PMC 20201215 pmc.key 4822050 CC BY no 0 0 10.1038/ncomms11197 ncomms11197 4822050 27045799 11197 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ surname:Fang;given-names:Jian surname:Cheng;given-names:Jingdong surname:Gong;given-names:Zhou surname:Tang;given-names:Chun surname:Wong;given-names:Jiemin surname:Yang;given-names:Huirong surname:Cao;given-names:Chunyang surname:Xu;given-names:Yanhui surname:Wang;given-names:Jiaolong surname:Zhang;given-names:Qiao surname:Liu;given-names:Mengjie surname:Gong;given-names:Rui surname:Wang;given-names:Ping surname:Zhang;given-names:Xiaodan surname:Feng;given-names:Yangyang surname:Lan;given-names:Wenxian TITLE front 7 2016 0 Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition chemical CHEBI: cleaner0 2023-07-25T14:58:18Z Hemi-methylated DNA 0.999231 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.99887425 protein cleaner0 2023-07-25T14:58:00Z PR: UHRF1 protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone ABSTRACT abstract 95 UHRF1 is an important epigenetic regulator for maintenance DNA methylation. UHRF1 recognizes hemi-methylated DNA (hm-DNA) and trimethylation of histone H3K9 (H3K9me3), but the regulatory mechanism remains unknown. Here we show that UHRF1 adopts a closed conformation, in which a C-terminal region (Spacer) binds to the tandem Tudor domain (TTD) and inhibits H3K9me3 recognition, whereas the SET-and-RING-associated (SRA) domain binds to the plant homeodomain (PHD) and inhibits H3R2 recognition. Hm-DNA impairs the intramolecular interactions and promotes H3K9me3 recognition by TTD–PHD. The Spacer also facilitates UHRF1–DNMT1 interaction and enhances hm-DNA-binding affinity of the SRA. When TTD–PHD binds to H3K9me3, SRA-Spacer may exist in a dynamic equilibrium: either recognizes hm-DNA or recruits DNMT1 to chromatin. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by URHF1. 0.9992975 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.9993113 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.97070986 chemical cleaner0 2023-07-25T14:58:17Z CHEBI: hemi-methylated DNA 0.99714917 chemical cleaner0 2023-07-25T14:58:23Z CHEBI: hm-DNA 0.98988324 ptm cleaner0 2023-07-25T16:29:40Z MESH: trimethylation 0.995805 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:29:37Z H3 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-08-08T12:29:31Z K9 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:30:01Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:30:15Z K9me3 0.9994023 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9992417 protein_state cleaner0 2023-07-25T14:59:19Z DUMMY: closed 0.99918896 structure_element cleaner0 2023-07-25T14:56:57Z SO: C-terminal region 0.9990657 structure_element cleaner0 2023-07-25T14:57:02Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:03Z binds to 0.99929637 structure_element cleaner0 2023-07-25T14:57:11Z SO: tandem Tudor domain 0.99940634 structure_element cleaner0 2023-07-25T14:57:16Z SO: TTD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:31:55Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:32:04Z K9me3 0.99883306 structure_element cleaner0 2023-07-25T14:57:27Z SO: SET-and-RING-associated 0.9949174 structure_element cleaner0 2023-07-25T14:57:33Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:13:03Z binds to 0.9913373 structure_element cleaner0 2023-07-25T14:57:42Z SO: plant homeodomain 0.99932337 structure_element cleaner0 2023-07-25T14:57:48Z SO: PHD 0.87803274 site cleaner0 2023-07-25T15:03:31Z SO: H3R2 0.9954868 chemical cleaner0 2023-07-25T14:58:24Z CHEBI: Hm-DNA protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:30:55Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:31:41Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.9989747 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer complex_assembly GO: cleaner0 2023-07-25T16:03:29Z UHRF1–DNMT1 evidence DUMMY: cleaner0 2023-07-25T14:56:50Z hm-DNA-binding affinity 0.99947935 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:32:18Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:32:29Z K9me3 structure_element SO: cleaner0 2023-07-25T15:04:02Z SRA-Spacer 0.9976597 chemical cleaner0 2023-07-25T14:58:24Z CHEBI: hm-DNA 0.99921703 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:32:46Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:32:56Z K9me3 0.99476165 chemical cleaner0 2023-07-25T14:58:24Z CHEBI: hm-DNA 0.9994437 protein cleaner0 2023-07-25T16:29:03Z PR: URHF1 ABSTRACT abstract 1016 UHRF1 is involved in the maintenance of DNA methylation, but the regulatory mechanism of this epigenetic regulator is unclear. Here, the authors show that it has a closed conformation and are able to make conclusions about the mechanism of recognition of epigenetic marks. 0.9987054 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.99924755 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed INTRO paragraph 1290 DNA methylation is an important epigenetic modification for gene repression, X-chromosome inactivation, genome imprinting and maintenance of genome stability. Mammalian DNA methylation is established by de novo DNA methyltransferases DNMT3A/3B, and DNA methylation patterns are maintained by maintenance DNA methyltransferase 1 (DNMT1) during DNA replication. Ubiquitin-like, containing PHD and RING fingers domains, 1 (UHRF1, also known as ICBP90 and NP95 in mouse) was shown to be essential for maintenance DNA methylation through recruiting DNMT1 to replication forks in S phase of the cell cycle. UHRF1 is essential for S phase entry and is involved in heterochromatin formation. UHRF1 also plays an important role in promoting proliferation and is shown to be upregulated in a number of cancers, suggesting that UHRF1 may serve as a potential drug target for therapeutic applications. ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.9980562 taxonomy_domain cleaner0 2023-07-25T15:00:03Z DUMMY: Mammalian ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.9966591 protein_type cleaner0 2023-07-25T15:00:19Z MESH: DNA methyltransferases 0.9978175 protein cleaner0 2023-07-25T15:00:24Z PR: DNMT3A/3B ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.9750573 protein cleaner0 2023-07-25T15:00:32Z PR: DNA methyltransferase 1 0.99899286 protein cleaner0 2023-07-25T15:00:36Z PR: DNMT1 protein PR: cleaner0 2023-07-25T14:59:44Z Ubiquitin-like, containing PHD and RING fingers domains, 1 0.999151 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9991623 protein cleaner0 2023-07-25T15:00:45Z PR: ICBP90 0.9990305 protein cleaner0 2023-07-25T15:00:49Z PR: NP95 0.99646413 taxonomy_domain cleaner0 2023-07-25T15:00:55Z DUMMY: mouse ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.9990791 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.99863005 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.998461 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9986771 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 INTRO paragraph 2180 UHRF1 is a multi-domain containing protein connecting histone modification and DNA methylation. As shown in Fig. 1a, UHRF1 is comprised of an N-terminal ubiquitin-like domain, followed by a tandem Tudor domain (TTD containing TTDN and TTDC sub-domains), a plant homeodomain (PHD), a SET-and-RING-associated (SRA) domain, and a C-terminal really interesting new gene (RING) domain. We and other groups demonstrated that the TTD and the PHD coordinately recognize histone H3K9me3, in which residue R2 is recognized by the PHD and tri-methylation of residue K9 (K9me3) is recognized by the TTD. The SRA preferentially binds to hemi-methylated DNA (hm-DNA). Recent studies show that the SRA directly binds to replication focus targeting sequence (RFTS) of DNMT1 (RFTSDNMT1). A spacer region (Fig. 1a, designated Spacer hereafter) connecting the SRA and the RING is rich in basic residues and predicted to be unstructured for unknown function. Recent study shows that phosphatidylinostiol phosphate PI5P binds to the Spacer and induces a conformational change of UHRF1 to allow the TTD to recognize H3K9me3 (ref.). These studies indicate that UHRF1 connects dynamic regulation of DNA methylation and H3K9me3, which are positively correlated in human genome. However, how UHRF1 regulates the recognition of these two repressive epigenetic marks and recruits DNMT1 for chromatin localization remain largely unknown. 0.99919814 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone chemical CHEBI: cleaner0 2023-07-25T15:05:41Z DNA ptm MESH: cleaner0 2023-07-25T15:05:51Z methylation 0.9992995 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99908644 structure_element cleaner0 2023-07-25T16:31:03Z SO: ubiquitin-like domain 0.99913794 structure_element cleaner0 2023-07-25T14:57:12Z SO: tandem Tudor domain 0.999468 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.998676 structure_element cleaner0 2023-07-25T16:31:07Z SO: TTDN 0.9981198 structure_element cleaner0 2023-07-25T16:31:10Z SO: TTDC 0.9990694 structure_element cleaner0 2023-07-25T14:57:43Z SO: plant homeodomain 0.99924564 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9987116 structure_element cleaner0 2023-07-25T14:57:28Z SO: SET-and-RING-associated 0.9961398 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA 0.9305976 structure_element cleaner0 2023-07-25T15:01:22Z SO: really interesting new gene 0.9275266 structure_element cleaner0 2023-07-25T15:01:26Z SO: RING 0.9994217 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.9994911 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9925216 protein_type cleaner0 2023-07-25T15:05:07Z MESH: histone protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:33:20Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:33:29Z K9me3 0.8370888 residue_name_number cleaner0 2023-07-25T15:06:48Z DUMMY: R2 0.99943274 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9749963 ptm cleaner0 2023-07-25T15:06:10Z MESH: tri-methylation 0.9221057 residue_name_number cleaner0 2023-07-25T15:06:25Z DUMMY: K9 0.9694169 ptm cleaner0 2023-07-25T16:29:47Z MESH: K9me3 0.9994722 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.9991067 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to chemical CHEBI: cleaner0 2023-07-25T14:58:18Z hemi-methylated DNA 0.9955127 chemical cleaner0 2023-07-25T14:58:24Z CHEBI: hm-DNA 0.99911934 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.6492692 structure_element cleaner0 2023-07-25T15:02:17Z SO: replication focus targeting sequence 0.557462 structure_element cleaner0 2023-07-25T15:02:43Z SO: RFTS 0.9992735 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.9992048 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.99836123 structure_element cleaner0 2023-07-25T15:01:57Z SO: spacer region 0.9973368 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer 0.9995253 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA 0.9995208 structure_element cleaner0 2023-07-25T15:01:28Z SO: RING 0.91302955 protein_state cleaner0 2023-07-25T16:47:49Z DUMMY: unstructured 0.99880505 chemical cleaner0 2023-07-25T15:02:53Z CHEBI: phosphatidylinostiol phosphate 0.998345 chemical cleaner0 2023-07-25T15:03:00Z CHEBI: PI5P protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99899036 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer 0.99934953 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99953246 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:34:54Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:35:03Z K9me3 0.99926096 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 chemical CHEBI: melaniev@ebi.ac.uk 2023-08-08T12:34:37Z DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:34:14Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:34:25Z K9me3 0.9982955 species cleaner0 2023-07-25T16:39:10Z MESH: human 0.9993181 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9992186 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 INTRO paragraph 3589 Here we report that UHRF1 adopts a closed conformation, in which the C-terminal Spacer binds to the TTD and inhibits its recognition of H3K9me3, whereas the SRA binds to the PHD and inhibits its recognition of H3R2 (unmethylated histone H3 at residue R2). Upon binding to hm-DNA, UHRF1 impairs the intramolecular interactions and promotes the H3K9me3 recognition by TTD–PHD, which may further enhance its genomic localization. As a result, UHRF1 is locked in the open conformation by the association of H3K9me3 by TTD–PHD, and thus SRA-Spacer either recognizes hm-DNA or recruits DNMT1 for DNA methylation. Therefore, UHRF1 may engage in a sophisticated regulation for its chromatin localization and recruitment of DNMT1 through a mechanism yet to be fully elucidated. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by UHRF1. 