglycosides that have activity against KPC-producing bacteria that are also being developed (Chen et al., 2012). 0.7833224 taxonomy_domain cleaner0 2023-07-25T13:57:44Z DUMMY: Klebsiella 0.9896713 taxonomy_domain cleaner0 2023-07-25T13:57:24Z DUMMY: Enterobacteriaceae 0.95838034 taxonomy_domain cleaner0 2023-07-25T13:57:28Z DUMMY: Gram-negative bacilli chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA 0.99668694 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9967196 species cleaner0 2023-07-25T13:57:54Z MESH: K. ozaenae 0.99659187 species cleaner0 2023-07-25T13:57:58Z MESH: K. rhinoscleromatis 0.99684733 species cleaner0 2023-07-25T13:58:03Z MESH: K. oxytoca 0.99637413 species cleaner0 2023-07-25T13:58:07Z MESH: K. planticola 0.9967933 species cleaner0 2023-07-25T13:58:12Z MESH: K. terrigena 0.996679 species cleaner0 2023-07-25T13:58:16Z MESH: K. ornithinolytica 0.9955092 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9969053 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99565375 protein_type cleaner0 2023-07-25T14:01:33Z MESH: carbapenemase 0.9940204 taxonomy_domain cleaner0 2023-07-25T13:56:49Z DUMMY: bacteria 0.9555781 experimental_method cleaner0 2023-07-25T14:52:53Z MESH: in vitro susceptibility testing 0.99856734 chemical cleaner0 2023-07-25T14:01:56Z CHEBI: polymyxins 0.9990127 chemical cleaner0 2023-07-25T14:02:00Z CHEBI: tigecycline 0.9477348 chemical cleaner0 2023-07-25T14:02:04Z CHEBI: aminoglycoside 0.9765737 chemical cleaner0 2023-07-25T14:42:26Z CHEBI: fluoroquinolones chemical CHEBI: cleaner0 2023-07-25T14:42:41Z cephalo­sporins 0.9234915 protein_type cleaner0 2023-07-25T14:43:23Z MESH: β-lactamase 0.9992853 chemical cleaner0 2023-07-25T14:02:10Z CHEBI: Neoglycosides 0.99875367 chemical cleaner0 2023-07-25T14:02:18Z CHEBI: aminoglycosides 0.9785209 taxonomy_domain cleaner0 2023-07-25T13:56:49Z DUMMY: bacteria INTRO paragraph 2779 Type II topoisomerase enzymes play important roles in prokaryotic and eukaryotic DNA replication, recombination and transcription (Drlica et al., 2008; Laponogov et al., 2013; Lee et al., 2013; Nitiss, 2009a ,b ; Schoeffler & Berger, 2008; Sissi & Palumbo, 2009; Vos et al., 2011; Wendorff et al., 2012; Wu et al., 2011, 2013). In bacteria, topoisomerase IV, a tetramer of two ParC and two ParE subunits, unlinks daughter chromosomes prior to cell division, whereas the related enzyme gyrase, a GyrA2GyrB2 tetramer, supercoils DNA and helps unwind DNA at replication forks. Both enzymes act via a double-strand DNA break involving a cleavage complex and are targets for quinolone antimicrobials that act by trapping these enzymes at the DNA-cleavage stage and preventing strand re-joining (Drlica et al., 2008). 0.95464545 protein_type cleaner0 2023-07-25T14:43:27Z MESH: Type II topoisomerase enzymes 0.99884963 taxonomy_domain cleaner0 2023-07-25T14:42:06Z DUMMY: prokaryotic 0.9986545 taxonomy_domain cleaner0 2023-07-25T14:42:09Z DUMMY: eukaryotic chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA 0.99891686 taxonomy_domain cleaner0 2023-07-25T13:56:49Z DUMMY: bacteria 0.73998654 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.9987166 oligomeric_state cleaner0 2023-07-25T14:24:22Z DUMMY: tetramer 0.9943597 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.9907799 protein cleaner0 2023-07-25T14:03:45Z PR: ParE 0.86984783 protein_type cleaner0 2023-07-25T14:03:18Z MESH: gyrase 0.98574257 complex_assembly cleaner0 2023-07-25T14:04:09Z GO: GyrA2GyrB2 0.99886 oligomeric_state cleaner0 2023-07-25T14:24:23Z DUMMY: tetramer chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA INTRO paragraph 3591 Levofloxacin is a broad-spectrum third-generation fluoro­quinolone antibiotic. It is active against Gram-positive and Gram-negative bacteria and functions by inhibiting gyrase and topoisomerase IV (Drlica & Zhao, 1997; Laponogov et al., 2010). Acquiring a deep structural and functional understanding of the mode of action of fluoroquinolones (Tomašić & Mašič, 2014) and the development of new drugs targeted against topoisomerase IV and gyrase from a wide range of Gram-positive and Gram-negative pathogenic bacteria are highly active areas of current research directed at overcoming the vexed problem of drug resistance (Bax et al., 2010; Chan et al., 2015; Drlica et al., 2014; Mutsaev et al., 2014; Pommier, 2013; Srikannathasan et al., 2015). 0.9992699 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: Levofloxacin 0.97983545 taxonomy_domain cleaner0 2023-07-25T13:56:18Z DUMMY: Gram-positive 0.9393108 taxonomy_domain cleaner0 2023-07-25T13:58:45Z DUMMY: Gram-negative bacteria 0.79143083 protein_type cleaner0 2023-07-25T14:03:17Z MESH: gyrase 0.82725424 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.9948644 chemical cleaner0 2023-07-25T14:42:59Z CHEBI: fluoroquinolones 0.96102214 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.929206 protein_type cleaner0 2023-07-25T14:03:18Z MESH: gyrase 0.9806581 taxonomy_domain cleaner0 2023-07-25T13:56:18Z DUMMY: Gram-positive 0.95993716 taxonomy_domain cleaner0 2023-07-25T13:56:13Z DUMMY: Gram-negative 0.91757727 taxonomy_domain cleaner0 2023-07-25T13:56:49Z DUMMY: bacteria INTRO paragraph 4344 Here, we report the first three-dimensional X-ray structure of a K. pneumoniae topoisomerase IV ParC/ParE cleavage complex with DNA stabilized by levofloxacin. The crystal structure provides structural information on topoisomerase IV from K. pneumoniae, a pathogen for which drug resistance is a serious concern. The structure of the ParC/ParE–DNA–levofloxacin binding site highlights the details of the cleavage-complex assembly that are essential for the rational design of Klebsiella topoisomerase inhibitors. 0.99835664 evidence cleaner0 2023-07-25T14:48:35Z DUMMY: X-ray structure 0.99824303 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.77934325 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.9941831 complex_assembly cleaner0 2023-07-25T14:06:40Z GO: ParC/ParE 0.99338806 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9990916 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9987276 evidence cleaner0 2023-07-25T14:48:37Z DUMMY: crystal structure 0.8437482 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.99829626 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9978498 evidence cleaner0 2023-07-25T14:48:40Z DUMMY: structure complex_assembly GO: cleaner0 2023-07-25T14:06:41Z ParC/ParE 0.8439887 site cleaner0 2023-07-25T14:07:30Z SO: DNA–levofloxacin binding site 0.7741324 taxonomy_domain cleaner0 2023-07-25T14:42:15Z DUMMY: Klebsiella 0.9223179 protein_type cleaner0 2023-07-25T14:43:32Z MESH: topoisomerase METHODS title_1 4861 Materials and methods   METHODS title_2 4887 Cloning, expression and purification of K. pneumoniae and Streptococcus pneumoniae ParC55/ParE30   METHODS paragraph 4988 Cloning, expression and purification protocols are described in detail in the Supporting Information. Table 1 ▸ contains the sequence information for all of the components of the complexes. Fig. 1 ▸ provides information about the protein and DNA constructs used in the experimental work. METHODS title_2 5280 Preparation of the DNA oligomer   METHODS paragraph 5316 For the K. pneumoniae cleavage complex, two DNA oligomers (5′-CGTATTACGTTGTAT-3′ and 5′-GATCATACAACGTAATACG-3′) were synthesized by solid-phase phosphoramidite chemistry and doubly HPLC purified by Metabion, Munich, Germany. The DNA sequence was designed to make a complementary DNA 34-mer that contained the ‘pre-cut’ binding-site fragment: 5′-CGTATTACGTTGTAT↓GATCATACAACGTAATACG-3′ and 3′-GCATAATGCA­ACATACTAG↓TATGTTGCATTATGC-5′ (the cuts are shown by arrows; see Fig. 1 ▸ b). METHODS paragraph 5822 For the S. pneumoniae cleavage complex, two DNA oligomers (5′-CATGAATGACTATGCACG-3′ and 5′-CGTGCATAGTCATTCATG-3′) were synthesized by solid-phase phosphoramidite chemistry and doubly HPLC purified by Metabion, Munich, Germany. The DNA sequence corresponds to the E-site 18-mer, which was found to be a better DNA length for crystallization of the S. pneumoniae topo­isomerase IV cleavage complexes in order to give stable reproducible crystals (see Fig. 1 ▸ b). METHODS paragraph 6295 DNA stock solutions were made by mixing the required oligomers (at 1 mM in 20 mM Tris pH 7.5, 200 mM NaCl, 1 mM β-mercaptothanol, 0.05% NaN3) in equal volumes. For DNA annealing, the mixtures of complementary oligomers were heated to 98°C and then slowly cooled to 4°C over a 48 h period. METHODS title_2 6597 Crystallization and data collection   METHODS paragraph 6637 Crystallization information for both the S. pneumoniae and the K. pneumoniae topoisomerase IV cleavage complexes is summarized in Table 2 ▸. Data-collection statistics and details are provided in Table 3 ▸. Structure-solution and refinement details are provided in Table 4 ▸. METHODS title_3 6919 S. pneumoniae topoisomerase IV   METHODS paragraph 6955 Protein was mixed with DNA in a 1:1:1.2 molar ratio (ParC55:ParE30:18-mer E-site DNA) with an overall concentration of 4 mg ml−1. Levofloxacin and magnesium chloride were added to final concentrations of 2 and 10 mM, respectively. The mixture was pre-incubated at room temperature overnight. Initial crystallization screening was performed by sitting-drop vapour diffusion in a 96-well MRC crystallization plate (600 nl protein mixture + 400 nl reservoir solution) using a Mosquito robot (TTP Labtech; http://www.ttplabtech.com). The best crystals were obtained using capillary counter-diffusion against 50 mM sodium cacodylate pH 6.5, 2.5% Tacsimate (Hampton Research; McPherson & Cudney, 2006), 7% 2-propanol, 62.5 mM KCl, 7.5 mM MgCl2 at 304 K. The crystals were flash-cooled at 100 K in cryoprotectant buffer C [50 mM sodium cacodyl­ate pH 6.5, 2.5% Tacsimate, 62.5 mM KCl, 7.5 mM MgCl2, 1 mM β-mercapto­ethanol, 30%(v/v) MPD]. The best data set was collected on beamline I03 at Diamond Light Source at a wavelength of 0.9763 Å using an ADSC Quantum 315 detector. The data extended to 2.6 Å resolution anisotropically and were used in refinement with a maximum-likelihood target in the initial refinement cycles; they were deposited in the PDB without introducing a resolution cutoff. However, owing to the high R merge values in the outer shells, the final resolution is given as 2.9 Å and the statistics are reported according to this ‘trimmed’ resolution. The resolution cutoff was based on the rejection criteria R merge < 50% and I/σ(I) > 1.5 in the highest resolution shell. The data were integrated using HKL-2000 (Otwinowski & Minor, 1997). The space group was determined to be P3121, with unit-cell parameters a = b = 157.83, c = 211.15 Å. METHODS paragraph 8761 The structure was solved by molecular replacement using Phaser (McCoy et al., 2007) as implemented within the CCP4 suite (Winn et al., 2011) and our previously published topo­isomerase IV–levofloxacin structure (PDB entry 3k9f; Laponogov et al., 2010). Refinement was performed in PHENIX (Adams et al., 2002, 2010) with manual inspection and corrections performed in WinCoot (Emsley & Cowtan, 2004; Emsley et al., 2010).The structure was verified using WinCoot and PROCHECK (Laskowski et al., 1993). METHODS title_3 9264 K. pneumoniae topoisomerase IV   METHODS paragraph 9300 ParC55/ParE30 protein stock in incubation buffer (at 4.5 mg ml−1) was mixed with the ‘pre-cut’ 34-mer DNA stock in a 1:1.2 protein:DNA molar ratio. High-concentration stocks of levofloxacin and MgCl2 were added to give final concentrations of 2 and 10 mM, respectively. The mixture was incubated overnight at room temperature. Initial crystallization screening was performed by sitting-drop vapour diffusion in 96-well MRC crystallization plates (600 nl protein mixture + 300 nl reservoir solution) using a Mosquito robot. When the optimal crystallization conditions had been established, conventional hanging-drop vapour diffusion in 24-well Linbro plates (4 µl protein mixture + 2 µl reservoir solution) was used to increase the crystal size. METHODS paragraph 10067 Crystals formed after ∼7–10 d at room temperature. The crystallization conditions varied slightly from batch to batch in the range 0.1 M Tris pH 7.5–8.0, 0–50 mM NaCl, 4–8% PEG 4000, 12–15% glycerol. METHODS paragraph 10285 It should be mentioned that several other DNA oligomers with the same binding-site sequence were tried for crystallization (i.e. 20-mer, ‘pre-cut’ 20-mer and 34-mer DNA sequences). However, these protein–DNA–drug complexes did not produce good-quality crystals for data collection. METHODS paragraph 10575 Crystals were tested in-house for diffraction quality using an Oxford Xcalibur Nova CCD diffractometer and were then transported for high-resolution data collection at Diamond Light Source (Harwell Science and Innovation Campus, Oxfordshire, England). The data were collected on beamline I03 (wavelength 0.9762 Å) using a Pilatus 6M-F detector (0.2° oscillation per image, 100 K nitrogen stream). The best crystals diffracted to ∼3.2 Å resolution. METHODS paragraph 11034 All data sets were integrated with MOSFLM (Leslie & Powell, 2007) and merged with SCALA (Evans, 2006) as implemented in CCP4 (Winn et al., 2011). The ParC55/ParE30–DNA–levofloxacin crystals belonged to space group P21, with unit-cell parameters a = 102.07, b = 161.53, c = 138.60 Å, α = 90.00, β = 94.22, γ = 90.00°. They contained two ParC/ParE–DNA heterodimers in the asymmetric unit. METHODS paragraph 11438 Several data sets were collected, some of which contained visible diffraction to 3.2 Å resolution, but owing to potential internal twinning and space-group ambiguity (most data sets could be integrated in space groups P21 and P212121) and the fact that the structure solution could be obtained in both space groups, careful selection of the integration ranges as well as appropriate data truncation were necessary. The best region of data was integrated to 3.35 Å (see Table 3 ▸ for statistics). The resolution cutoff was based on the rejection criteria R merge < 50% and I/σ(I) > 1.5 in the highest resolution shell. METHODS paragraph 12065 The structure was solved by the molecular-replacement method in Phaser (McCoy et al., 2007) using the levofloxacin–DNA cleavage complex of topoisomerase IV from S. pneumoniae as a search model (PDB entry 3rae; ∼41.8% sequence identity). Refinement was performed in PHENIX (Adams et al., 2002, 2010) using secondary-structure restraints derived by superposition of the K. pneumoniae ParC/ParE model with the previously solved complex of S. pneumoniae ParC/ParE. Rigid-body, positional and TLS refinements were performed. Levofloxacin molecules and magnesium ions were placed during the final stages of refinement based on missing electron density in the σA-weighted 2F obs − F calc and F obs − F calc maps. WinCoot (Emsley & Cowtan, 2004) was used for interactive model fitting. The structure was verified using WinCoot and PROCHECK (Laskowski et al., 1993). The resulting model had good geometry, with 87.8, 9.9 and 1.3% of residues in the favoured, allowed and generously allowed regions of the Ramachandran plot, respectively, and no more than 1% of residues in disallowed regions. The data-collection and final refinement statistics are given in Tables 3 ▸ and 4 ▸. Sequence alignment was performed in ClustalW (Larkin et al., 2007, McWilliam et al., 2013). Figures were prepared using PyMOL (DeLano, 2008), CHEMDRAW (Evans, 2014) and CorelDRAW (http://www.coreldraw.com). RESULTS title_1 13454 Results and discussion   RESULTS paragraph 13481 We have co-crystallized the K. pneumoniae topoisomerase IV ParC/ParE breakage-reunion domain (ParC55; residues 1–490) and ParE TOPRIM domain (ParE30; residues 390–631) with a precut 34 bp DNA duplex (the E-site), stabilized by levofloxacin. The X-ray crystal structure of the complex was determined to 3.35 Å resolution, revealing a closed ParC55 dimer flanked by two ParE30 monomers (Figs. 1 ▸, 2 ▸ and 3 ▸). The overall architecture of this complex is similar to that found for S. pneumoniae topoisomerase–DNA–drug complexes (Laponogov et al., 2009, 2010). Residues 6–30 of the N-terminal α-helix α1 of the ParC subunit again embrace the ParE subunit, ‘hugging’ the ParE subunits close to either side of the ParC dimer (Laponogov et al., 2010). Deletion of this ‘arm’ α1 results in loss of DNA-cleavage activity (Laponogov et al., 2007) and is clearly very important in complex stability (Fig. 3 ▸). This structural feature was absent in our original ParC55 structure (Laponogov et al., 2007; Sohi et al., 2008). The upper region of the topoisomerase complex consists of the E-subunit TOPRIM metal-binding domain formed of four parallel β-sheets and the surrounding α-helices. The C-subunit provides the WHD (winged-helix domain; a CAP-like structure; McKay & Steitz, 1981) and the ‘tower’ which form the U groove-shaped protein region into which the G-gate DNA binds with an induced U-shaped bend. The lower C-gate region (Fig. 3 ▸) consists of the same disposition of pairs of two long α-helices terminated by a spanning short α-helix forming a 30 Å wide DNA-accommodating cavity through which the T-gate DNA passes as found in the S. pneumoniae complex. Owing to the structural similarity, it appears that the topo­isomerases IV from K. pneumoniae and S. pneumoniae are likely to follow a similar overall topoisomerase catalytic cycle as shown in Fig. 4 ▸; we have confirmation of one intermediate from our recent structure of the full complex (the holoenzyme less the CTD β-pinwheel domain) with the ATPase domain in the open conformation (Laponogov et al., 2013). 0.9987688 experimental_method cleaner0 2023-07-25T14:52:59Z MESH: co-crystallized 0.99840206 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.95960265 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV complex_assembly GO: cleaner0 2023-07-25T14:06:41Z ParC/ParE structure_element SO: cleaner0 2023-07-25T14:06:01Z breakage-reunion 0.9986889 protein cleaner0 2023-07-25T14:33:37Z PR: ParC55 0.99739915 residue_range cleaner0 2023-07-25T14:23:07Z DUMMY: 1–490 0.99886775 protein cleaner0 2023-07-25T14:03:46Z PR: ParE structure_element SO: cleaner0 2023-07-25T14:06:16Z TOPRIM 0.9985896 protein cleaner0 2023-07-25T14:33:39Z PR: ParE30 0.9976611 residue_range cleaner0 2023-07-25T14:23:04Z DUMMY: 390–631 0.9976459 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9927888 site cleaner0 2023-07-25T14:53:29Z SO: E-site 0.9991265 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.99823445 evidence cleaner0 2023-07-25T14:48:45Z DUMMY: X-ray crystal structure 0.9992544 protein_state cleaner0 2023-07-25T14:23:11Z DUMMY: closed 0.99875546 protein cleaner0 2023-07-25T14:33:44Z PR: ParC55 0.998879 oligomeric_state cleaner0 2023-07-25T14:20:29Z DUMMY: dimer 0.9981425 protein cleaner0 2023-07-25T14:33:48Z PR: ParE30 0.9988433 oligomeric_state cleaner0 2023-07-25T14:20:36Z DUMMY: monomers 0.9983236 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9974201 residue_range cleaner0 2023-07-25T14:23:01Z DUMMY: 6–30 0.99918294 structure_element cleaner0 2023-07-25T14:32:57Z SO: α-helix 0.9989114 structure_element cleaner0 2023-07-25T14:22:17Z SO: α1 0.99914145 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.99903774 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.99867 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.99911374 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.99890816 oligomeric_state cleaner0 2023-07-25T14:20:30Z DUMMY: dimer 0.93558586 experimental_method cleaner0 2023-07-25T14:53:03Z MESH: Deletion of 0.9963787 structure_element cleaner0 2023-07-25T14:33:02Z SO: arm 0.9994838 structure_element cleaner0 2023-07-25T14:22:17Z SO: α1 protein_state DUMMY: cleaner0 2023-07-25T14:37:19Z loss of DNA-cleavage activity 0.9989447 protein cleaner0 2023-07-25T14:33:58Z PR: ParC55 0.99683714 evidence cleaner0 2023-07-25T14:48:49Z DUMMY: structure 0.92049813 protein_type cleaner0 2023-07-25T14:38:12Z MESH: topoisomerase 0.99771005 protein cleaner0 2023-07-25T14:52:10Z PR: E-subunit 0.9520648 structure_element cleaner0 2023-07-25T14:22:55Z SO: TOPRIM metal-binding domain 0.99856985 structure_element cleaner0 2023-07-25T14:33:30Z SO: parallel β-sheets 0.9990757 structure_element cleaner0 2023-07-25T14:34:23Z SO: α-helices 0.99685293 protein cleaner0 2023-07-25T14:52:02Z PR: C-subunit 0.9993967 structure_element cleaner0 2023-07-25T14:38:27Z SO: WHD 0.99901634 structure_element cleaner0 2023-07-25T14:38:29Z SO: winged-helix domain 0.9520038 structure_element cleaner0 2023-07-25T14:38:31Z SO: CAP-like structure 0.97492325 structure_element cleaner0 2023-07-25T14:38:42Z SO: tower structure_element SO: cleaner0 2023-07-25T14:39:36Z U groove structure_element SO: cleaner0 2023-07-25T14:21:46Z G-gate 0.99712175 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA structure_element SO: cleaner0 2023-07-25T14:21:17Z C-gate 0.97197616 structure_element cleaner0 2023-07-25T14:39:42Z SO: long α-helices 0.99347615 structure_element cleaner0 2023-07-25T14:39:44Z SO: short α-helix 0.990876 site cleaner0 2023-07-25T14:53:34Z SO: DNA-accommodating cavity structure_element SO: cleaner0 2023-07-25T14:52:31Z T-gate 0.9967733 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.99772805 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae complex_assembly GO: cleaner0 2023-07-25T14:40:51Z topo­isomerases IV 0.9982472 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99819094 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9854866 protein_type cleaner0 2023-07-25T14:43:37Z MESH: topoisomerase 0.99762684 evidence cleaner0 2023-07-25T14:48:52Z DUMMY: structure 0.98970866 protein_state cleaner0 2023-07-25T14:39:54Z DUMMY: full complex 0.9992118 protein_state cleaner0 2023-07-25T14:39:56Z DUMMY: holoenzyme structure_element SO: cleaner0 2023-07-25T14:40:24Z CTD β-pinwheel 0.9982599 structure_element cleaner0 2023-07-25T14:40:28Z SO: ATPase domain 0.9992829 protein_state cleaner0 2023-07-25T14:39:59Z DUMMY: open RESULTS paragraph 15603 The G-gate DNA for the S. pneumoniae complex consists of an 18-base-pair E-site sequence (our designation for a DNA site which we first found from DNA-mapping studies; Leo et al., 2005; Arnoldi et al., 2013; Fig. 1 ▸). The crystallized complex was formed by turning over the topoisomerase tetramer in the presence of DNA and levofloxacin and crystallizing the product. In contrast, the K. pneumoniae complex was formed by co-crystallizing the topoisomerase tetramer complex in the presence of a 34-base-pair pre-cleaved DNA in the presence of levofloxacin. In both cases the DNA is bent into a U-form and bound snugly against the protein of the G-gate. We have been able to unambiguously read off the DNA sequences in the electron-density maps. 0.9945329 structure_element cleaner0 2023-07-25T14:21:46Z SO: G-gate 0.99850476 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9983961 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.99768853 site cleaner0 2023-07-25T14:53:39Z SO: E-site 0.964101 site cleaner0 2023-07-25T14:23:52Z SO: DNA site 0.89909416 experimental_method cleaner0 2023-07-25T14:23:24Z MESH: DNA-mapping studies 0.48656628 experimental_method cleaner0 2023-07-25T14:23:30Z MESH: crystallized 0.99777657 protein_type cleaner0 2023-07-25T14:43:43Z MESH: topoisomerase 0.9984073 oligomeric_state cleaner0 2023-07-25T14:24:23Z DUMMY: tetramer 0.9606428 protein_state cleaner0 2023-07-25T14:23:38Z DUMMY: presence of 0.99778986 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.99881727 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9870214 experimental_method cleaner0 2023-07-25T14:23:32Z MESH: crystallizing 0.99833447 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.998607 experimental_method cleaner0 2023-07-25T14:23:27Z MESH: co-crystallizing 0.9971288 protein_type cleaner0 2023-07-25T14:43:46Z MESH: topoisomerase 0.9982173 oligomeric_state cleaner0 2023-07-25T14:24:23Z DUMMY: tetramer 0.79218626 protein_state cleaner0 2023-07-25T14:23:38Z DUMMY: presence of 0.9968751 protein_state cleaner0 2023-07-25T14:23:43Z DUMMY: pre-cleaved 0.9985281 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.89513683 protein_state cleaner0 2023-07-25T14:23:38Z DUMMY: presence of 0.99858 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9968882 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.99312526 protein_state cleaner0 2023-07-25T14:54:16Z DUMMY: U-form protein_state DUMMY: cleaner0 2023-07-25T14:34:17Z bound 0.997433 structure_element cleaner0 2023-07-25T14:21:46Z SO: G-gate 0.80029345 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.99893767 evidence cleaner0 2023-07-25T14:48:58Z DUMMY: electron-density maps RESULTS paragraph 16350 There is 41.6% sequence identity and 54.4% sequence homology between the ParE subunit of K. pneumoniae and that of S. pneumoniae. For the ParC subunits, the figures are 40.8 identity and 55.6% homology between the two organisms. The sequence alignment is given in Supplementary Fig. S1, with the key metal-binding residues and those which give rise to quinolone resistance highlighted. The binding of levofloxacin in the K. pneumoniae complex is shown in Figs. 2 ▸, 3 ▸ and 5 ▸ and is hemi-intercalated into the DNA and stacked against the DNA bases at the cleavage site (positions −1 and +1 of the four-base-pair staggered cut in the 34-mer DNA) which is similar to that found for the S. pneumoniae complex. Fig. 5 ▸ presents side-by-side views of the K. pneumoniae and S. pneumoniae active sites which shows that levofloxacin binds in a very similar manner in these two complexes with extensive π–π stacking interaction between the bases and the drug. The methylpiperazine at C7 (using the conventional quinolone numbering; C9 in the IUPAC numbering) on the drug extends towards residues Glu474 and Glu475 for S. pneumoniae and towards Gln460 and Glu461 for K. pneumoniae, where the glutamate at 474 is substituted by a glutamine at 460 in the Klebsiella strain. Interestingly, for S. pneumoniae we observe only one possible orientation of the C7 groups in both sub­units, while for K. pneumoniae we can see two: one with the same orientation as in S. pneumoniae and other rotated 180° away. They both exist within the same crystal in the two different dimers in the asymmetric unit. The side chains surrounding them in ParE are quite disordered and are more defined in K. pneumoniae (even though this complex is at lower resolution) than in S. pneumoniae. There are no direct hydrogen bonds from the drug to these residues (although it is possible that some are formed through water, which cannot be observed at this resolution). Obviously, the drug–ParE interaction in this region is less strong compared with PD 0305970 binding to the S. pneumoniae DNA complex, where PD 0305970 forms a hydrogen bond to ParE residue Asp475 and can form one to Asp474 if the bond rotates (Laponogov et al., 2010). This may explain why drug-resistance mutations for levofloxacin are more likely to form in the ParC subunits rather than in the ParE subunits. 