0.99936396 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9992605 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed structure_element SO: cleaner0 2023-07-25T14:57:03Z Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:03Z binds to 0.99956805 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:35:18Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:35:26Z K9me3 0.9994542 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9995419 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.79977167 site cleaner0 2023-07-25T15:03:30Z SO: H3R2 0.99909306 protein_state cleaner0 2023-07-25T15:04:47Z DUMMY: unmethylated protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone protein_type MESH: cleaner0 2023-07-25T15:05:25Z H3 0.48252225 residue_name_number cleaner0 2023-07-25T15:06:49Z DUMMY: R2 protein_state DUMMY: cleaner0 2023-07-25T15:04:36Z binding to 0.9958095 chemical cleaner0 2023-07-25T14:58:24Z CHEBI: hm-DNA 0.9993137 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:35:40Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:35:49Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.9993806 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9991967 protein_state cleaner0 2023-07-25T16:47:52Z DUMMY: open protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:36:02Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:36:11Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.9654761 structure_element cleaner0 2023-07-25T15:04:01Z SO: SRA-Spacer 0.99189776 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99909675 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 chemical CHEBI: cleaner0 2023-07-25T15:07:18Z DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.99935514 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99914134 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:36:27Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:36:35Z K9me3 0.9882726 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99934787 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 RESULTS title_1 4453 Results RESULTS title_2 4461 Hm-DNA facilitates histone H3K9me3 recognition by UHRF1 0.9845609 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: Hm-DNA 0.98075485 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:36:54Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:37:04Z K9me3 0.9989887 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 RESULTS paragraph 4517 To investigate how UHRF1 coordinates the recognition of H3K9me3 and hm-DNA, we purified recombinant UHRF1 (truncations and mutations) proteins from bacteria. We first performed an in vitro pull-down assay using biotinylated histone H3 peptides and hm-DNA (Supplementary Table 1). As shown in Fig. 1b, hm-DNA largely enhanced the interaction between full-length UHRF1 and unmethylated histone H3 (H3K9me0) or H3K9me3 peptide. Compared with hm-DNA, um-DNA (unmethylated DNA) or fm-DNA (fully methylated DNA) showed marginal effect on facilitating the interaction between UHRF1 and histone peptides, which is consistent with previous studies that UHRF1 prefers hm-DNA for chromatin association (Supplementary Fig. 1a). In contrast, histone peptides showed no enhancement on the interaction between hm-DNA and UHRF1 (Fig. 1c). These results suggest that hm-DNA facilitates histone recognition by UHRF1. 0.9990995 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:37:24Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:37:32Z K9me3 0.9977552 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99919635 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9987502 experimental_method cleaner0 2023-07-25T16:39:17Z MESH: in vitro pull-down assay 0.7566109 protein_state cleaner0 2023-07-25T16:30:09Z DUMMY: biotinylated 0.8355774 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone 0.8583309 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 0.9979067 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9975527 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.999162 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.99920505 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99908483 protein_state cleaner0 2023-07-25T15:04:48Z DUMMY: unmethylated 0.94932944 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone 0.8987189 protein_type cleaner0 2023-07-25T15:07:49Z MESH: H3 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:37:47Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:37:57Z K9me0 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:38:09Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:38:18Z K9me3 0.99857134 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9987547 chemical cleaner0 2023-07-25T15:08:28Z CHEBI: um-DNA 0.99885714 protein_state cleaner0 2023-07-25T15:04:48Z DUMMY: unmethylated 0.9731914 chemical cleaner0 2023-07-25T16:30:14Z CHEBI: DNA 0.99861336 chemical cleaner0 2023-07-25T15:08:22Z CHEBI: fm-DNA 0.9987992 protein_state cleaner0 2023-07-25T15:08:14Z DUMMY: fully methylated 0.9773302 chemical cleaner0 2023-07-25T16:30:18Z CHEBI: DNA 0.9990351 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone 0.9991819 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99527615 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone 0.9965648 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9990885 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99166584 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone 0.99913424 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 RESULTS paragraph 5416 Our previous studies show that the PHD recognizes H3K9me0 and the TTD and the PHD together (TTD–PHD) coordinately recognize H3K9me3 (refs.). We noticed that the isolated TTD–PHD showed much higher (∼31-fold) binding affinity to H3K9me3 peptide than full-length UHRF1 (Fig. 1d and Supplementary Table 2), and the isolated PHD showed much higher (∼34-fold) binding affinity to H3K9me0 peptide than full-length UHRF1 (Fig. 1e). The gel filtration analysis showed that UHRF1 is a monomer in solution (Supplementary Fig. 1b), indicating that the intramolecular (not intermolecular) interaction of UHRF1 regulates histone recognition. These results suggest that UHRF1 adopts an unfavourable conformation for histone H3 tails recognition, in which TTD–PHD might be blocked by other regions of UHRF1, and hm-DNA impairs this intramolecular interaction to facilitate its recognition of histone H3 tails. 0.99949586 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:38:33Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:38:43Z K9me0 0.99951327 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.9994549 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:38:56Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:39:10Z K9me3 protein_state DUMMY: cleaner0 2023-07-25T15:16:09Z isolated structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.99869025 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:39:22Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:39:31Z K9me3 0.9990852 protein_state cleaner0 2023-07-25T15:08:59Z DUMMY: full-length 0.99931014 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9994672 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9987298 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:39:44Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:39:53Z K9me0 0.99909943 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.9993193 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99865484 experimental_method cleaner0 2023-07-25T16:39:20Z MESH: gel filtration analysis 0.9992993 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.998701 oligomeric_state cleaner0 2023-07-25T16:39:02Z DUMMY: monomer 0.9992415 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone 0.99931514 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone 0.42043397 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.9992786 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9796707 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.69733983 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone 0.5546273 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 RESULTS title_2 6321 Intramolecular interaction within UHRF1 0.9989747 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 RESULTS paragraph 6361 To test above hypothesis, we performed glutathione S-transferase (GST) pull-down assay using various truncations of UHRF1. Interestingly, the TTD directly bound to SRA-Spacer but not the SRA, suggesting that the Spacer (residues 587–674) is important for the intramolecular interaction (Fig. 2a). The isothermal titration calorimetry (ITC) measurements show that the TTD bound to the Spacer (but not the SRA) in a 1:1 stoichiometry with a binding affinity (KD) of 1.59 μM (Fig. 2b). The presence of the Spacer markedly impaired the interaction between TTD–PHD and H3K9me3 (Fig. 2c). The results indicate that the Spacer directly binds to the TTD and inhibits its interaction with H3K9me3. experimental_method MESH: cleaner0 2023-07-25T16:36:22Z glutathione S-transferase (GST) pull-down assay 0.8383519 experimental_method cleaner0 2023-07-25T16:39:24Z MESH: truncations 0.99936134 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.99953187 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD protein_state DUMMY: cleaner0 2023-07-25T15:10:32Z bound to structure_element SO: cleaner0 2023-07-25T15:04:02Z SRA-Spacer 0.9419889 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA 0.99881434 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer 0.9978974 residue_range cleaner0 2023-07-25T16:35:57Z DUMMY: 587–674 0.99897915 experimental_method cleaner0 2023-07-25T16:36:28Z MESH: isothermal titration calorimetry 0.9986539 experimental_method cleaner0 2023-07-25T16:36:31Z MESH: ITC 0.99951494 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.9987566 protein_state cleaner0 2023-07-25T15:10:31Z DUMMY: bound to 0.99883133 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer 0.57471496 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA 0.9984056 evidence cleaner0 2023-07-25T15:10:16Z DUMMY: binding affinity 0.99863535 evidence cleaner0 2023-07-25T15:10:10Z DUMMY: KD 0.9984523 protein_state cleaner0 2023-07-25T15:10:24Z DUMMY: presence of 0.9855452 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:11:20Z TTD–PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:40:09Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:40:20Z K9me3 0.9973073 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99943787 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:40:32Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:40:42Z K9me3 RESULTS paragraph 7057 The GST pull-down assay also shows that the PHD bound to the SRA, which was further confirmed by the ITC measurements (KD=26.7 μM; Fig. 2a,d). Compared with the PHD alone, PHD-SRA showed decreased binding affinity to H3K9me0 peptide by a factor of eight (Fig. 2e). Pre-incubation of the SRA also modestly impaired PHD–H3K9me0 interaction. These results indicate that the SRA directly binds to the PHD and inhibits its binding affinity to H3K9me0. Taken together, UHRF1 seems to adopt a closed form through intramolecular interactions (TTD–Spacer and PHD-SRA), which inhibit histone H3 tail recognition by UHRF1. 0.9989052 experimental_method cleaner0 2023-07-25T16:36:39Z MESH: GST pull-down assay 0.99954224 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9989557 protein_state cleaner0 2023-07-25T15:10:32Z DUMMY: bound to 0.98258084 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA 0.9976513 experimental_method cleaner0 2023-07-25T16:39:30Z MESH: ITC 0.99855214 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9994531 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9981786 protein_state cleaner0 2023-07-25T16:47:57Z DUMMY: alone 0.94781685 structure_element cleaner0 2023-07-25T15:16:50Z SO: PHD-SRA 0.99865395 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:40:54Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:41:03Z K9me0 0.99731904 experimental_method cleaner0 2023-07-25T16:39:33Z MESH: Pre-incubation 0.48420557 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA 0.9934504 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:41:14Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:41:25Z K9me0 0.9809187 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9994642 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9982419 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:41:40Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:41:49Z K9me0 0.9993193 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 0.9992454 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed structure_element SO: cleaner0 2023-07-25T15:17:20Z TTD–Spacer structure_element SO: cleaner0 2023-07-25T15:16:51Z PHD-SRA protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone protein_type MESH: cleaner0 2023-07-25T15:07:50Z H3 0.9993266 protein cleaner0 2023-07-25T14:58:01Z PR: UHRF1 RESULTS title_2 7676 Overall structure of TTD–Spacer 0.9973246 evidence cleaner0 2023-07-25T16:44:33Z DUMMY: structure 0.99570864 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer RESULTS paragraph 7710 To investigate the intramolecular interaction within UHRF1, we first mapped the minimal regions within the Spacer for the interaction with the TTD (Supplementary Fig. 2a). Internal deletions of the Spacer, including SpacerΔ660–664, SpacerΔ665–669, SpacerΔ670–674 and Spacer642–674, bound to the TTD with comparable binding affinities to that of the Spacer, whereas Spacer587–641 showed no detectable interaction. SpacerΔ642–651, SpacerΔ650–654 and SpacerΔ655–659 also decreased binding affinities, indicating that residues 642–674 are important for TTD–Spacer interaction. 0.99916494 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.99835926 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer 0.9993787 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.9698804 experimental_method cleaner0 2023-07-25T16:39:36Z MESH: deletions 0.99842167 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer mutant MESH: cleaner0 2023-07-25T15:18:22Z SpacerΔ660–664 mutant MESH: cleaner0 2023-07-25T15:18:42Z SpacerΔ665–669 mutant MESH: cleaner0 2023-07-25T15:19:03Z SpacerΔ670–674 mutant MESH: cleaner0 2023-07-25T15:19:23Z Spacer642–674 0.99854124 protein_state cleaner0 2023-07-25T15:10:32Z DUMMY: bound to 0.99894804 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.9986196 evidence cleaner0 2023-07-25T16:44:38Z DUMMY: binding affinities 0.99589765 structure_element cleaner0 2023-07-25T14:57:03Z SO: Spacer mutant MESH: cleaner0 2023-07-25T15:21:58Z Spacer587–641 mutant MESH: cleaner0 2023-07-25T15:19:44Z SpacerΔ642–651 mutant MESH: cleaner0 2023-07-25T15:20:05Z SpacerΔ650–654 mutant MESH: cleaner0 2023-07-25T15:20:29Z SpacerΔ655–659 0.9985037 evidence cleaner0 2023-07-25T16:44:42Z DUMMY: binding affinities 0.99734336 residue_range cleaner0 2023-07-25T15:20:40Z DUMMY: 642–674 structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer RESULTS paragraph 8309 We next determined the solution structure of the TTD (residues 134–285) bound to Spacer627–674 by conventional NMR techniques (Supplementary Table 3 and Supplementary Fig. 3a,b). In the complex structure, each Tudor domain adopts a ‘Royal' fold containing a characteristic five-stranded β-sheet and the two Tudor domains tightly pack against each other with a buried area of 573 Å2 (Fig. 3a). The TTD adopts similar fold to that in TTD–PHD–H3K9me3 complex structure (PDB: 4GY5) with a root-mean-square deviation of 1.09 Å for 128 Cα atoms, indicating that the Spacer does not result in obvious conformational change of the TTD (Fig. 3b). The Spacer (residues 643–655 were built in the model) adopts an extended conformation and binds to an acidic groove on the TTD (Fig. 3c). 