0.9985201 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.9981732 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9981801 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.99809676 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.9983183 experimental_method cleaner0 2023-07-25T14:53:08Z MESH: sequence alignment 0.9988264 site cleaner0 2023-07-25T14:53:46Z SO: metal-binding residues 0.9989184 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9979357 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.96886516 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.81724125 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9957226 site cleaner0 2023-07-25T14:53:50Z SO: cleavage site 0.91113573 residue_number cleaner0 2023-07-25T14:32:02Z DUMMY: −1 residue_number DUMMY: cleaner0 2023-07-25T14:32:43Z +1 0.97470677 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9981618 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9980726 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9980286 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9990308 site cleaner0 2023-07-25T14:53:54Z SO: active sites 0.99879223 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.993351 bond_interaction cleaner0 2023-07-25T14:26:29Z MESH: π–π stacking interaction 0.99655724 chemical cleaner0 2023-07-25T14:29:01Z CHEBI: methylpiperazine 0.9952042 chemical cleaner0 2023-07-25T14:43:04Z CHEBI: quinolone 0.99942684 residue_name_number cleaner0 2023-07-25T14:27:54Z DUMMY: Glu474 0.9994332 residue_name_number cleaner0 2023-07-25T14:27:58Z DUMMY: Glu475 0.9981634 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9995127 residue_name_number cleaner0 2023-07-25T14:28:03Z DUMMY: Gln460 0.9994655 residue_name_number cleaner0 2023-07-25T14:28:07Z DUMMY: Glu461 0.9980914 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae residue_name_number DUMMY: cleaner0 2023-07-25T14:27:07Z glutamate at 474 residue_name_number DUMMY: cleaner0 2023-07-25T14:27:40Z glutamine at 460 0.99241626 taxonomy_domain cleaner0 2023-07-25T14:28:32Z DUMMY: Klebsiella 0.99809504 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9971411 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9979572 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.968922 evidence cleaner0 2023-07-25T14:49:04Z DUMMY: crystal 0.9987387 oligomeric_state cleaner0 2023-07-25T14:32:52Z DUMMY: dimers 0.9988141 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.99787974 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99789166 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.99686784 bond_interaction cleaner0 2023-07-25T14:28:41Z MESH: hydrogen bonds 0.9938929 chemical cleaner0 2023-07-25T14:29:27Z CHEBI: water 0.43409234 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.998289 chemical cleaner0 2023-07-25T14:28:51Z CHEBI: PD 0305970 0.9980553 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.98690504 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9975598 chemical cleaner0 2023-07-25T14:28:52Z CHEBI: PD 0305970 0.9970821 bond_interaction cleaner0 2023-07-25T14:28:44Z MESH: hydrogen bond 0.997598 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.999468 residue_name_number cleaner0 2023-07-25T14:31:55Z DUMMY: Asp475 0.9994392 residue_name_number cleaner0 2023-07-25T14:31:57Z DUMMY: Asp474 0.99867827 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.99766207 protein cleaner0 2023-07-25T14:03:41Z PR: ParC protein PR: cleaner0 2023-07-25T14:03:46Z ParE RESULTS paragraph 18713 For both complexes there is a Mg2+ ion bound to levofloxacin between the carbonyl group at position 4 of the quinolone and the carboxyl at position 6 (Figs. 2 ▸ and 5 ▸ and Supplementary Fig. 2 ▸). For S. pneumoniae topoisomerase IV, one of the O atoms of the carboxyl of Asp83 points towards the Mg2+ ion and is within hydrogen-bonding distance (5.04 Å) through an Mg2+-coordinated water. For K. pneumoniae both of the carboxyl O atoms are pointing towards the Mg2+ ion at distances of 4.86 and 4.23 Å. These residues are ordered in only one of the two dimers in the K. pneumoniae crystal (the one in which the C7 group is pointing towards the DNA away from ParE, although the conformations of these two groups on the drug are probably not correlated). 0.99876034 chemical cleaner0 2023-07-25T14:29:15Z CHEBI: Mg2+ 0.79460996 protein_state cleaner0 2023-07-25T14:43:16Z DUMMY: bound to 0.9990497 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.99841726 chemical cleaner0 2023-07-25T14:43:08Z CHEBI: quinolone 0.9985083 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.8904655 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.99946815 residue_name_number cleaner0 2023-07-25T14:31:06Z DUMMY: Asp83 0.99855185 chemical cleaner0 2023-07-25T14:29:18Z CHEBI: Mg2+ 0.9971292 bond_interaction cleaner0 2023-07-25T14:31:00Z MESH: hydrogen-bonding 0.98301584 chemical cleaner0 2023-07-25T14:29:22Z CHEBI: Mg2+ 0.9988104 chemical cleaner0 2023-07-25T14:29:24Z CHEBI: water 0.99845415 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99853647 chemical cleaner0 2023-07-25T14:29:20Z CHEBI: Mg2+ 0.9987025 oligomeric_state cleaner0 2023-07-25T14:32:52Z DUMMY: dimers 0.99833155 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99787474 evidence cleaner0 2023-07-25T14:49:10Z DUMMY: crystal 0.9941613 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.6069613 protein cleaner0 2023-07-25T14:03:46Z PR: ParE RESULTS paragraph 19479 The topoisomerase IV ParE27-ParC55 fusion protein from K. pneumoniae was fully active in promoting levofloxacin-mediated cleavage of DNA (Fig. 6 ▸). In the absence of the drug and ATP, the protein converted supercoiled pBR322 into a ladder of bands corresponding to relaxed DNA. The inclusion of levofloxacin produced linear DNA in a dose-dependent and ATP-independent fashion. Similar behaviour was observed for the S. pneumoniae topo­isomerase IV ParE30-ParC55 fusion protein. The CC25 (the drug concentration that converted 25% of the supercoiled DNA substrate to a linear form) was 0.5 µM for the Klebsiella enzyme and 1 µM for the pneumococcal enzyme. Interestingly, K. pneumoniae strains are much more susceptible to levofloxacin than S. pneumoniae, with typical MIC values of 0.016 and 1 mg l−1, respectively (Odenholt & Cars, 2006), reflecting differences in multiple factors (in addition to binding affinity) that influence drug responses, including membrane, peptidoglycan structure, drug-uptake and efflux mechanisms. Moreover, although topoisomerase IV is primarily the target of levofloxacin in S. pneumoniae, it is likely to be gyrase in the Gram-negative K. pneumoniae. complex_assembly GO: cleaner0 2023-07-25T14:25:38Z topoisomerase IV 0.9883413 complex_assembly cleaner0 2023-07-25T14:44:47Z GO: ParE27-ParC55 0.99830294 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99897254 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA 0.99761784 protein_state cleaner0 2023-07-25T14:54:21Z DUMMY: absence of 0.9889319 chemical cleaner0 2023-07-25T14:47:11Z CHEBI: drug 0.9983248 chemical cleaner0 2023-07-25T14:30:36Z CHEBI: ATP chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA 0.9990933 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA chemical CHEBI: cleaner0 2023-07-25T14:30:36Z ATP species MESH: cleaner0 2023-07-25T13:57:01Z S. pneumoniae complex_assembly GO: cleaner0 2023-07-25T14:30:12Z topo­isomerase IV 0.9783872 complex_assembly cleaner0 2023-07-25T14:44:51Z GO: ParE30-ParC55 0.92020863 evidence cleaner0 2023-07-25T14:49:15Z DUMMY: CC25 chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA 0.9981312 taxonomy_domain cleaner0 2023-07-25T14:42:21Z DUMMY: Klebsiella 0.9982681 taxonomy_domain cleaner0 2023-07-25T14:31:24Z DUMMY: pneumococcal 0.9983346 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9989604 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9982436 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.99087524 evidence cleaner0 2023-07-25T14:49:19Z DUMMY: binding affinity 0.6844131 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.9989524 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9983661 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9983967 protein_type cleaner0 2023-07-25T14:03:18Z MESH: gyrase 0.86461306 taxonomy_domain cleaner0 2023-07-25T13:56:13Z DUMMY: Gram-negative 0.998044 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae RESULTS paragraph 20679 In summary, we have determined the first structure of a quinolone–DNA cleavage complex involving a type II topo­isomerase from K. pneumoniae. Given the current concerns about drug-resistant strains of Klebsiella, the structure reported here provides key information in understanding the action of currently used quinolones and should aid in the development of other topoisomerase-targeting therapeutics active against this major human pathogen. 0.9937563 evidence cleaner0 2023-07-25T14:49:30Z DUMMY: structure chemical CHEBI: cleaner0 2023-07-25T14:47:00Z quinolone chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA 0.99827665 protein_type cleaner0 2023-07-25T14:43:52Z MESH: type II topo­isomerase 0.99834776 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.8484614 taxonomy_domain cleaner0 2023-07-25T14:41:36Z DUMMY: Klebsiella 0.9980427 evidence cleaner0 2023-07-25T14:49:34Z DUMMY: structure 0.99839264 chemical cleaner0 2023-07-25T14:47:17Z CHEBI: quinolones 0.99797803 protein_type cleaner0 2023-07-25T14:43:57Z MESH: topoisomerase 0.9980672 species cleaner0 2023-07-25T14:31:36Z MESH: human SUPPL title_1 21127 Supplementary Material REF title 21150 References REF ref 21161 Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221. REF ref 21217 Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K. & Terwilliger, T. C. (2002). Acta Cryst. D58, 1948–1954. REF ref 21423 Arnold, R. S., Thom, K. A., Sharma, S., Phillips, M., Kristie Johnson, J. & Morgan, D. J. (2011). South. Med. J. 104, 40–45. REF ref 21550 Arnoldi, E., Pan, X.-S. & Fisher, L. M. (2013). Nucleic Acids Res. 41, 9411–9423. REF ref 21635 Bax, B. D. et al. (2010). Nature (London), 466, 935–940. REF ref 21694 Chan, P. F. et al. (2015). Nature Commun. 6, 10048. REF ref 21746 Chen, L. F., Anderson, D. J. & Paterson, D. L. (2012). Infect. Drug Resist. 5, 133–141. REF ref 21836 DeLano, W. L. (2008). PyMOL. http://www.pymol.org. REF ref 21887 Drlica, K., Malik, M., Kerns, R. J. & Zhao, X. (2008). Antimicrob. Agents Chemother. 52, 385–392. REF ref 21987 Drlica, K., Mustaev, A., Towle, T. R., Luan, G., Kerns, R. J. & Berger, J. M. (2014). ACS Chem. Biol. 19, 2895–2904. REF ref 22107 Drlica, K. & Zhao, X. (1997). Microbiol. Mol. Biol. Rev. 61, 377–392. REF ref 22179 Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132. REF ref 22241 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. REF ref 22328 Evans, P. (2006). Acta Cryst. D62, 72–82. REF ref 22372 Evans, D. A. (2014). Angew. Chem. Int. Ed. 53, 11140–11145. REF ref 22434 Gasink, L. B., Edelstein, P., Lautenbach, E., Synnestvedt, M. & Fishman, N. (2009). Infect. Control Hosp. Epidemiol. 30, 1180–1185. REF ref 22568 Laponogov, I., Pan, X.-S., Veselkov, D. A., McAuley, K. E., Fisher, L. M. & Sanderson, M. R. (2010). PLoS One, 5, e11338. REF ref 22690 Laponogov, I., Sohi, M. K., Veselkov, D. A., Pan, X.-S., Sawhney, R., Thompson, A. W., McAuley, K. E., Fisher, L. M. & Sanderson, M. R. (2009). Nature Struct. Mol. Biol. 16, 667–669. REF ref 22875 Laponogov, I., Veselkov, D. A., Crevel, I. M.-T., Pan, X.-S., Fisher, L. M. & Sanderson, M. R. (2013). Nucleic Acids Res. 41, 9911–9923. REF ref 23014 Laponogov, I., Veselkov, D. A., Sohi, M. K., Pan, X.-S., Achari, A., Yang, C., Ferrara, J. D., Fisher, L. M. & Sanderson, M. R. (2007). PLoS One, 2, e301. REF ref 23169 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. (2007). Bioinformatics, 23, 2947–2948. REF ref 23402 Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993). J. Appl. Cryst. 26, 283–291. REF ref 23507 Lee, I., Dong, K. C. & Berger, J. M. (2013). Nucleic Acids Res. 41, 5444–5456. REF ref 23588 Leo, E., Gould, K. A., Pan, X.-S., Capranico, G., Sanderson, M. R., Palumbo, M. & Fisher, L. M. (2005). J. Biol. Chem. 280, 14252–14263. REF ref 23727 Leslie, A. G. W. & Powell, H. R. (2007). Evolving Methods for Macromolecular Crystallography, edited by R. Read & J. Sussman, pp. 41–51. Dordrecht: Springer. REF ref 23887 McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674. REF ref 24021 McKay, D. B. & Steitz, T. A. (1981). Nature (London), 290, 744–749. REF ref 24091 McPherson, A. & Cudney, B. (2006). J. Struct. Biol. 156, 387–406. REF ref 24159 McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., Cowley, A. P. & Lopez, R. (2013). Nucleic Acids Res. 41, W597–W600. REF ref 24302 Mustaev, A., Malik, M., Zhao, X., Kurepina, N., Luan, G., Oppegard, L. M., Hiasa, H., Marks, K. R., Kerns, R. J., Berger, J. M. & Drlica, K. (2014). J. Biol. Chem. 289, 12300–12312. REF ref 24486 Nitiss, J. L. (2009a). Nature Rev. Cancer, 9, 327–337. REF ref 24543 Nitiss, J. L. (2009b). Nature Rev. Cancer, 9, 338–350. REF ref 24600 Nordmann, P., Cuzon, G. & Naas, T. (2009). Lancet Infect. Dis. 9, 228–236. REF ref 24677 Odenholt, I. & Cars, O. J. (2006). J. Antimicrob. Chemother. 58, 960–965. REF ref 24753 Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. REF ref 24821 Pan, X.-S. & Fisher, L. M. (1996). J. Bacteriol. 178, 4060–4069. REF ref 24888 Pommier, Y. (2013). ACS Chem. Biol. 8, 82–95. REF ref 24936 Schoeffler, A. J. & Berger, J. M. (2008). Q. Rev. Biophys. 41, 41–101. REF ref 25009 Sissi, C. & Palumbo, M. (2009). Nucleic Acids Res. 37, 702–711. REF ref 25075 Sohi, M. K., Veselkov, D. A., Laponogov, I., Pan, X.-S., Fisher, L. M. & Sanderson, M. R. (2008). PLoS One, 3, e3201. REF ref 25193 Srikannathasan, V., Wohlkonig, A., Shillings, A., Singh, O., Chan, P. F., Huang, J., Gwynn, M. N., Fosberry, A. P., Homes, P., Hibbs, M., Theobald, A. J., Spitzfaden, C. & Bax, B. D. (2015). Acta Cryst. F71, 1242–1246. REF ref 25414 Tomašić, T. & Mašič, L. P. (2014). Curr. Top. Med. Chem. 14, 130–151. REF ref 25490 Vos, S. M., Tretter, E. M., Schmidt, B. H. & Berger, J. M. (2011). Nature Rev. Mol. Cell Biol. 12, 827–841. REF ref 25600 Wendorff, T. J., Schmidt, B. H., Heslop, P., Austin, C. A. & Berger, J. M. (2012). J. Mol. Biol. 424, 109–124. REF ref 25713 Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. REF ref 25768 Wu, C.-C., Li, T.-K., Farh, L., Lin, L.-Y., Lin, T.-S., Yu, Y.-J., Yen, T.-J., Chiang, C.-W. & Chan, N.-L. (2011). Science, 333, 459–462. REF ref 25908 Wu, C.-C., Li, Y.-C., Wang, Y.-R., Li, T.-K. & Chan, N.-L. (2013). Nucleic Acids Res. 41, 10630–10640. d-72-00488-fig1.jpg fig1 FIG fig_caption 26013 Protein and DNA used in the co-crystallization experiment. (a) Coloured diagram of the protein constructs used in crystallization. (b) DNA sequences used in crystallization. The 4 bp overhang is shown in red. Cleavage points are indicated by arrows. 0.8724873 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.99885994 experimental_method cleaner0 2023-07-25T14:53:13Z MESH: co-crystallization 0.7814805 experimental_method cleaner0 2023-07-25T14:53:16Z MESH: crystallization 0.895672 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9635726 experimental_method cleaner0 2023-07-25T14:53:18Z MESH: crystallization d-72-00488-fig2.jpg fig2 FIG fig_caption 26265 Chemical structure of levofloxacin (a) and its conformations observed within the active sites of S. pneumoniae topoisomerase IV (b) and K. pneumoniae topoisomerase IV (c, d). Electron-density maps (2F obs − F calc) are shown as meshes for the drug molecules contoured at 1.5σ and are limited to a distance of 2.3 Å from the drug atoms. 0.99906665 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9990804 site cleaner0 2023-07-25T14:54:00Z SO: active sites 0.9983861 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.85898304 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.9984185 species cleaner0 2023-07-25T14:41:46Z MESH: K. pneumoniae 0.9489127 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.99863946 evidence cleaner0 2023-07-25T14:49:40Z DUMMY: Electron-density maps evidence DUMMY: cleaner0 2023-07-25T14:49:54Z 2F obs − F calc d-72-00488-fig3.jpg fig3 FIG fig_caption 26608 Overall orthogonal views of the cleavage complex of topoisomerase IV from K. pneumoniae in surface (left) and cartoon (right) representations. The ParC subunit is in blue, ParE is in yellow and DNA is in cyan. The bound quinolone molecules (levofloxacin) are in red and are shown using van der Waals representation. 0.9031069 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.998235 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99896073 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.9989273 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.9880157 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9796252 protein_state cleaner0 2023-07-25T14:34:17Z DUMMY: bound 0.99837327 chemical cleaner0 2023-07-25T14:47:22Z CHEBI: quinolone 0.999288 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin d-72-00488-fig4.jpg fig4 FIG fig_caption 26924 Schematic representation of the catalytic cycle of type II topoisomerases. The ParC N-terminal domain (ParC55) is in grey, the ParC C-terminal β-­pinwheel domain is in silver, the ParE N-terminal ATPase domain is in red, the ParE C-terminal domain (ParE30) is in yellow, the G-gate DNA is in green and the T-segment DNA is in purple. Bound ATP is indicated by pink circles in the ATPase domains (reproduced with permission from Fig. 1 of Lapanogov et al., 2013). 