0.9957992 evidence cleaner0 2023-07-25T16:44:45Z DUMMY: solution structure 0.9992454 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.99801356 residue_range cleaner0 2023-07-25T15:20:43Z DUMMY: 134–285 0.99913573 protein_state cleaner0 2023-07-25T15:10:32Z DUMMY: bound to 0.98736215 residue_range cleaner0 2023-07-25T15:24:25Z DUMMY: Spacer627–674 0.9983102 experimental_method cleaner0 2023-07-25T16:39:42Z MESH: NMR 0.9735048 evidence cleaner0 2023-07-25T16:44:48Z DUMMY: complex structure 0.9985361 structure_element cleaner0 2023-07-25T16:31:14Z SO: Tudor domain structure_element SO: cleaner0 2023-07-25T16:31:40Z ‘Royal' fold 0.9976389 structure_element cleaner0 2023-07-25T16:31:45Z SO: five-stranded β-sheet 0.99847436 structure_element cleaner0 2023-07-25T16:31:48Z SO: Tudor domains 0.99931407 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.99921435 complex_assembly cleaner0 2023-07-25T15:22:28Z GO: TTD–PHD–H3K9me3 0.7332863 evidence cleaner0 2023-07-25T16:44:50Z DUMMY: structure 0.9981439 evidence cleaner0 2023-07-25T16:44:53Z DUMMY: root-mean-square deviation 0.9938008 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99923444 structure_element cleaner0 2023-07-25T14:57:17Z SO: TTD 0.9991209 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9979308 residue_range cleaner0 2023-07-25T15:24:36Z DUMMY: 643–655 0.98440146 protein_state cleaner0 2023-07-25T16:48:08Z DUMMY: extended conformation protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9988172 site cleaner0 2023-07-25T16:51:32Z SO: acidic groove 0.9993272 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD RESULTS paragraph 9105 The TTD–Spacer interaction is mediated by a number of hydrogen bonds (Fig. 3d). The side chain of residue K648 forms hydrogen bonds with the carbonyl oxygen atom of D189 and side chain of D190 of the TTD. The side chain of residue R649 packs against an acidic surface mainly formed by residues D142 and E153. Residue S651 forms hydrogen bonds with the main chain of residues G236 and W238. The interaction is further supported by hydrogen bonds formed between residues K650, A652, G653 and G654 of the Spacer and residues N228, G236 and W238 of the TTD, respectively. structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.99648 bond_interaction cleaner0 2023-07-25T15:24:58Z MESH: hydrogen bonds 0.9994708 residue_name_number cleaner0 2023-07-25T15:25:15Z DUMMY: K648 0.99632293 bond_interaction cleaner0 2023-07-25T15:24:59Z MESH: hydrogen bonds 0.99950325 residue_name_number cleaner0 2023-07-25T15:25:05Z DUMMY: D189 0.9995196 residue_name_number cleaner0 2023-07-25T15:25:10Z DUMMY: D190 0.9994437 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD 0.99953413 residue_name_number cleaner0 2023-07-25T15:25:20Z DUMMY: R649 bond_interaction MESH: cleaner0 2023-07-25T15:25:44Z packs against 0.9995499 residue_name_number cleaner0 2023-07-25T15:25:49Z DUMMY: D142 0.9995509 residue_name_number cleaner0 2023-07-25T15:25:53Z DUMMY: E153 0.9995384 residue_name_number cleaner0 2023-07-25T15:25:59Z DUMMY: S651 0.9962274 bond_interaction cleaner0 2023-07-25T15:24:59Z MESH: hydrogen bonds 0.99953425 residue_name_number cleaner0 2023-07-25T15:26:05Z DUMMY: G236 0.9995196 residue_name_number cleaner0 2023-07-25T15:26:11Z DUMMY: W238 0.99586034 bond_interaction cleaner0 2023-07-25T15:24:59Z MESH: hydrogen bonds 0.99951375 residue_name_number cleaner0 2023-07-25T15:26:17Z DUMMY: K650 0.99952185 residue_name_number cleaner0 2023-07-25T15:26:21Z DUMMY: A652 0.99952614 residue_name_number cleaner0 2023-07-25T15:26:27Z DUMMY: G653 0.9995352 residue_name_number cleaner0 2023-07-25T15:26:31Z DUMMY: G654 0.9989109 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9995413 residue_name_number cleaner0 2023-07-25T15:26:36Z DUMMY: N228 0.9995378 residue_name_number cleaner0 2023-07-25T15:26:06Z DUMMY: G236 0.999521 residue_name_number cleaner0 2023-07-25T15:26:12Z DUMMY: W238 0.99935097 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD RESULTS paragraph 9675 In support of above structural analyses, mutation D142A/E153A of the TTD abolished its interaction with the Spacer (Fig. 3e). Mutations K648D and S651D of the Spacer decreased their binding affinities to the TTD, and mutation R649A of the Spacer showed more significant decrease (∼13-fold) in the binding affinity (Fig. 3f). As negative control, mutations S639D and S666D of the Spacer showed little effect on the interaction. Interestingly, phosphorylation at residue S651 of UHRF1 was observed in previous mass-spectrometry analyses. Compared with the unmodified peptide of Spacer642–664, a phosphorylation at S651 markedly decreased the binding affinity to the TTD (Supplementary Fig. 2b), suggesting that the phosphorylation may regulate the intramolecular interaction within UHRF1. 0.99829507 experimental_method cleaner0 2023-07-25T16:39:46Z MESH: structural analyses 0.99609274 experimental_method cleaner0 2023-07-25T16:39:49Z MESH: mutation 0.99899954 mutant cleaner0 2023-07-25T15:26:52Z MESH: D142A 0.9990146 mutant cleaner0 2023-07-25T15:26:57Z MESH: E153A 0.9994748 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD 0.9990018 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99218035 experimental_method cleaner0 2023-07-25T16:39:52Z MESH: Mutations 0.99906534 mutant cleaner0 2023-07-25T15:27:03Z MESH: K648D 0.9990694 mutant cleaner0 2023-07-25T15:27:08Z MESH: S651D 0.9989484 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9987575 evidence cleaner0 2023-07-25T16:44:57Z DUMMY: binding affinities 0.9994055 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD 0.99432313 experimental_method cleaner0 2023-07-25T16:39:55Z MESH: mutation 0.99906355 mutant cleaner0 2023-07-25T15:27:14Z MESH: R649A 0.9989303 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9987483 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity 0.98485273 experimental_method cleaner0 2023-07-25T16:39:57Z MESH: mutations 0.9991134 mutant cleaner0 2023-07-25T15:27:20Z MESH: S639D 0.99907804 mutant cleaner0 2023-07-25T15:27:26Z MESH: S666D 0.9987979 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99615014 ptm cleaner0 2023-07-25T15:27:38Z MESH: phosphorylation 0.9994925 residue_name_number cleaner0 2023-07-25T15:25:59Z DUMMY: S651 0.9993629 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9987564 experimental_method cleaner0 2023-07-25T16:39:59Z MESH: mass-spectrometry 0.99917954 protein_state cleaner0 2023-07-25T15:27:58Z DUMMY: unmodified 0.96082616 mutant cleaner0 2023-07-25T16:38:03Z MESH: Spacer642–664 0.99539644 ptm cleaner0 2023-07-25T15:27:39Z MESH: phosphorylation 0.99948895 residue_name_number cleaner0 2023-07-25T15:26:00Z DUMMY: S651 0.9987745 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity 0.9994197 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD 0.9951279 ptm cleaner0 2023-07-25T15:27:39Z MESH: phosphorylation 0.9993599 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 RESULTS title_2 10466 The spacer binds to the TTD by competing with the linker 0.99911445 structure_element cleaner0 2023-07-25T14:57:04Z SO: spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99956805 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD 0.999511 structure_element cleaner0 2023-07-25T15:34:28Z SO: linker RESULTS paragraph 10523 Previous studies indicate that the TTD binds to a linker region connecting the TTD and PHD (residues 286–306, designated Linker, Fig. 1a), and TTD–Linker interaction is essential for H3K9me3 recognition by TTD–PHD. Comparison of TTD–Spacer and TTD–PHD–H3K9me3 (PDB: 4GY5) structures indicates that the Spacer and the Linker bind to the TTD in a similar manner in the two complexes (Fig. 3b). In TTD–PHD–H3K9me3 structure, residues R295, R296 and S298 of the Linker adopt almost identical conformation to residues K648, R649 and S651 of the Spacer in TTD–Spacer structure, respectively. Similar intramolecular contacts (TTD–Linker and TTD–Spacer) were observed in the two structures (Fig. 3b,d and Supplementary Fig. 4a). Thus, the Spacer may disrupt the TTD–Linker interaction and inhibits the recognition of H3K9me3 by TTD–PHD. 0.99946636 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.96558005 structure_element cleaner0 2023-07-25T16:34:32Z SO: linker region 0.99939203 structure_element cleaner0 2023-07-25T14:57:18Z SO: TTD 0.9994456 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD 0.9974093 residue_range cleaner0 2023-07-25T16:38:11Z DUMMY: 286–306 0.9985744 structure_element cleaner0 2023-07-25T15:34:28Z SO: Linker structure_element SO: cleaner0 2023-07-25T15:38:48Z TTD–Linker protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:42:09Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:42:19Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.68116075 experimental_method cleaner0 2023-07-25T16:40:06Z MESH: Comparison 0.9833022 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer 0.99882823 complex_assembly cleaner0 2023-07-25T15:22:29Z GO: TTD–PHD–H3K9me3 0.9967913 evidence cleaner0 2023-07-25T16:45:05Z DUMMY: structures 0.9982766 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99900836 structure_element cleaner0 2023-07-25T15:34:28Z SO: Linker 0.999508 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.9989344 complex_assembly cleaner0 2023-07-25T15:22:29Z GO: TTD–PHD–H3K9me3 0.9972197 evidence cleaner0 2023-07-25T16:45:08Z DUMMY: structure 0.99949956 residue_name_number cleaner0 2023-07-25T15:29:27Z DUMMY: R295 0.99949014 residue_name_number cleaner0 2023-07-25T15:29:32Z DUMMY: R296 0.9995214 residue_name_number cleaner0 2023-07-25T15:29:38Z DUMMY: S298 0.998787 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.9995097 residue_name_number cleaner0 2023-07-25T15:25:16Z DUMMY: K648 0.9995159 residue_name_number cleaner0 2023-07-25T15:25:21Z DUMMY: R649 0.9995147 residue_name_number cleaner0 2023-07-25T15:26:00Z DUMMY: S651 0.99832743 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.98054665 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer 0.9964238 evidence cleaner0 2023-07-25T16:45:10Z DUMMY: structure structure_element SO: cleaner0 2023-07-25T15:38:48Z TTD–Linker structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.998024 evidence cleaner0 2023-07-25T16:45:12Z DUMMY: structures 0.9961163 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:38:48Z TTD–Linker protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:42:32Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:42:41Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD RESULTS paragraph 11378 To test this hypothesis, we first investigated the potential competition between the Linker and the Spacer for their interaction with the TTD. The ITC experiment shows that the Linker peptide (289–306) bound to the TTD with a binding affinity of 24.04 μM (Supplementary Fig. 4b), ∼15-fold lower than that of the Spacer peptide (KD=1.59 μM, Fig. 3e). The competitive ITC experiments show that TTD–Spacer binding affinity decreased by a factor of two in the presence of the Linker, whereas TTD–Linker interaction was abolished in the presence of the Spacer (Supplementary Fig. 4c). Compared with TTD–Spacer interaction (KD=1.48 μM), TTD–PHD decreased the binding affinity to the Spacer (KD=10.68 μM), whereas mutation R295D/R296D (within the Linker and important for TTD–Linker interaction) of TTD–PHD showed minor decrease in the binding affinity (KD=2.69 μM; Fig. 3g), indicating a competition between the Spacer and the Linker on the same binding site of the TTD. Notably, although the Linker (in the context of TTD-PHD) impairs the TTD–Spacer interaction to some extent, the isolated Spacer could still bind to TTD–PHD with moderate binding affinity (KD=10.68 μM), supporting the existence of the intramolecular interaction within UHRF1. 0.99596643 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.9945722 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99871874 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.99860686 experimental_method cleaner0 2023-07-25T16:40:11Z MESH: ITC 0.71808165 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.99674845 residue_range cleaner0 2023-07-25T16:38:16Z DUMMY: 289–306 0.9987063 protein_state cleaner0 2023-07-25T15:10:32Z DUMMY: bound to 0.9986609 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.99879277 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity 0.64477235 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9950499 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9985807 experimental_method cleaner0 2023-07-25T16:40:14Z MESH: competitive ITC evidence DUMMY: cleaner0 2023-07-25T15:30:27Z TTD–Spacer binding affinity 0.9988144 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.9507958 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker structure_element SO: cleaner0 2023-07-25T15:38:48Z TTD–Linker 0.9985734 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.941291 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.9873067 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9745458 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.9986774 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity 0.9826287 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9945904 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9967871 experimental_method cleaner0 2023-07-25T16:40:17Z MESH: mutation 0.9991032 mutant cleaner0 2023-07-25T15:37:56Z MESH: R295D 0.9991129 mutant cleaner0 2023-07-25T15:38:01Z MESH: R296D 0.99915695 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker structure_element SO: cleaner0 2023-07-25T15:38:48Z TTD–Linker 0.98462725 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.99872434 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity 0.9955218 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.95129967 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99688077 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.989062 site cleaner0 2023-07-25T16:51:36Z SO: binding site 0.9976774 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.9987902 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.9926465 structure_element cleaner0 2023-07-25T15:31:29Z SO: TTD-PHD structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.9983601 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.98772246 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.9986695 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity 0.9967951 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.99931896 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 RESULTS paragraph 12656 To test whether TTD–Spacer association exists in the context of full-length UHRF1, we used various truncations of UHRF1 