0.9978693 protein_type cleaner0 2023-07-25T14:44:02Z MESH: type II topoisomerases 0.99913293 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.99659085 protein cleaner0 2023-07-25T14:34:03Z PR: ParC55 0.999258 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.9991524 structure_element cleaner0 2023-07-25T14:52:37Z SO: β-­pinwheel domain 0.9992643 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.99911124 structure_element cleaner0 2023-07-25T14:52:40Z SO: ATPase domain 0.9991266 protein cleaner0 2023-07-25T14:03:46Z PR: ParE 0.85989636 structure_element cleaner0 2023-07-25T14:52:43Z SO: C-terminal domain 0.99709535 protein cleaner0 2023-07-25T14:34:07Z PR: ParE30 0.77977353 structure_element cleaner0 2023-07-25T14:21:46Z SO: G-gate 0.9974456 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.96818286 structure_element cleaner0 2023-07-25T14:52:45Z SO: T-segment 0.9974764 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.99823666 protein_state cleaner0 2023-07-25T14:34:17Z DUMMY: Bound 0.99909747 chemical cleaner0 2023-07-25T14:30:36Z CHEBI: ATP 0.9989592 structure_element cleaner0 2023-07-25T14:52:47Z SO: ATPase domains d-72-00488-fig5.jpg fig5 FIG fig_caption 27389 Detailed views of the active sites of topoisomerase IV from S. pneumoniae and K. pneumoniae with quinolone molecules bound. The magnesium ions and their coordinating amino acids are shown in purple. The drug molecules and residues known to lead to drug resistance upon mutation are in red. The active-site tyrosine and arginine are in orange. The DNA is shown in silver/cyan. The ParC and ParE backbones are shown in blue and yellow, respectively. 0.9991249 site cleaner0 2023-07-25T14:54:08Z SO: active sites complex_assembly GO: cleaner0 2023-07-25T14:25:38Z topoisomerase IV 0.9985092 species cleaner0 2023-07-25T13:57:01Z MESH: S. pneumoniae 0.9983072 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.99641657 chemical cleaner0 2023-07-25T14:47:27Z CHEBI: quinolone 0.995401 protein_state cleaner0 2023-07-25T14:34:17Z DUMMY: bound 0.99900204 chemical cleaner0 2023-07-25T14:47:32Z CHEBI: magnesium 0.99899036 site cleaner0 2023-07-25T14:54:10Z SO: active-site 0.99725467 residue_name cleaner0 2023-07-25T14:31:46Z SO: tyrosine 0.9973659 residue_name cleaner0 2023-07-25T14:31:48Z SO: arginine 0.9882323 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA 0.9971631 protein cleaner0 2023-07-25T14:03:41Z PR: ParC 0.9974571 protein cleaner0 2023-07-25T14:03:46Z PR: ParE d-72-00488-fig6.jpg fig6 FIG fig_caption 27837 Comparison of DNA cleavage by topoisomerase IV core ParE-ParC fusion proteins from K. pneumoniae (KP) and S. pneumoniae (SP) promoted by levofloxacin. Supercoiled plasmid pBR322 (400 ng) was incubated with topoisomerase IV proteins (400 ng) in the absence or presence of levofloxacin at the indicated concentrations. After 60 min incubation, samples were treated with SDS and proteinase K to remove proteins covalent bound to DNA, and the DNA products were examined by gel electrophoresis in 1% agarose. Lane A, supercoiled pBR322 DNA; N, L and S, nicked, linear and supercoiled pBR322, respectively. chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA 0.9077884 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV 0.98855954 complex_assembly cleaner0 2023-07-25T14:44:56Z GO: ParE-ParC 0.9982917 species cleaner0 2023-07-25T13:56:28Z MESH: K. pneumoniae 0.9960282 species cleaner0 2023-07-25T14:41:54Z MESH: KP 0.99837327 species cleaner0 2023-07-25T14:41:57Z MESH: S. pneumoniae 0.99792224 species cleaner0 2023-07-25T14:42:00Z MESH: SP 0.99899095 chemical cleaner0 2023-07-25T14:01:07Z CHEBI: levofloxacin 0.9897747 complex_assembly cleaner0 2023-07-25T14:25:38Z GO: topoisomerase IV protein_state DUMMY: cleaner0 2023-07-25T14:23:38Z presence of 0.99899036 chemical cleaner0 2023-07-25T14:01:08Z CHEBI: levofloxacin 0.7885971 chemical cleaner0 2023-07-25T14:00:32Z CHEBI: DNA chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA chemical CHEBI: cleaner0 2023-07-25T14:00:32Z DNA table1 TABLE table_title_caption 28445 Macromolecule-production information d36e1283.xml table1 TABLE table_caption 28482 K. pneumoniae topoisomerase IV. d36e1283.xml table1 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups"><tbody valign="top"><tr><td rowspan="1" colspan="1" align="left" valign="top">Source organism</td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>K. pneumoniae</italic> (strain ATCC 35657)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Expression vector</td><td rowspan="1" colspan="1" align="left" valign="top">pET-29a</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Expression host</td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>E. coli</italic> BL21(λDE3) pLysS</td></tr><tr><td rowspan="1" colspan="2" align="left" valign="top">Complete amino-acid sequence of the construct produced</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Topoisomerase IV (ParE CTD 390–631 and ParC NTD 1–490 fused) </td><td rowspan="1" colspan="1" align="left" valign="top"> <underline>M</underline>KKLTSGPALPGKLADCTAQDLNRTELFLVEGDSAGGSAKQARDREYQAIMPLKGKILNTWEVSSDEVLASQEVHDISVAIGIDPDSDDLSQLRYGKICILADADSDGLHIATLLCALFVRHFRTLVKEGHVYVALPPLYRIDLGKEVYYALTEEEKTGVLEQLKRKKGKPNVQRFKGLGEMNPMQLRETTLDPNTRRLVQLVISDEDEQQTTAIMDMLLAKKRSEDRRNWLQEKGDMADLEV<underline>EF</underline>MSDMAERLALHEFTENAYLNYSMYVIMDRALPFIGDGLKPVQRRIVYAMSELGLNASAKFKKSARTVGDVLGKYHPHGDSACYEAMVLMAQPFSYRYPLGDGQGNWGAPDDPKSFAAMRYTESRLSKYAELLLSELGQGTVDWVPNFDGTLQEPKMLPARLPNILLNGTTGIAVGMATDIPPHNLREVAKAAITLIEQPKTTLDELLDIVQGPDFPTEAEIITSRAEIRKIYQNGRGSVRMRAVWSKEDGAVVITALPHQVSGAKVLEQIAAQMRNKKLPMVDDLRDESDHENPTRLVIVPRSNRVDMEQVMNHLFATTDLEKSYRINLNMIGLDGRPAVKNLLEILSEWLVFRRDTVRRRLNHRLEKVLKRLHILEGLLVAFLNIDEVIEIIRTEDEPKPALMSRFGISETQAEAILELKLRHLAKLEEMKIRGEQSELEKERDQLQAILASERKMNNLLKKELQADADAFGDDRRSPLHEREEAKAMS<underline>HHHHHH</underline> </td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Symmetrized E-site (pre-cut) DNA1</td><td rowspan="1" colspan="1" align="left" valign="top">5′-CGTATTACGTTGTAT-3′</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Symmetrized E-site (pre-cut) DNA2</td><td rowspan="1" colspan="1" align="left" valign="top">5′-GATCATACAACGTAATACG-3′</td></tr></tbody></table> 28515 Source organism K. pneumoniae (strain ATCC 35657) Expression vector pET-29a Expression host E. coli BL21(λDE3) pLysS Complete amino-acid sequence of the construct produced  Topoisomerase IV (ParE CTD 390–631 and ParC NTD 1–490 fused) MKKLTSGPALPGKLADCTAQDLNRTELFLVEGDSAGGSAKQARDREYQAIMPLKGKILNTWEVSSDEVLASQEVHDISVAIGIDPDSDDLSQLRYGKICILADADSDGLHIATLLCALFVRHFRTLVKEGHVYVALPPLYRIDLGKEVYYALTEEEKTGVLEQLKRKKGKPNVQRFKGLGEMNPMQLRETTLDPNTRRLVQLVISDEDEQQTTAIMDMLLAKKRSEDRRNWLQEKGDMADLEVEFMSDMAERLALHEFTENAYLNYSMYVIMDRALPFIGDGLKPVQRRIVYAMSELGLNASAKFKKSARTVGDVLGKYHPHGDSACYEAMVLMAQPFSYRYPLGDGQGNWGAPDDPKSFAAMRYTESRLSKYAELLLSELGQGTVDWVPNFDGTLQEPKMLPARLPNILLNGTTGIAVGMATDIPPHNLREVAKAAITLIEQPKTTLDELLDIVQGPDFPTEAEIITSRAEIRKIYQNGRGSVRMRAVWSKEDGAVVITALPHQVSGAKVLEQIAAQMRNKKLPMVDDLRDESDHENPTRLVIVPRSNRVDMEQVMNHLFATTDLEKSYRINLNMIGLDGRPAVKNLLEILSEWLVFRRDTVRRRLNHRLEKVLKRLHILEGLLVAFLNIDEVIEIIRTEDEPKPALMSRFGISETQAEAILELKLRHLAKLEEMKIRGEQSELEKERDQLQAILASERKMNNLLKKELQADADAFGDDRRSPLHEREEAKAMSHHHHHH  Symmetrized E-site (pre-cut) DNA1 5′-CGTATTACGTTGTAT-3′  Symmetrized E-site (pre-cut) DNA2 5′-GATCATACAACGTAATACG-3′ d36e1342.xml table1 TABLE table_caption 29644 S. pneumoniae topoisomerase IV. d36e1342.xml table1 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups"><tbody valign="top"><tr><td rowspan="1" colspan="1" align="left" valign="top">Source organism</td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>S. pneumoniae</italic> (isolate 7785 St George’s Hospital; Pan &amp; Fisher, 1996<xref ref-type="bibr" rid="bb50"> ▸</xref>)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Expression vector</td><td rowspan="1" colspan="1" align="left" valign="top">pET-19b (N-terminal His<sub>10</sub>), pET-29a (C-terminal His<sub>6</sub>)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Expression host</td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>E. coli</italic> BL21(λDE3) pLysS</td></tr><tr><td rowspan="1" colspan="2" align="left" valign="top">Complete amino-acid sequence of the construct produced</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> ParC55</td><td