in the GST pull-down assay. As indicated in Fig. 3h, full-length UHRF1 and UHRF1ΔSRA showed no interaction with GST-tagged TTD, Linker or Spacer, suggesting that TTD–Spacer interaction in-cis within full-length UHRF1 or UHRF1ΔSRA prohibits TTD–Spacer complex formation in-trans. In contrast, UHRF1ΔTTD bound to GST-TTD, and UHRF1Δ627–674 bound to GST-Spacer, indicating that lack of TTD–Spacer interaction in-cis, TTD–Spacer complex could form in-trans, supporting that the TTD binds to the Spacer in the context of full-length UHRF1. Moreover, GST-Linker showed very weak if not undetectable interaction with wild-type or deletions of UHRF1, suggesting that TTD–Linker interaction is much weaker than that of TTD–Spacer. Taken together, UHRF1 adopts a closed conformation, in which the Spacer binds to the TTD through competing with the Linker, and therefore inhibits H3K9me3 recognition by UHRF1. structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.99904275 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.99914956 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.56910294 experimental_method cleaner0 2023-07-25T16:40:20Z MESH: truncations 0.9991579 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9987602 experimental_method cleaner0 2023-07-25T16:40:24Z MESH: GST pull-down assay 0.99908614 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.9987546 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9988024 mutant cleaner0 2023-07-25T15:32:20Z MESH: UHRF1ΔSRA 0.9920395 protein_state cleaner0 2023-07-25T16:48:12Z DUMMY: GST-tagged 0.99950266 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.99916816 structure_element cleaner0 2023-07-25T15:34:28Z SO: Linker 0.9989662 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer protein_state DUMMY: cleaner0 2023-07-25T16:48:55Z in-cis 0.9990645 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.9991033 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9989047 mutant cleaner0 2023-07-25T15:32:21Z MESH: UHRF1ΔSRA structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer protein_state DUMMY: cleaner0 2023-07-25T16:48:36Z in-trans 0.99888223 mutant cleaner0 2023-07-25T15:32:49Z MESH: UHRF1ΔTTD 0.9990232 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to 0.6337208 experimental_method cleaner0 2023-07-25T15:33:05Z MESH: GST 0.9788821 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD mutant MESH: cleaner0 2023-07-25T15:33:25Z UHRF1Δ627–674 0.99905694 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to 0.72377217 experimental_method cleaner0 2023-07-25T15:33:34Z MESH: GST 0.76302904 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer protein_state DUMMY: cleaner0 2023-07-25T16:48:54Z in-cis 0.87800574 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer protein_state DUMMY: cleaner0 2023-07-25T16:48:37Z in-trans 0.99933016 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99834144 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9991 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.9991836 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.6764868 experimental_method cleaner0 2023-07-25T15:33:34Z MESH: GST 0.6613762 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.9990788 protein_state cleaner0 2023-07-25T15:34:10Z DUMMY: wild-type 0.9992009 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 structure_element SO: cleaner0 2023-07-25T15:38:48Z TTD–Linker structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.99930525 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9992095 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.9988832 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99944085 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.9992781 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T13:01:16Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T13:01:24Z K9me3 0.99924016 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 RESULTS title_2 13695 The spacer inhibits H3K9me3 recognition by the isolated TTD 0.9306218 structure_element cleaner0 2023-07-25T14:57:04Z SO: spacer protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:43:00Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:43:10Z K9me3 0.99938285 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD RESULTS paragraph 13755 Our previous study indicates that H3K9me3 binds to the TTD in different manner in TTD–PHD–H3K9me3 (ref.) and TTD-H3K9me3 (PDB: 2L3R) structures. Because the TTD is always associated with the PHD, whether the pattern of TTD–H3K9me3 interaction exists in vivo remains unknown. Nevertheless, comparison of TTD–H3K9me3 and TTD–Spacer structures indicates that H3K9me3 and the Spacer overlap on the surface of the TTD (Supplementary Fig. 4d), suggesting that the Spacer might block the H3K9me3 recognition by the isolated TTD. As shown in Supplementary Fig. 4e, the Spacer inhibited TTD–H3K9me3 interaction, whereas its TTD-binding defective mutants of the Spacer or the SRA (a negative control) markedly decreased the inhibition. protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:43:23Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:43:38Z K9me3 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9995209 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.99807155 complex_assembly cleaner0 2023-07-25T15:22:29Z GO: TTD–PHD–H3K9me3 0.99896175 complex_assembly cleaner0 2023-07-25T15:35:15Z GO: TTD-H3K9me3 0.9970138 evidence cleaner0 2023-07-25T16:45:20Z DUMMY: structures 0.99952006 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.99954337 structure_element cleaner0 2023-07-25T14:57:49Z SO: PHD complex_assembly GO: cleaner0 2023-07-25T15:35:48Z TTD–H3K9me3 0.66193366 experimental_method cleaner0 2023-07-25T16:40:31Z MESH: comparison 0.9964395 complex_assembly cleaner0 2023-07-25T15:35:47Z GO: TTD–H3K9me3 0.998569 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer 0.99715745 evidence cleaner0 2023-07-25T16:45:22Z DUMMY: structures protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:43:52Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:44:00Z K9me3 0.9979061 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99949706 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.99820197 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:44:19Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:44:28Z K9me3 0.9992218 structure_element cleaner0 2023-07-25T14:57:19Z SO: TTD 0.9980301 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer complex_assembly GO: cleaner0 2023-07-25T15:35:48Z TTD–H3K9me3 0.99777913 protein_state cleaner0 2023-07-25T15:36:16Z DUMMY: TTD-binding defective 0.92626643 protein_state cleaner0 2023-07-25T16:00:01Z DUMMY: mutants 0.9984737 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.554281 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA RESULTS paragraph 14493 We next tested whether such inhibition also occurs in the context of full-length UHRF1. Compared with full-length UHRF1, UHRF1Δ627–674 enhanced H3K9me3-binding affinity by a factor of four (Supplementary Fig. 4f). The restoration of H3K9me3-binding affinity is not dramatic because the PHD still binds to histone H3 in both proteins. To exclude this effect, we performed the assay using UHRF1D334A, which abolishes H3R2-binding affinity of the PHD. UHRF1D334A showed undetectable H3K9me3-binding affinity, whereas UHRF1D334A&Δ627–674 dramatically restored its H3K9me3-binding affinity (KD=8.69 μM; Supplementary Fig. 4f), indicating that H3K9me3 recognition by the TTD is blocked by the Spacer through competitive interaction with the TTD. Moreover, the R295D/R296D mutant of full-length UHRF1 showed decreased binding affinity to H3K9me3 (eightfold lower than wild type), suggesting that mutation of R295D/R296D favours TTD–Spacer interaction and therefore promotes UHRF1 to exhibit a more stable closed conformation (Supplementary Fig. 4g). Taken together, the Spacer binds to the TTD and inhibits H3K9me3 recognition by UHRF1 through (i) disrupting TTD–Linker interaction, which is essential for H3K9me3 recognition by TTD–PHD, (ii) prohibiting H3K9me3 binding to the isolated TTD. 0.99906915 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.99927145 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9990279 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.99917525 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.8828556 mutant cleaner0 2023-07-25T15:33:26Z MESH: UHRF1Δ627–674 0.9981193 evidence cleaner0 2023-07-25T15:36:48Z DUMMY: H3K9me3-binding affinity 0.9981266 evidence cleaner0 2023-07-25T15:36:49Z DUMMY: H3K9me3-binding affinity 0.99945194 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.95636517 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone 0.80781966 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 0.9991373 mutant cleaner0 2023-07-25T15:37:36Z MESH: UHRF1D334A 0.6050428 protein_state cleaner0 2023-07-25T16:49:05Z DUMMY: abolishes 0.9379358 evidence cleaner0 2023-07-25T15:37:28Z DUMMY: H3R2-binding affinity 0.9994092 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.9990056 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A 0.9981046 evidence cleaner0 2023-07-25T15:36:49Z DUMMY: H3K9me3-binding affinity 0.99837047 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A 0.95115536 mutant cleaner0 2023-07-25T16:35:23Z MESH: Δ627–674 0.9983492 evidence cleaner0 2023-07-25T15:36:49Z DUMMY: H3K9me3-binding affinity 0.99851674 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:44:46Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:44:54Z K9me3 0.999483 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9982369 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9995005 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.99909306 mutant cleaner0 2023-07-25T15:37:56Z MESH: R295D 0.99889565 mutant cleaner0 2023-07-25T15:38:01Z MESH: R296D 0.9992405 protein_state cleaner0 2023-07-25T16:00:50Z DUMMY: mutant 0.99901754 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.9991984 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9981595 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:45:16Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:45:10Z K9me3 0.99894714 protein_state cleaner0 2023-07-25T15:59:54Z DUMMY: wild type 0.9975069 experimental_method cleaner0 2023-07-25T16:40:37Z MESH: mutation 0.9991567 mutant cleaner0 2023-07-25T15:37:56Z MESH: R295D 0.9989969 mutant cleaner0 2023-07-25T15:38:01Z MESH: R296D structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.99926156 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.99921596 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.9969368 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9995086 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:45:35Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:45:44Z K9me3 0.99934036 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 structure_element SO: cleaner0 2023-07-25T15:38:48Z TTD–Linker protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:45:56Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:46:05Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:46:17Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:46:26Z K9me3 0.9995049 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD RESULTS title_2 15793 TTD–PHD–H3K9me3 complex inhibits TTD–spacer interaction 0.99889505 complex_assembly cleaner0 2023-07-25T15:22:29Z GO: TTD–PHD–H3K9me3 structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–spacer RESULTS paragraph 15855 Interestingly, pre-incubation of H3K9me3 peptide completely blocked the interaction between the Spacer and the TTD alone or TTD–PHD (Supplementary Fig. 4h), whereas the presence of the Spacer partially impaired the interaction between TTD–PHD and H3K9me3 (Fig. 2c). The results are also consistent with the previous observation that the interaction between TTD–PHD and the Spacer is much weaker (KD=10.68 μM, Fig. 3g) than that between TTD–PHD and H3K9me3 (KD=0.15 μM, Fig. 1d). These results suggest that once TTD–PHD binds to H3K9me3, UHRF1 will be locked by H3K9me3 and the Spacer is unlikely to fold back for the intramolecular interaction. 0.9957268 experimental_method cleaner0 2023-07-25T16:40:41Z MESH: pre-incubation protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:46:39Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:46:48Z K9me3 0.9989543 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.99953127 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9454766 protein_state cleaner0 2023-07-25T16:49:08Z DUMMY: alone 0.75461227 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.77001154 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.99875605 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9114364 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:47:02Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:47:17Z K9me3 0.9728093 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.9988933 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9838965 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.80197483 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:47:31Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:47:41Z K9me3 0.98408234 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.98543686 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:48:16Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:48:25Z K9me3 0.99848336 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:47:55Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:48:04Z K9me3 0.9985475 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer RESULTS title_2 16516 Hm-DNA disrupts intramolecular interaction within UHRF1 0.99885005 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: Hm-DNA 0.9987213 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 RESULTS paragraph 16572 To investigate whether hm-DNA could open the closed conformation of UHRF1, we first measured the intramolecular interaction using UHRF1 truncations in the presence or absence of hm-DNA. The GST pull-down assays show that the PHD bound to the SRA and such interaction was impaired by the addition of hm-DNA (Fig. 4a). H3 peptide pull-down assays show that hm-DNA only enhanced the H3K9me0-binding affinities of UHRF1 truncations containing PHD-SRA, such as PHD-SRA, TTD-PHD-SRA, TTD-PHD-SRA-Spacer, UHRF1ΔTTD and UHRF1ΔSpacer (Fig. 4b). The result indicates that hm-DNA disrupts PHD–SRA interaction and facilitates H3K9me0-binding affinity of the PHD in a manner independent on the TTD or the Spacer. 