rowspan="1" colspan="1" align="left" valign="top">MSNIQNMSLEDIMGERFGRYSKYIIQDRALPDIRDGLKPVQRRILYSMNKDSNTFDKSYRKSAKSVGNIMGNFHPHGDSSIYDAMVRMSQNWKNREILVEMHGNNGSMDGDPPAAMRYTEARLSEIAGYLLQDIEKKTVPFAWNFDDTEKEPTVLPAAFPNLLVNGSTGISAGYATDIPPHNLAEVIDAAVYMIDHPTAKIDKLMEFLPGPDFPTGAIIQGRDEIKKAYETGKGRVVVRSKTEIEKLKGGKEQIVITEIPYEINKANLVKKIDDVRVNNKVAGIAEVRDESDRDGLRIAIELKKDANTELVLNYLFKYTDLQINYNFNMVAIDNFTPRQVGIVPILSSYIAHRREVILARSRFDKEKAEKRLHIVEGLIRVISILDEVIALIRASENKADAKENLKVSYDFTEEQAEAIVTLQLYRLTNTDVVVLQEEEAELREKIAMLAAIIGDERTMYNLMKKELREVKKKFATPRLSSLEDTAKA<underline>L</underline>E<underline>HHHHHH</underline> </td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> ParE30</td><td rowspan="1" colspan="1" align="left" valign="top"> <underline>MGHHHHHHHHHHSSGHIDDDDKHM</underline>KNKKDKGLLSGKLTPAQSKNPAKNELYLVEGDSAGGSAKQGRDRKFQAILPLRGKVINTAKAKMADILKNEEINTMIYTIGAGVGADFSIEDANYDKIIIMTDADTDGAHIQTLLLTFFYRYMRPLVEAGHVYIALPPLYKMSKGKGKKEEVAYAWTDGELEELRKQFGKGATLQRYKGLGEMNADQLWETTMNPETRTLIRVTIEDLARAERRVNVLMGDKVEPRRKWIEDNVKFTLEEATVF </td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> E-site DNA1 </td><td rowspan="1" colspan="1" align="left" valign="top">5′-CATGAATGACTATGCACG-3′</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> E-site DNA2 </td><td rowspan="1" colspan="1" align="left" valign="top">5′-CGTGCATAGTCATTCATG-3′</td></tr></tbody></table> 29677 Source organism S. pneumoniae (isolate 7785 St George’s Hospital; Pan & Fisher, 1996) Expression vector pET-19b (N-terminal His10), pET-29a (C-terminal His6) Expression host E. coli BL21(λDE3) pLysS Complete amino-acid sequence of the construct produced  ParC55 MSNIQNMSLEDIMGERFGRYSKYIIQDRALPDIRDGLKPVQRRILYSMNKDSNTFDKSYRKSAKSVGNIMGNFHPHGDSSIYDAMVRMSQNWKNREILVEMHGNNGSMDGDPPAAMRYTEARLSEIAGYLLQDIEKKTVPFAWNFDDTEKEPTVLPAAFPNLLVNGSTGISAGYATDIPPHNLAEVIDAAVYMIDHPTAKIDKLMEFLPGPDFPTGAIIQGRDEIKKAYETGKGRVVVRSKTEIEKLKGGKEQIVITEIPYEINKANLVKKIDDVRVNNKVAGIAEVRDESDRDGLRIAIELKKDANTELVLNYLFKYTDLQINYNFNMVAIDNFTPRQVGIVPILSSYIAHRREVILARSRFDKEKAEKRLHIVEGLIRVISILDEVIALIRASENKADAKENLKVSYDFTEEQAEAIVTLQLYRLTNTDVVVLQEEEAELREKIAMLAAIIGDERTMYNLMKKELREVKKKFATPRLSSLEDTAKALEHHHHHH  ParE30 MGHHHHHHHHHHSSGHIDDDDKHMKNKKDKGLLSGKLTPAQSKNPAKNELYLVEGDSAGGSAKQGRDRKFQAILPLRGKVINTAKAKMADILKNEEINTMIYTIGAGVGADFSIEDANYDKIIIMTDADTDGAHIQTLLLTFFYRYMRPLVEAGHVYIALPPLYKMSKGKGKKEEVAYAWTDGELEELRKQFGKGATLQRYKGLGEMNADQLWETTMNPETRTLIRVTIEDLARAERRVNVLMGDKVEPRRKWIEDNVKFTLEEATVF  E-site DNA1 5′-CATGAATGACTATGCACG-3′  E-site DNA2 5′-CGTGCATAGTCATTCATG-3′ table2.xml table2 TABLE table_title_caption 30828 Crystallization table2.xml table2 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups"><thead valign="top"><tr><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> </th><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> <italic>K. pneumoniae</italic> topoisomerase IV</th><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> <italic>S. pneumoniae</italic> topoisomerase IV</th></tr></thead><tbody valign="top"><tr><td rowspan="1" colspan="1" align="left" valign="top">Method</td><td rowspan="1" colspan="1" align="left" valign="top">Vapour diffusion</td><td rowspan="1" colspan="1" align="left" valign="top">Capillary counter-diffusion</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Plate type</td><td rowspan="1" colspan="1" align="left" valign="top">24-well Limbro</td><td rowspan="1" colspan="1" align="left" valign="top">N/A</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Temperature (K)</td><td rowspan="1" colspan="1" align="left" valign="top">298</td><td rowspan="1" colspan="1" align="left" valign="top">304</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Protein concentration (mg ml<sup>−1</sup>)</td><td rowspan="1" colspan="1" align="left" valign="top">4.5 </td><td rowspan="1" colspan="1" align="left" valign="top">4</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Buffer composition of protein solution</td><td rowspan="1" colspan="2" align="left" valign="top">20 m<italic>M</italic> Tris pH 7.5, 100 m<italic>M</italic> NaCl, 1 m<italic>M</italic> β-mercaptoethanol, 0.05% NaN<sub>3</sub> </td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Composition of reservoir solution</td><td rowspan="1" colspan="1" align="left" valign="top">0.1 <italic>M</italic> Tris pH 7.5–8.0, 0–50 m<italic>M</italic> NaCl, 4–8% PEG 4000, 12–15% glycerol</td><td rowspan="1" colspan="1" align="left" valign="top">50 m<italic>M</italic> sodium cacodylate pH 6.5, 2.5% Tacsimate, 7% 2-propanol, 62.5 m<italic>M</italic> KCl, 7.5 m<italic>M</italic> MgCl<sub>2</sub> </td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Volume and ratio of drop</td><td rowspan="1" colspan="1" align="left" valign="top">4 + 2 µl</td><td rowspan="1" colspan="1" align="left" valign="top">N/A</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Volume of reservoir (ml)</td><td rowspan="1" colspan="1" align="left" valign="top">0.5</td><td rowspan="1" colspan="1" align="left" valign="top">N/A</td></tr></tbody></table> 30844   K. pneumoniae topoisomerase IV S. pneumoniae topoisomerase IV Method Vapour diffusion Capillary counter-diffusion Plate type 24-well Limbro N/A Temperature (K) 298 304 Protein concentration (mg ml−1) 4.5 4 Buffer composition of protein solution 20 mM Tris pH 7.5, 100 mM NaCl, 1 mM β-mercaptoethanol, 0.05% NaN3 Composition of reservoir solution 0.1 M Tris pH 7.5–8.0, 0–50 mM NaCl, 4–8% PEG 4000, 12–15% glycerol 50 mM sodium cacodylate pH 6.5, 2.5% Tacsimate, 7% 2-propanol, 62.5 mM KCl, 7.5 mM MgCl2 Volume and ratio of drop 4 + 2 µl N/A Volume of reservoir (ml) 0.5 N/A table3.xml table3 TABLE table_title_caption 31473 Data collection and processing table3.xml table3 TABLE table_caption 31504 Values in parentheses are for the outer shell. table3.xml table3 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups"><thead valign="bottom"><tr><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> </th><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> <italic>K. pneumoniae</italic> topoisomerase IV</th><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> <italic>S. pneumoniae</italic> topoisomerase IV</th></tr></thead><tbody valign="top"><tr><td rowspan="1" colspan="1" align="left" valign="top">Diffraction source</td><td rowspan="1" colspan="2" align="left" valign="top">Beamline I03, Diamond Light Source</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Wavelength (Å)</td><td rowspan="1" colspan="1" align="left" valign="top">0.97620</td><td rowspan="1" colspan="1" align="left" valign="top">0.97630</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Temperature (K)</td><td rowspan="1" colspan="1" align="left" valign="top">100.0</td><td rowspan="1" colspan="1" align="left" valign="top">100.0</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Detector</td><td rowspan="1" colspan="1" align="left" valign="top">Pilatus 6M-F</td><td rowspan="1" colspan="1" align="left" valign="top">ADSC Quantum 315</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Crystal-to-detector distance (mm)</td><td rowspan="1" colspan="1" align="left" valign="top">502.22</td><td rowspan="1" colspan="1" align="left" valign="top">377.629</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Rotation range per image (°)</td><td rowspan="1" colspan="1" align="left" valign="top">0.2</td><td rowspan="1" colspan="1" align="left" valign="top">0.25</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Total rotation range (°)</td><td rowspan="1" colspan="1" align="left" valign="top">180</td><td rowspan="1" colspan="1" align="left" valign="top">75</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Exposure time per image (s)</td><td rowspan="1" colspan="1" align="left" valign="top">0.2</td><td rowspan="1" colspan="1" align="left" valign="top">1.0</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Space group</td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>P</italic>2<sub>1</sub> </td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>P</italic>3<sub>1</sub>21</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> <italic>a</italic>, <italic>b</italic>, <italic>c</italic> (Å)</td><td rowspan="1" colspan="1" align="left" valign="top">102.07, 161.53, 138.60</td><td rowspan="1" colspan="1" align="left" valign="top">157.83, 157.83, 211.15</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">α, β, γ (°)</td><td rowspan="1" colspan="1" align="left" valign="top">90, 94.22, 90</td><td rowspan="1" colspan="1" align="left" valign="top"> </td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Mosaicity (°)</td><td rowspan="1" colspan="1" align="left" valign="top">0.237</td><td rowspan="1" colspan="1" align="left" valign="top">0.466</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Resolution range (Å)</td><td rowspan="1" colspan="1" align="left" valign="top">86.12–3.35 (3.53–3.35)</td><td rowspan="1" colspan="1" align="left" valign="top">50–2.90 (3.00–2.90)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Total No. of reflections</td><td rowspan="1" colspan="1" align="left" valign="top">160764</td><td rowspan="1" colspan="1" align="left" valign="top">311576</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">No. of unique reflections</td><td rowspan="1" colspan="1" align="left" valign="top">63406</td><td rowspan="1" colspan="1" align="left" valign="top">67471</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Completeness (%)</td><td rowspan="1" colspan="1" align="left" valign="top">98.5 (98.4)</td><td rowspan="1" colspan="1" align="left" valign="top">99.4 (99.9)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Multiplicity</td><td rowspan="1" colspan="1" align="left" valign="top">2.53 (2.59)</td><td rowspan="1" colspan="1" align="left" valign="top">4.6 (4.7)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">〈<italic>I</italic>/σ(<italic>I</italic>)〉</td><td rowspan="1" colspan="1" align="left" valign="top">3.48 (1.95)</td><td rowspan="1" colspan="1" align="left" valign="top">16.14 (3.48)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> <italic>R</italic> <sub>r.i.m.