0.9984625 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99766964 protein_state cleaner0 2023-07-25T16:49:12Z DUMMY: open 0.9992649 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.9991647 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9961184 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.28094894 experimental_method cleaner0 2023-07-25T16:40:48Z MESH: truncations 0.95577383 protein_state cleaner0 2023-07-25T16:49:16Z DUMMY: presence 0.99804974 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.99866885 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9987156 experimental_method cleaner0 2023-07-25T15:44:48Z MESH: GST pull-down assays 0.9994842 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.9988121 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to 0.99894243 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA 0.99869126 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99809307 experimental_method cleaner0 2023-07-25T15:44:56Z MESH: H3 peptide pull-down assays 0.998354 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99781346 evidence cleaner0 2023-07-25T15:45:08Z DUMMY: H3K9me0-binding affinities 0.9794041 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.385163 experimental_method cleaner0 2023-07-25T16:35:37Z MESH: truncations structure_element SO: cleaner0 2023-07-25T15:16:51Z PHD-SRA structure_element SO: cleaner0 2023-07-25T15:16:51Z PHD-SRA structure_element SO: cleaner0 2023-07-25T15:46:46Z TTD-PHD-SRA structure_element SO: cleaner0 2023-07-25T15:47:05Z TTD-PHD-SRA-Spacer 0.99860424 mutant cleaner0 2023-07-25T15:32:50Z MESH: UHRF1ΔTTD 0.9987993 mutant cleaner0 2023-07-25T15:47:15Z MESH: UHRF1ΔSpacer 0.99783105 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA structure_element SO: cleaner0 2023-07-25T15:47:39Z PHD–SRA 0.9978884 evidence cleaner0 2023-07-25T15:47:57Z DUMMY: H3K9me0-binding affinity 0.9994618 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.99946874 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.99923813 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer RESULTS paragraph 17280 Moreover, the TTD or TTD–PHD bound to SRA–Spacer and the interaction was impaired by the addition of hm-DNA (Fig. 4c). The ITC measurements show that the presence of hm-DNA markedly impaired the interaction between the TTD and SRA–Spacer (Supplementary Fig. 5a). However, the TTD–Spacer interaction was not affected by the presence of the hm-DNA, indicating that hm-DNA displaces the Spacer from the TTD in a SRA-dependent manner (Supplementary Fig. 5b). 0.99950933 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.9987109 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to structure_element SO: cleaner0 2023-07-25T15:48:54Z SRA–Spacer 0.99908704 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9987098 experimental_method cleaner0 2023-07-25T16:40:53Z MESH: ITC 0.9988615 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.99899316 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99947697 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD structure_element SO: cleaner0 2023-07-25T15:48:55Z SRA–Spacer structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer protein_state DUMMY: cleaner0 2023-07-25T15:10:25Z presence of 0.99896955 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9988248 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99763024 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9994855 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.8576784 structure_element cleaner0 2023-07-25T14:57:34Z SO: SRA RESULTS paragraph 17743 To investigate whether hm-DNA disrupts TTD–Spacer interaction in the context of full-length UHRF1, we monitored the conformational changes of UHRF1 using its histone-binding affinity as read-out. UHRF1D334A was used to exclude the effect of H3K9me0 recognition by the PHD. As expected, all D334A-containing mutants showed undetectable interaction with H3K9me0 (Fig. 4d). UHRF1D334A bound to H3K9me3 peptide in the presence of hm-DNA, but showed no interaction in the absence of hm-DNA, which is consistent with the ITC experiments (Supplementary Fig. 4f). In contrast, UHRF1D334A&Δ627–674 strongly bound to H3K9me3 even in the absence of hm-DNA (Fig. 4d), indicating that the deletion of the Spacer releases otherwise blocked TTD–PHD for H3K9me3 recognition. The results further support the conclusion that the Spacer binds to the TTD in the context of full-length UHRF1 and the intramolecular interactions are disrupted by hm-DNA. 0.9971008 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.9991389 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.99922895 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 protein PR: cleaner0 2023-07-25T15:49:52Z UHRF1 0.9983196 evidence cleaner0 2023-07-25T15:49:57Z DUMMY: histone-binding affinity 0.9989108 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:48:43Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:48:51Z K9me0 0.99943894 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.9989262 mutant cleaner0 2023-07-25T16:35:44Z MESH: D334A protein_state DUMMY: cleaner0 2023-07-25T16:00:01Z mutants protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:49:04Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:49:12Z K9me0 0.99879444 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A 0.9990998 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:49:26Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:49:36Z K9me3 0.99886876 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.9983613 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99910927 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.997808 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99873966 experimental_method cleaner0 2023-07-25T16:40:58Z MESH: ITC 0.99884605 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A 0.7490342 mutant cleaner0 2023-07-25T16:35:48Z MESH: Δ627–674 0.96783024 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:49:49Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:50:02Z K9me3 0.99908817 protein_state cleaner0 2023-07-25T15:50:13Z DUMMY: absence of 0.99811006 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9919852 experimental_method cleaner0 2023-07-25T16:41:00Z MESH: deletion 0.99834204 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:50:15Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:50:23Z K9me3 0.99884856 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99944717 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9991366 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.9992418 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9978318 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA RESULTS paragraph 18682 We next performed similar peptide pull-down assay using two mutants (N228C/G653C and R235C/G654C) generated on UHRF1D334A. Residues N228/R235 from the TTD and G653/G654 from the Spacer were chosen according to the TTD–Spacer complex structure (Supplementary Fig. 5c) so that the replaced Cysteine residues (one from the TTD and one from the Spacer) are physically close enough to each other to form a disulphide bond in the absence of reducing reagent (dithiothreitol, DTT). As shown in Fig. 4d, hm-DNA largely enhanced the H3K9me3-binding affinities of both mutants in the presence of DTT, but not in the absence of DTT, indicating that the disulphide bond formation (in the absence of DTT) disallows hm-DNA to disrupt TTD–Spacer interaction for H3K9me3 recognition. As negative controls, H3K9me3 recognition by UHRF1D334A or UHRF1D334A&Δ627–674 is not affected by DTT. 0.99872124 experimental_method cleaner0 2023-07-25T15:50:32Z MESH: peptide pull-down assay protein_state DUMMY: cleaner0 2023-07-25T16:00:01Z mutants 0.9989108 mutant cleaner0 2023-07-25T15:50:37Z MESH: N228C 0.9985165 mutant cleaner0 2023-07-25T15:50:42Z MESH: G653C 0.99888533 mutant cleaner0 2023-07-25T15:50:47Z MESH: R235C 0.9982223 mutant cleaner0 2023-07-25T15:50:53Z MESH: G654C 0.99885094 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A 0.99957484 residue_name_number cleaner0 2023-07-25T15:26:37Z DUMMY: N228 0.99957687 residue_name_number cleaner0 2023-07-25T15:51:05Z DUMMY: R235 0.99939466 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.99954104 residue_name_number cleaner0 2023-07-25T15:26:28Z DUMMY: G653 0.9995326 residue_name_number cleaner0 2023-07-25T15:26:32Z DUMMY: G654 0.99916935 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9990664 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer 0.9821614 evidence cleaner0 2023-07-25T16:45:30Z DUMMY: structure 0.99367803 residue_name cleaner0 2023-07-25T16:35:17Z SO: Cysteine 0.99936646 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.99905914 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9833516 ptm cleaner0 2023-07-25T15:51:59Z MESH: disulphide bond 0.99728125 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.9975418 chemical cleaner0 2023-07-25T15:51:45Z CHEBI: dithiothreitol 0.9974686 chemical cleaner0 2023-07-25T15:51:50Z CHEBI: DTT 0.9978681 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9978291 evidence cleaner0 2023-07-25T15:51:32Z DUMMY: H3K9me3-binding affinities protein_state DUMMY: cleaner0 2023-07-25T16:00:01Z mutants 0.99578726 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.99850523 chemical cleaner0 2023-07-25T15:51:51Z CHEBI: DTT 0.99795115 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.9981852 chemical cleaner0 2023-07-25T15:51:51Z CHEBI: DTT 0.97308254 ptm cleaner0 2023-07-25T15:51:59Z MESH: disulphide bond 0.9947853 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.99812025 chemical cleaner0 2023-07-25T15:51:51Z CHEBI: DTT 0.9967267 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:50:40Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:50:48Z K9me3 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T13:01:42Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T13:01:50Z K9me3 0.99848133 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A 0.99851066 mutant cleaner0 2023-07-25T15:37:37Z MESH: UHRF1D334A 0.9231658 mutant cleaner0 2023-07-25T16:35:52Z MESH: Δ627–674 0.99822944 chemical cleaner0 2023-07-25T15:51:51Z CHEBI: DTT RESULTS paragraph 19560 The above results collectively demonstrate that (i) full-length UHRF1 adopts a closed form, in which the Spacer binds to the TTD and H3K9me3 recognition is inhibited; (ii) hm-DNA displaces the Spacer from the TTD in the context of full-length UHRF1 and therefore largely enhances its histone H3K9me3-binding activity in a manner independent on the PHD (SRA is required). We have previously demonstrated that hm-DNA also disrupts PHD–SRA interaction and facilitates H3K9me0-binding affinity of the PHD in a manner independent on the TTD or the Spacer. Taken together, hm-DNA disrupts the intramolecular interactions within UHRF1, and therefore facilitates the coordinate recognition of H3K9me3 by TTD–PHD. 0.9990444 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.99925977 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9992508 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.99818677 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9995371 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:51:06Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:51:14Z K9me3 0.9987197 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9989048 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9995277 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9991288 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.9992617 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.73736984 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:51:25Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:51:33Z K9me3 0.9994729 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.9982949 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.9982069 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA structure_element SO: cleaner0 2023-07-25T15:47:40Z PHD–SRA 0.9877172 evidence cleaner0 2023-07-25T15:47:58Z DUMMY: H3K9me0-binding affinity 0.99947613 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.99953234 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.99911374 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.9984932 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99928147 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:51:45Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:51:54Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD RESULTS title_2 20269 The spacer enhances hm-DNA-binding affinity of the SRA 0.82882965 structure_element cleaner0 2023-07-25T14:57:04Z SO: spacer evidence DUMMY: cleaner0 2023-07-25T14:56:50Z hm-DNA-binding affinity 0.9169475 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA RESULTS paragraph 20324 To investigate how hm-DNA impairs TTD–Spacer interaction, we tested whether the Spacer is involved in hm-DNA recognition by the SRA, which is the only known domain for hm-DNA recognition within UHRF1. In the electrophoretic mobility-shift assay, SRA–Spacer showed higher hm-DNA-binding affinity than the SRA alone (Supplementary Fig. 6a). ITC measurements show that SRA–Spacer bound to hm-DNA with a much higher binding affinity (KD=1.75 μM) than the SRA (KD=25.12 μM), whereas the Spacer alone showed no interaction with hm-DNA (Fig. 5a). In the fluorescence polarization (FP) measurements, SRA–Spacer, full-length UHRF1 and UHRF1ΔTTD showed comparable hm-DNA-binding affinities (Fig. 5b and Supplementary Table 4), suggesting that UHRF1 binds to hm-DNA no matter UHRF1 adopts a closed form or not. In contrast, UHRF1ΔSRA abolished hm-DNA-binding affinity, indicating that the SRA is essential for hm-DNA recognition. Compared with full-length UHRF1, UHRF1Δ627–674 decreased the hm-DNA-binding affinity by a factor of 14 (Fig. 5b), further supporting that the Spacer plays an important role in hm-DNA recognition in the context of full-length UHRF1. In addition, hm-DNA-binding affinities of SRA or SRA–Spacer did not obviously vary upon the change of DNA lengths but did decrease with the increasing salt concentrations (Supplementary Fig. 6b,c and Supplementary Table 5). These results indicate that the Spacer not only binds to the TTD and inhibits H3K9me3 recognition when UHRF1 adopts closed conformation, but also facilitates hm-DNA recognition by the SRA when UHRF1 binds to hm-DNA. chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.99807835 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA 0.81657904 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA 0.999308 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9981696 experimental_method cleaner0 2023-07-25T16:41:07Z MESH: electrophoretic mobility-shift assay 0.987925 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99830437 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity 0.76229775 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.98666745 protein_state cleaner0 2023-07-25T16:49:21Z DUMMY: alone 0.9979923 experimental_method cleaner0 2023-07-25T16:41:10Z MESH: ITC 0.9918042 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.9989643 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to 0.92392224 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9986793 evidence cleaner0 2023-07-25T15:10:17Z DUMMY: binding affinity 0.9982942 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9393552 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.9979615 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.94276625 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer 0.97806543 protein_state cleaner0 2023-07-25T16:49:23Z DUMMY: alone chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA 0.997146 experimental_method cleaner0 2023-07-25T16:41:15Z MESH: fluorescence polarization (FP 0.9868372 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99911547 protein_state cleaner0 2023-07-25T15:09:00Z DUMMY: full-length 0.99911135 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.9990601 mutant cleaner0 2023-07-25T15:32:50Z MESH: UHRF1ΔTTD 0.9985642 evidence cleaner0 2023-07-25T15:53:50Z DUMMY: hm-DNA-binding affinities 0.9991716 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA 0.9992442 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.99919313 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.99904126 mutant cleaner0 2023-07-25T15:32:21Z MESH: UHRF1ΔSRA 0.99844027 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity 0.99079424 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA 0.99907523 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.99927646 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 mutant MESH: cleaner0 2023-07-25T15:33:26Z UHRF1Δ627–674 0.9985644 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity 0.9980646 structure_element cleaner0 2023-07-25T14:57:04Z SO: Spacer chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA 0.99915737 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.999258 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.99851686 evidence cleaner0 2023-07-25T15:53:51Z DUMMY: hm-DNA-binding affinities 0.86080647 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.9879043 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99886537 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99944586 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:52:11Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:52:20Z K9me3 0.999356 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 0.99925965 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA 0.47243175 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.9991511 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to chemical CHEBI: cleaner0 2023-07-25T14:58:25Z hm-DNA RESULTS paragraph 21936 We next mapped the minimal region of the Spacer for the enhancement of hm-DNA-binding affinity. SRA–Spacer-661 (residues 414–661) still maintained strong hm-DNA-binding affinity comparable to that of SRA–Spacer (residues 414–674), whereas SRA–Spacer-652 and SRA–Spacer-642 markedly decreased their hm-DNA-binding affinities (Fig. 5c), indicating that residues 642–661 are important for enhancing hm-DNA-binding affinity of the SRA. This minimal region largely overlaps with the Spacer region (643–655) essential for TTD interaction. We also determined the crystal structure of SRA–Spacer bound to hm-DNA at 3.15 Å resolution (Supplementary Table 6 and Supplementary Fig. 7a). The structure shows that the SRA binds to hm-DNA in a manner similar to that observed in the previously reported SRA-hm-DNA structures. Intriguingly, no electron density was observed for the Spacer. A possible explanation is that the Spacer facilitates SRA–hm-DNA interaction through nonspecific salt bridge contacts because DNA is rich in acidic groups and the Spacer is rich in basic residues (Supplementary Fig. 7b). The nonspecific interaction is consistent with the previous observation that UHRF1 has no DNA sequence selectivity besides hm-CpG dinucleotide. 0.9975426 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.9973096 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity mutant MESH: cleaner0 2023-07-25T15:56:40Z SRA–Spacer-661 0.9965994 residue_range cleaner0 2023-07-25T16:38:23Z DUMMY: 414–661 0.99742836 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity 0.8045659 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99663335 residue_range cleaner0 2023-07-25T16:38:30Z DUMMY: 414–674 mutant MESH: cleaner0 2023-07-25T15:57:14Z SRA–Spacer-652 mutant MESH: cleaner0 2023-07-25T15:57:47Z SRA–Spacer-642 0.9978421 evidence cleaner0 2023-07-25T15:53:51Z DUMMY: hm-DNA-binding affinities 0.99661374 residue_range cleaner0 2023-07-25T16:38:34Z DUMMY: 642–661 0.9960874 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity 0.99648416 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA structure_element SO: cleaner0 2023-07-25T14:57:05Z Spacer 0.99668616 residue_range cleaner0 2023-07-25T16:38:38Z DUMMY: 643–655 0.7144268 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.998444 evidence cleaner0 2023-07-25T16:45:37Z DUMMY: crystal structure 0.9244888 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99880683 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to 0.99367905 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.997813 evidence cleaner0 2023-07-25T16:45:39Z DUMMY: structure 0.9913696 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.8255575 protein_state cleaner0 2023-07-25T15:13:04Z DUMMY: binds to 0.9931057 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99895704 complex_assembly cleaner0 2023-07-25T15:58:37Z GO: SRA-hm-DNA 0.9978289 evidence cleaner0 2023-07-25T16:45:42Z DUMMY: structures 0.9962826 evidence cleaner0 2023-07-25T16:45:45Z DUMMY: electron density 0.9974815 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.9951716 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer complex_assembly GO: cleaner0 2023-07-25T15:59:10Z SRA–hm-DNA 0.9730364 bond_interaction cleaner0 2023-07-25T15:59:17Z MESH: salt bridge 0.94352984 chemical cleaner0 2023-07-25T16:30:22Z CHEBI: DNA 0.9973133 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.99935216 protein cleaner0 2023-07-25T14:58:02Z PR: UHRF1 chemical CHEBI: cleaner0 2023-07-25T15:59:31Z DNA 0.99895376 chemical cleaner0 2023-07-25T15:59:37Z CHEBI: hm-CpG dinucleotide RESULTS title_2 23199 The spacer is important for PCH localization of UHRF1 0.99830556 structure_element cleaner0 2023-07-25T14:57:05Z SO: spacer 0.9988042 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 RESULTS paragraph 23253 To investigate the role of the Spacer in the regulation of UHRF1 function, we transiently overexpressed GFP-tagged wild type or mutants of UHRF1 in NIH3T3 cells to determine their subcellular localization. For the NIH3T3 cells expressing wild-type UHRF1, most cells (∼74.6%) showed a focal pattern of protein that is co-localized with 4,6-diamidino-2-phenylindole (DAPI) foci (Fig. 5d), whereas the rest cells showed a diffuse nuclear staining pattern. The result is consistent with the previous studies that UHRF1 is mainly localized to highly methylated pericentromeric heterochromatin (PCH). In contrast, for the cells expressing UHRF1Δ627–674, a spacer deletion mutant with decreased hm-DNA-binding affinity (Fig. 5b), only ∼22.1% cells showed co-localization with DAPI. 0.9981256 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.9989207 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9978527 experimental_method cleaner0 2023-07-25T16:41:23Z MESH: transiently overexpressed 0.99685115 protein_state cleaner0 2023-07-25T15:59:46Z DUMMY: GFP-tagged 0.999069 protein_state cleaner0 2023-07-25T15:59:53Z DUMMY: wild type 0.9961945 protein_state cleaner0 2023-07-25T16:00:00Z DUMMY: mutants 0.9990792 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.99910134 protein_state cleaner0 2023-07-25T15:34:11Z DUMMY: wild-type 0.99903154 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9928932 chemical cleaner0 2023-07-25T16:00:05Z CHEBI: 4,6-diamidino-2-phenylindole 0.98459643 chemical cleaner0 2023-07-25T16:00:09Z CHEBI: DAPI 0.999064 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.96579576 protein_state cleaner0 2023-07-25T16:49:30Z DUMMY: highly methylated 0.9048956 mutant cleaner0 2023-07-25T15:33:26Z MESH: UHRF1Δ627–674 0.981091 protein_state cleaner0 2023-07-25T16:00:39Z DUMMY: spacer deletion mutant 0.9975831 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity 0.80328345 chemical cleaner0 2023-07-25T16:00:11Z CHEBI: DAPI RESULTS paragraph 24035 Previous reports have shown that the H3K9me3 recognition of UHRF1 also plays an important role in its heterochromatin localization. For example, UHRF1 mutant (within TTD domain) lacking H3K9me3-binding affinity largely reduces its co-localization with heterochromatin. Because manipulation of endogenous hm-DNA in cells is technically challenging, we used UHRF1ΔSRA (lacks hm-DNA-binding affinity but maintains closed conformation, Figs 3h and 5b) to test whether closed conformation of UHRF1 exists in vivo. In NIH3T3 cells, UHRF1ΔSRA largely decreased chromatin association (Fig. 5d). Only ∼4.8% cells expressing UHRF1ΔSRA showed an intermediate enrichment, but not characteristic focal pattern, at DAPI foci, whereas the majority of the cells showed a diffuse nuclear staining pattern. The results suggest that UHRF1ΔSRA adopts closed conformation so that H3K9me3 recognition by TTD–PHD is blocked by the intramolecular interaction, and support the regulatory role of the Spacer in PCH localization of UHRF1 in vivo. protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:52:39Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:52:50Z K9me3 0.99911493 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.96556795 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9991499 protein_state cleaner0 2023-07-25T16:00:49Z DUMMY: mutant 0.9993081 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9985348 protein_state cleaner0 2023-07-25T16:01:43Z DUMMY: lacking 0.9186321 evidence cleaner0 2023-07-25T15:36:49Z DUMMY: H3K9me3-binding affinity 0.95978385 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.9990237 mutant cleaner0 2023-07-25T15:32:21Z MESH: UHRF1ΔSRA 0.9810548 protein_state cleaner0 2023-07-25T16:01:46Z DUMMY: lacks 0.8604536 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity protein_state DUMMY: cleaner0 2023-07-25T14:59:20Z closed protein_state DUMMY: cleaner0 2023-07-25T14:59:20Z closed 0.99917513 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9986072 mutant cleaner0 2023-07-25T15:32:21Z MESH: UHRF1ΔSRA 0.99880767 mutant cleaner0 2023-07-25T15:32:21Z MESH: UHRF1ΔSRA chemical CHEBI: cleaner0 2023-07-25T16:00:11Z DAPI 0.9989556 mutant cleaner0 2023-07-25T15:32:21Z MESH: UHRF1ΔSRA protein_state DUMMY: cleaner0 2023-07-25T14:59:20Z closed protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:53:06Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:53:14Z K9me3 0.80278236 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.99870586 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.9991685 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 RESULTS title_2 25071 The spacer facilitates UHRF1–DNMT1 interaction 0.99730814 structure_element cleaner0 2023-07-25T14:57:05Z SO: spacer complex_assembly GO: cleaner0 2023-07-25T16:03:29Z UHRF1–DNMT1 RESULTS paragraph 25120 Previous studies show that UHRF1 recruits DNMT1 to hm-DNA for maintenance DNA methylation through the interaction between the SRA and RFTSDNMT1 (refs). We confirmed the direct interaction between RFTSDNMT1 and the SRA in a solution with low salt concentration (50 mM NaCl), but observed weak or undetectable interaction in a solution with higher salt concentrations (100 or 150 mM NaCl) (Supplementary Fig. 8a). Compared with the SRA, SRA–Spacer exhibited stronger interaction with RFTSDNMT1. In addition, RFTSDNMT1 bound to SRA–Spacer with a binding affinity of 7.09 μM, but showed no detectable interaction with the SRA (Supplementary Fig. 8b). Interestingly, the addition of hm-DNA abolished the interaction between RFTSDNMT1 and SRA–Spacer, suggesting that hm-DNA also regulates UHRF1–DNMT1 interaction (Supplementary Fig. 8c). These results indicate that the Spacer facilitates the interaction between RFTSDNMT1 and the SRA, and the interaction is impaired by the presence of hm-DNA. 0.9991511 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.99884087 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.99011177 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA chemical CHEBI: cleaner0 2023-07-25T16:02:00Z DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.9738806 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.99923766 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.9991768 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.9504781 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.99426115 chemical cleaner0 2023-07-25T16:02:18Z CHEBI: NaCl 0.9910999 chemical cleaner0 2023-07-25T16:02:19Z CHEBI: NaCl 0.990811 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.9875321 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.9989967 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.9987704 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.99872077 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to 0.8938754 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99867624 evidence cleaner0 2023-07-25T15:10:18Z DUMMY: binding affinity 0.929079 structure_element cleaner0 2023-07-25T14:57:35Z SO: SRA 0.9985009 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA 0.99913883 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.9334615 