</sub> <xref ref-type="table-fn" rid="tfn1">†</xref> </td><td rowspan="1" colspan="1" align="left" valign="top">0.116 (0.434)</td><td rowspan="1" colspan="1" align="left" valign="top">0.08 (0.515)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Overall <italic>B</italic> factor from Wilson plot (Å<sup>2</sup>)</td><td rowspan="1" colspan="1" align="left" valign="top">53.29</td><td rowspan="1" colspan="1" align="left" valign="top">73.37</td></tr></tbody></table> 31551   K. pneumoniae topoisomerase IV S. pneumoniae topoisomerase IV Diffraction source Beamline I03, Diamond Light Source Wavelength (Å) 0.97620 0.97630 Temperature (K) 100.0 100.0 Detector Pilatus 6M-F ADSC Quantum 315 Crystal-to-detector distance (mm) 502.22 377.629 Rotation range per image (°) 0.2 0.25 Total rotation range (°) 180 75 Exposure time per image (s) 0.2 1.0 Space group P21 P3121 a, b, c (Å) 102.07, 161.53, 138.60 157.83, 157.83, 211.15 α, β, γ (°) 90, 94.22, 90   Mosaicity (°) 0.237 0.466 Resolution range (Å) 86.12–3.35 (3.53–3.35) 50–2.90 (3.00–2.90) Total No. of reflections 160764 311576 No. of unique reflections 63406 67471 Completeness (%) 98.5 (98.4) 99.4 (99.9) Multiplicity 2.53 (2.59) 4.6 (4.7) 〈I/σ(I)〉 3.48 (1.95) 16.14 (3.48) Rr.i.m.† 0.116 (0.434) 0.08 (0.515) Overall B factor from Wilson plot (Å2) 53.29 73.37 table3.xml table3 TABLE table_footnote 32465 Estimated R r.i.m. = R merge[N/(N − 1)]1/2, where N is the data multiplicity. table4.xml table4 TABLE table_title_caption 32545 Structure solution and refinement table4.xml table4 TABLE table_caption 32579 Values in parentheses are for the outer shell. table4.xml table4 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups"><thead valign="bottom"><tr><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> </th><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> <italic>K. pneumoniae</italic> topoisomerase IV</th><th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom"> <italic>S. pneumoniae</italic> topoisomerase IV</th></tr></thead><tbody valign="top"><tr><td rowspan="1" colspan="1" align="left" valign="top">Resolution range (Å)</td><td rowspan="1" colspan="1" align="left" valign="top">85.01–3.35 (3.40–3.35)</td><td rowspan="1" colspan="1" align="left" valign="top">41.83–2.90 (2.93–2.90)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Completeness (%)</td><td rowspan="1" colspan="1" align="left" valign="top">98.3</td><td rowspan="1" colspan="1" align="left" valign="top">99.5</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">σ Cutoff</td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>F</italic> &gt; 1.350σ(<italic>F</italic>)</td><td rowspan="1" colspan="1" align="left" valign="top"> <italic>F</italic> &gt; 1.34σ(<italic>F</italic>)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">No. of reflections, working set</td><td rowspan="1" colspan="1" align="left" valign="top">60158 (2615)</td><td rowspan="1" colspan="1" align="left" valign="top">67471 (1992)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">No. of reflections, test set</td><td rowspan="1" colspan="1" align="left" valign="top">3208 (142)</td><td rowspan="1" colspan="1" align="left" valign="top">6838 (218)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Final <italic>R</italic> <sub>cryst</sub> </td><td rowspan="1" colspan="1" align="left" valign="top">0.224 (0.2990)</td><td rowspan="1" colspan="1" align="left" valign="top">0.186 (0.2806)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top">Final <italic>R</italic> <sub>free</sub> </td><td rowspan="1" colspan="1" align="left" valign="top">0.259 (0.3537)</td><td rowspan="1" colspan="1" align="left" valign="top">0.226 (0.3562)</td></tr><tr><td rowspan="1" colspan="3" align="left" valign="top">No. of non-H atoms</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Protein</td><td rowspan="1" colspan="1" align="left" valign="top">18741</td><td rowspan="1" colspan="1" align="left" valign="top">10338</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Nucleic acid</td><td rowspan="1" colspan="1" align="left" valign="top">1608</td><td rowspan="1" colspan="1" align="left" valign="top">730</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Ligand</td><td rowspan="1" colspan="1" align="left" valign="top">104</td><td rowspan="1" colspan="1" align="left" valign="top">52</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Ion</td><td rowspan="1" colspan="1" align="left" valign="top">8</td><td rowspan="1" colspan="1" align="left" valign="top">6</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Water</td><td rowspan="1" colspan="1" align="left" valign="top">—</td><td rowspan="1" colspan="1" align="left" valign="top">54</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Total</td><td rowspan="1" colspan="1" align="left" valign="top">20461</td><td rowspan="1" colspan="1" align="left" valign="top">11180</td></tr><tr><td rowspan="1" colspan="3" align="left" valign="top">R.m.s. deviations</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Bonds (Å)</td><td rowspan="1" colspan="1" align="left" valign="top">0.002</td><td rowspan="1" colspan="1" align="left" valign="top">0.008</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Angles (°)</td><td rowspan="1" colspan="1" align="left" valign="top">0.611</td><td rowspan="1" colspan="1" align="left" valign="top">1.221</td></tr><tr><td rowspan="1" colspan="3" align="left" valign="top">Average <italic>B</italic> factors (Å<sup>2</sup>)</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Protein</td><td rowspan="1" colspan="1" align="left" valign="top">58.05</td><td rowspan="1" colspan="1" align="left" valign="top">76.7</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Nucleic acid</td><td rowspan="1" colspan="1" align="left" valign="top">64.85</td><td rowspan="1" colspan="1" align="left" valign="top">90.7</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Ligand</td><td rowspan="1" colspan="1" align="left" valign="top">60.14</td><td rowspan="1" colspan="1" align="left" valign="top">95.7</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Ion</td><td rowspan="1" colspan="1" align="left" valign="top">42.62</td><td rowspan="1" colspan="1" align="left" valign="top">84.5</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Water</td><td rowspan="1" colspan="1" align="left" valign="top">—</td><td rowspan="1" colspan="1" align="left" valign="top">64.2</td></tr><tr><td rowspan="1" colspan="3" align="left" valign="top">Ramachandran plot</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Most favoured (%)</td><td rowspan="1" colspan="1" align="left" valign="top">93</td><td rowspan="1" colspan="1" align="left" valign="top">94</td></tr><tr><td rowspan="1" colspan="1" align="left" valign="top"> Allowed (%)</td><td rowspan="1" colspan="1" align="left" valign="top">6</td><td rowspan="1" colspan="1" align="left" valign="top">6</td></tr></tbody></table> 32626   K. pneumoniae topoisomerase IV S. pneumoniae topoisomerase IV Resolution range (Å) 85.01–3.35 (3.40–3.35) 41.83–2.90 (2.93–2.90) Completeness (%) 98.3 99.5 σ Cutoff F > 1.350σ(F) F > 1.34σ(F) No. of reflections, working set 60158 (2615) 67471 (1992) No. of reflections, test set 3208 (142) 6838 (218) Final Rcryst 0.224 (0.2990) 0.186 (0.2806) Final Rfree 0.259 (0.3537) 0.226 (0.3562) No. of non-H atoms  Protein 18741 10338  Nucleic acid 1608 730  Ligand 104 52  Ion 8 6  Water — 54  Total 20461 11180 R.m.s. deviations  Bonds (Å) 0.002 0.008  Angles (°) 0.611 1.221 Average B factors (Å2)  Protein 58.05 76.7  Nucleic acid 64.85 90.7  Ligand 60.14 95.7  Ion 42.62 84.5  Water — 64.2 Ramachandran plot  Most favoured (%) 93 94  Allowed (%) 6 6