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99392587 chemical cleaner0 2023-07-25T14:58:25Z CHEBI: hm-DNA complex_assembly GO: cleaner0 2023-07-25T16:03:29Z UHRF1–DNMT1 0.9990073 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.99927133 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.8667852 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:10:25Z presence of 0.9979096 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA RESULTS paragraph 26124 We next tested whether the UHRF1–DNMT1 interaction is regulated by the conformational change of UHRF1. Because the addition of hm-DNA disrupts the interaction between the SRA–Spacer and RFTSDNMT1, we used various truncations to mimic open and closed forms of UHRF1. In the absence of hm-DNA, only UHRF1ΔTTD bound to RFTSDNMT1, whereas full-length UHRF1, UHRF1ΔSRA and UHRF1Δ627–674 showed undetectable interaction (Fig. 5e). As the deletion of the TTD allows UHRF1 to adopt an open conformation, the results suggest that RFTSDNMT1 binds to SRA–Spacer when UHRF1 adopts an open conformation in the absence of hm-DNA. In support of above observations, the addition of large amount of RFTSDNMT1 impaired the interaction between UHRF1 and hm-DNA (Supplementary Fig. 8d), suggesting an existence of dynamic equilibrium between UHRF1–hm-DNA and UHRF1–DNMT1 complexes. complex_assembly GO: cleaner0 2023-07-25T16:03:29Z UHRF1–DNMT1 0.9991204 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.99723744 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99853516 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.99903846 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.6827299 experimental_method cleaner0 2023-07-25T16:41:29Z MESH: truncations 0.99917966 protein_state cleaner0 2023-07-25T16:49:50Z DUMMY: open 0.99918646 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.9992004 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.998818 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.9959512 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9990483 mutant cleaner0 2023-07-25T15:32:50Z MESH: UHRF1ΔTTD 0.99897456 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to 0.9410995 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 0.99909276 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.9991623 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9990976 mutant cleaner0 2023-07-25T15:32:21Z MESH: UHRF1ΔSRA 0.8580041 mutant cleaner0 2023-07-25T15:33:27Z MESH: UHRF1Δ627–674 0.79138756 experimental_method cleaner0 2023-07-25T16:41:33Z MESH: deletion of 0.99919194 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9992625 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9991698 protein_state cleaner0 2023-07-25T16:49:53Z DUMMY: open 0.99846977 protein cleaner0 2023-07-25T16:02:12Z PR: RFTSDNMT1 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99843246 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.9992735 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 protein_state DUMMY: cleaner0 2023-07-25T16:50:11Z open 0.9990318 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.9968054 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.5373807 experimental_method cleaner0 2023-07-25T16:41:39Z MESH: addition 0.8506688 protein cleaner0 2023-07-25T16:02:13Z PR: RFTSDNMT1 0.9990897 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.99238986 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA complex_assembly GO: cleaner0 2023-07-25T16:04:33Z UHRF1–hm-DNA 0.9837528 complex_assembly cleaner0 2023-07-25T16:03:29Z GO: UHRF1–DNMT1 DISCUSS title_1 27001 Discussion DISCUSS paragraph 27012 According to the above results, we here proposed a working model for hm-DNA-mediated regulation of UHRF1 conformation (Fig. 5f). In the absence of hm-DNA (A), UHRF1 prefers a closed conformation, in which the Spacer binds to the TTD by competing with the Linker and the SRA binds to the PHD. As a result, the recognition of histone H3K9me3 by the TTD is blocked by the Spacer, and recognition of unmodified histone H3 (H3R2) by the PHD is inhibited by the SRA. The interaction between UHRF1 and DNMT1 is also weak because the Spacer is unable to facilitate the intermolecular interaction. In the presence of hm-DNA (B), UHRF1 prefers an open conformation, in which the SRA binds to the hm-DNA; the Spacer dissociates from the TTD and facilitates the interaction between the SRA and hm-DNA; the Linker binds to the TTD and allows TTD–PHD to recognize histone H3K9me3. When UHRF1 adopts an open conformation and has already bound to H3K9me3 (B), the interaction between H3K9me3 and TTD–PHD further prevents the Spacer from folding back to interact with the TTD, and therefore locks UHRF1 in an open conformation. The association of UHRF1 to the histone may facilitate the ubiquitination of histone tail (mediated by RING domain) for DNMT1 targeting. Moreover, through a mechanism yet to be fully elucidated, DNMT1 targets hm-DNA for maintenance DNA methylation, probably through interaction with the histone ubiquitylation and/or SRA-Spacer. This cartoon summarizes our findings in this study. The P(r) function obtained from small-angle X-ray scattering (SAXS) measurements of TTD–PHD–SRA–Spacer–hm-DNA complex showed a broader distribution than that of the TTD–PHD–SRA–Spacer alone, supporting the proposed model that UHRF1 adopts an open conformation in the presence of hm-DNA (Supplementary Fig. 8e). 0.991255 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9993242 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9991345 protein_state cleaner0 2023-07-25T15:50:14Z DUMMY: absence of 0.99493146 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99937004 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9992467 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.99932206 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.999443 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.99939466 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.9982951 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99953127 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.756802 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:53:34Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:53:42Z K9me3 0.9994456 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9991673 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.99908257 protein_state cleaner0 2023-07-25T15:27:59Z DUMMY: unmodified 0.9225563 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone 0.8794957 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 0.7818248 site cleaner0 2023-07-25T15:03:31Z SO: H3R2 0.99932885 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.998609 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.99932027 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9992797 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.998733 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.99915636 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.9977233 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9993381 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9992636 protein_state cleaner0 2023-07-25T16:50:15Z DUMMY: open 0.9976272 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9880094 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99935025 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.9994367 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.98727417 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.9894224 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99928206 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9994356 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9430154 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.7563194 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:53:54Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:54:05Z K9me3 0.9993493 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 protein_state DUMMY: cleaner0 2023-07-25T16:50:34Z open 0.9987874 protein_state cleaner0 2023-07-25T15:10:33Z DUMMY: bound to protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:54:18Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:54:27Z K9me3 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:54:52Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:54:44Z K9me3 0.9569623 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.9993548 structure_element cleaner0 2023-07-25T14:57:05Z SO: Spacer 0.9994236 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9993438 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9992587 protein_state cleaner0 2023-07-25T16:50:38Z DUMMY: open 0.9993105 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.77143633 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone 0.98646134 ptm cleaner0 2023-07-25T16:29:51Z MESH: ubiquitination 0.579737 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone structure_element SO: cleaner0 2023-07-25T15:01:28Z RING 0.99918133 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.9989122 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.993705 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.8369093 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone ptm MESH: cleaner0 2023-07-25T16:11:22Z ubiquitylation structure_element SO: cleaner0 2023-07-25T15:04:02Z SRA-Spacer 0.995608 evidence cleaner0 2023-07-25T16:45:53Z DUMMY: P(r) function 0.99899787 experimental_method cleaner0 2023-07-25T16:41:43Z MESH: small-angle X-ray scattering 0.9984654 experimental_method cleaner0 2023-07-25T16:41:45Z MESH: SAXS 0.9987902 complex_assembly cleaner0 2023-07-25T16:06:20Z GO: TTD–PHD–SRA–Spacer–hm-DNA 0.99797595 complex_assembly cleaner0 2023-07-25T16:06:09Z GO: TTD–PHD–SRA–Spacer 0.9993412 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9992655 protein_state cleaner0 2023-07-25T16:50:41Z DUMMY: open 0.99916625 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.99755687 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA DISCUSS paragraph 28833 Many questions need to be further clarified. We have tried crystallizing more than three sub-constructs with and without DNA across over 1,200 crystallization conditions but failed to determine the structure of TTD–PHD–SRA–Spacer in the absence or presence of hm-DNA. Getting these structures would greatly help for understanding the hm-DNA-mediated regulation of UHRF1. In addition, this regulatory process should be further characterized using advanced techniques, such as single molecular measurement. 0.9979419 experimental_method cleaner0 2023-07-25T16:41:49Z MESH: crystallizing 0.95115554 protein_state cleaner0 2023-07-25T16:30:30Z DUMMY: with 0.9905099 protein_state cleaner0 2023-07-25T16:30:32Z DUMMY: without 0.9972832 chemical cleaner0 2023-07-25T16:30:27Z CHEBI: DNA 0.99836916 evidence cleaner0 2023-07-25T16:45:56Z DUMMY: structure complex_assembly GO: cleaner0 2023-07-25T16:06:10Z TTD–PHD–SRA–Spacer 0.9971886 protein_state cleaner0 2023-07-25T16:30:35Z DUMMY: absence 0.99712753 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.95390725 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9982545 evidence cleaner0 2023-07-25T16:45:59Z DUMMY: structures 0.9149298 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9990747 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9973283 experimental_method cleaner0 2023-07-25T16:41:59Z MESH: single molecular measurement DISCUSS paragraph 29344 Our previous studies show that phosphorylation at S639 within the Spacer disrupts interaction between UHRF1 and deubiquitylase USP7 and decreases UHRF1 stability in the M phase of the cell cycle. The Spacer was predicted to contain two nuclear localization signals, residues 581–600 and 648-670 (ref.). In this report, we found that the Spacer (i) binds to the TTD in the closed form of UHRF1 and inhibits its interaction with H3K9me3; (ii) facilitates hm-DNA recognition by the SRA and (iii) facilitates the interaction between the SRA and RFTSDNMT1. These findings together indicate that the Spacer plays a very important role in the dynamic regulation of UHRF1. When our manuscript was in preparation, Gelato et al. reported that binding of PI5P to the Spacer opens the closed conformation of UHRF1 and increases H3K9me3-binding affinity of the TTD. The result suggests that PI5P may facilitate the conformational change of UHRF1 induced by hm-DNA when UHRF1 is recruited to chromatin. In addition, mass-spectrometry analyses have identified several phosphorylation sites (S639, S651, S661) within the Spacer, suggesting that post-translational modification may add another layer of regulation of UHRF1 (refs). 0.9963503 ptm cleaner0 2023-07-25T15:27:39Z MESH: phosphorylation 0.9995302 residue_name_number cleaner0 2023-07-25T16:07:15Z DUMMY: S639 0.9990552 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.9992318 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9987031 protein_type cleaner0 2023-07-25T16:06:41Z MESH: deubiquitylase 0.9992466 protein cleaner0 2023-07-25T16:06:36Z PR: USP7 0.99921703 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9991099 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.9739017 structure_element cleaner0 2023-07-25T16:32:08Z SO: nuclear localization signals 0.9976179 residue_range cleaner0 2023-07-25T16:38:44Z DUMMY: 581–600 0.99757415 residue_range cleaner0 2023-07-25T16:38:47Z DUMMY: 648-670 0.99928963 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99951804 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.99922633 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.99931645 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:55:10Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:55:18Z K9me3 chemical CHEBI: cleaner0 2023-07-25T14:58:26Z hm-DNA 0.7548684 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.58831096 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.9992194 protein cleaner0 2023-07-25T16:02:13Z PR: RFTSDNMT1 0.99913114 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.99928147 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9988167 chemical cleaner0 2023-07-25T15:03:00Z CHEBI: PI5P 0.9990702 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.99918395 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.9993456 protein cleaner0 2023-07-25T14:58:03Z PR: UHRF1 0.9901287 evidence cleaner0 2023-07-25T15:36:49Z DUMMY: H3K9me3-binding affinity 0.99946576 structure_element cleaner0 2023-07-25T14:57:20Z SO: TTD 0.9987204 chemical cleaner0 2023-07-25T15:03:00Z CHEBI: PI5P 0.9992894 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.7813921 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9993051 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99864024 experimental_method cleaner0 2023-07-25T16:42:02Z MESH: mass-spectrometry 0.96276474 site cleaner0 2023-07-25T16:07:07Z SO: phosphorylation sites 0.9995316 residue_name_number cleaner0 2023-07-25T16:07:14Z DUMMY: S639 0.99952173 residue_name_number cleaner0 2023-07-25T15:26:00Z DUMMY: S651 0.9995235 residue_name_number cleaner0 2023-07-25T16:07:21Z DUMMY: S661 0.99915576 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.99927586 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 DISCUSS paragraph 30560 It has been well characterized that the SRA of UHRF1 preferentially recognizes hm-DNA through a base-flipping mechanism. Our study demonstrates that the Spacer markedly enhances the hm-DNA-binding affinity of the SRA and the deletion of the Spacer impairs heterochromatin localization of UHRF1, indicating that the Spacer is essential for recognition of hm-DNA in the context of full-length UHRF1. Interestingly, variant in methylation 1 (VIM1, a UHRF1 homologue in Arabidopsis) contains an equivalent spacer region, which was shown to be required for hm-DNA recognition by its SRA domain, suggesting a conserved regulatory mechanism in SRA domain-containing proteins. Intriguingly, UHRF2 (the only mammalian homologue of UHRF1) and UHRF1 show very high sequence similarities for all the domains but very low similarity for the Spacer (Supplementary Fig. 7c). Thus, although UHRF2 exhibits the histone- and hm-DNA-binding activities, the difference in the Spacer region may contribute to the functional differences between UHRF1 and UHRF2. This is also consistent with previous finding that UHRF2 is unable to replace UHRF1 to maintain the DNA methylation. 0.9994406 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.9991404 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9270676 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9990067 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.99293834 evidence cleaner0 2023-07-25T14:56:50Z DUMMY: hm-DNA-binding affinity 0.99931526 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.9863229 experimental_method cleaner0 2023-07-25T16:42:06Z MESH: deletion of 0.9961428 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.99889886 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99849296 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.84966046 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99905974 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.9991301 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9977554 protein cleaner0 2023-07-25T16:07:45Z PR: variant in methylation 1 0.9988433 protein cleaner0 2023-07-25T16:07:49Z PR: VIM1 0.9989505 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9986185 taxonomy_domain cleaner0 2023-07-25T16:07:57Z DUMMY: Arabidopsis structure_element SO: cleaner0 2023-07-25T14:57:06Z spacer 0.8714142 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99954695 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA structure_element SO: cleaner0 2023-07-25T14:57:36Z SRA 0.9990758 protein cleaner0 2023-07-25T16:08:25Z PR: UHRF2 0.9986889 taxonomy_domain cleaner0 2023-07-25T15:00:05Z DUMMY: mammalian 0.99895585 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99911803 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99908423 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.9989396 protein cleaner0 2023-07-25T16:08:26Z PR: UHRF2 structure_element SO: cleaner0 2023-07-25T14:57:06Z Spacer 0.99909437 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9990441 protein cleaner0 2023-07-25T16:08:26Z PR: UHRF2 0.99901295 protein cleaner0 2023-07-25T16:08:26Z PR: UHRF2 0.9990362 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 chemical CHEBI: cleaner0 2023-07-25T16:09:23Z DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation DISCUSS paragraph 31717 One of the key questions in the field of DNA methylation is why UHRF1 contains modules recognizing two repressive epigenetic marks: H3K9me3 (by TTD–PHD) and hm-DNA (by the SRA). Previous studies show that chromatin localization of UHRF1 is dependent on hm-DNA, whereas other studies indicate that histone H3K9me3 recognition and hm-DNA association are both required for UHRF1-mediated maintenance DNA methylation. However, little is known about the crosstalk between these two epigenetic marks within UHRF1. In this study, we provide an explanation. As shown in the proposed model, recognition of H3K9me3 by full-length UHRF1 is blocked to avoid its miss-localization to unmethylated genomic region, in which chromatin contains H3K9me3 (KD=4.61 μM) or H3K9me0 (KD=25.99 μM). We have shown that full-length UHRF1 and SRA–Spacer strongly bind to hm-DNA (0.35 and 0.49 μM, respectively) and the Spacer plays an important role in PCH localization (Fig. 5d). Therefore, genomic localization of UHRF1 is primarily determined by its recognition of hm-DNA, which allows UHRF1 to adopt an open form and promotes its histone tail recognition for proper genomic localization and function. As a result, when SRA–Spacer dissociates from hm-DNA and binds to DNMT1 with a currently unknown mechanism, UHRF1 may keep the complex associated with chromatin through the interaction between TTD–PHD and H3K9me3 (or PHD-H3), and make it possible for DNMT1 to target proper DNA substrate for methylation. This explanation agrees nicely with previous observations and clarifies the importance of coordinate recognition of H3K9me3 and hm-DNA by UHRF1 for maintenance DNA methylation. chemical CHEBI: melaniev@ebi.ac.uk 2023-08-08T12:55:32Z DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.9992513 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:56:23Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:56:16Z K9me3 0.99834013 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.99753475 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.97159886 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.9992951 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9839018 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.74091005 protein_type cleaner0 2023-07-25T15:05:08Z MESH: histone protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:55:50Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:55:58Z K9me3 chemical CHEBI: cleaner0 2023-07-25T14:58:26Z hm-DNA 0.999199 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 chemical CHEBI: cleaner0 2023-07-25T16:10:31Z DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation 0.99930465 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:56:37Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:56:46Z K9me3 0.99916047 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.9992872 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99787104 protein_state cleaner0 2023-07-25T15:04:48Z DUMMY: unmethylated protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:56:59Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:57:08Z K9me3 0.992324 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:57:25Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:57:35Z K9me0 0.9930274 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.99916273 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.9993338 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99657935 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.9956055 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99895966 structure_element cleaner0 2023-07-25T14:57:06Z SO: Spacer 0.99927944 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9932789 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9992743 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9988243 protein_state cleaner0 2023-07-25T16:50:46Z DUMMY: open protein_type MESH: cleaner0 2023-07-25T15:05:08Z histone 0.99772996 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.9933903 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9993279 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.9992974 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9956915 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:57:54Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:58:04Z K9me3 0.966383 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.56240326 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 0.9991653 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 chemical CHEBI: cleaner0 2023-07-25T16:10:11Z DNA ptm MESH: cleaner0 2023-07-25T15:05:57Z methylation protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:58:18Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:58:27Z K9me3 0.99602073 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9992939 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 ptm MESH: cleaner0 2023-07-25T15:05:58Z methylation DISCUSS paragraph 33394 UHRF1 is essential for maintenance DNA methylation through recruiting DNMT1 to DNA replication forks during S phase. This function is probably induced by a direct interaction between the SRA and RFTSDNMT1 (refs) or interaction between DNMT1 and ubiquitylation of histione tail. Recent study indicates that histone tail association of UHRF1 (by the PHD domain) is required for histone H3 ubiquitylation, which is dependent on ubiquitin ligase activity of the RING domain of UHRF1 (ref.). DNMT1 binds to ubiquitylated histone H3 and ubiquitylation is required for maintenance of DNA methylation in vivo. In this study, we found that both TTD and PHD are regulated by hm-DNA to recognize histone tail. Thus, the closed form UHRF1 may prevent miss localization of URHF1, whereas only the UHRF1 in open conformation (induced by hm-DNA) could properly binds to histone tail for ubiquitylation and subsequent DNA methylation. 0.99912244 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 chemical CHEBI: cleaner0 2023-07-25T16:10:58Z DNA ptm MESH: cleaner0 2023-07-25T15:05:58Z methylation 0.9992249 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 chemical CHEBI: cleaner0 2023-07-25T16:11:06Z DNA 0.99181515 structure_element cleaner0 2023-07-25T14:57:36Z SO: SRA 0.99929225 protein cleaner0 2023-07-25T16:02:13Z PR: RFTSDNMT1 0.9993098 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.9939644 ptm cleaner0 2023-07-25T16:11:21Z MESH: ubiquitylation protein_type MESH: cleaner0 2023-07-25T16:32:35Z histione protein_type MESH: cleaner0 2023-07-25T15:05:09Z histone 0.9993056 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99944574 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.8996436 protein_type cleaner0 2023-07-25T15:05:09Z MESH: histone 0.9478336 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 0.99182045 ptm cleaner0 2023-07-25T16:11:22Z MESH: ubiquitylation 0.97545373 protein_type cleaner0 2023-07-25T16:29:31Z MESH: ubiquitin ligase structure_element SO: cleaner0 2023-07-25T15:01:28Z RING 0.99932575 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9993137 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9985134 protein_state cleaner0 2023-07-25T16:50:52Z DUMMY: ubiquitylated 0.9693887 protein_type cleaner0 2023-07-25T15:05:09Z MESH: histone 0.948022 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 0.9429411 ptm cleaner0 2023-07-25T16:11:22Z MESH: ubiquitylation chemical CHEBI: cleaner0 2023-07-25T16:11:16Z DNA ptm MESH: cleaner0 2023-07-25T15:05:58Z methylation 0.99955565 structure_element cleaner0 2023-07-25T14:57:21Z SO: TTD 0.99952936 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.995536 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA protein_type MESH: cleaner0 2023-07-25T15:05:09Z histone 0.99926776 protein_state cleaner0 2023-07-25T14:59:20Z DUMMY: closed 0.9993462 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99938595 protein cleaner0 2023-07-25T16:29:17Z PR: URHF1 0.9993699 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99925655 protein_state cleaner0 2023-07-25T16:50:55Z DUMMY: open 0.99442863 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to protein_type MESH: cleaner0 2023-07-25T15:05:09Z histone ptm MESH: cleaner0 2023-07-25T16:11:22Z ubiquitylation chemical CHEBI: cleaner0 2023-07-25T16:11:33Z DNA ptm MESH: cleaner0 2023-07-25T15:05:58Z methylation DISCUSS paragraph 34313 Moreover, structural analyses of DNMT1–DNA and SRA–DNA complexes also indicate that it is impossible for DNMT1 to methylate the hm-DNA that UHRF1 binds to because of steric hindrance. In our in vitro assays, we could detect interaction between SRA–Spacer and RFTSDNMT1, but not the interaction between full-length UHRF1 and RFTSDNMT1 (Supplementary Fig. 8a,b and Fig. 5e). The results suggest that UHRF1 adopts multiple conformations. Binding of UHRF1 to hm-DNA may serve as a switch for its recruitment of DNMT1. The S phase-dependent interaction between UHRF1 and DNMT1 (refs) suggest that DNMT1 may also undergo conformation changes so that RFTSDNMT1 binds to UHRF1 and the catalytic domain of DNMT1 binds to hm-DNA for reaction. 0.99893475 experimental_method cleaner0 2023-07-25T16:42:12Z MESH: structural analyses 0.9986643 complex_assembly cleaner0 2023-07-25T16:12:01Z GO: DNMT1–DNA 0.9991562 complex_assembly cleaner0 2023-07-25T16:12:07Z GO: SRA–DNA 0.99922836 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.99494505 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99907386 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.9988796 experimental_method cleaner0 2023-07-25T16:42:15Z MESH: in vitro assays 0.8854396 structure_element cleaner0 2023-07-25T15:48:55Z SO: SRA–Spacer 0.9989078 protein cleaner0 2023-07-25T16:02:13Z PR: RFTSDNMT1 0.9990818 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.99901927 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9988921 protein cleaner0 2023-07-25T16:02:13Z PR: RFTSDNMT1 0.99912745 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99913675 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.99709946 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99923027 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.9991431 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9992536 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.9992206 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 0.9991217 protein cleaner0 2023-07-25T16:02:13Z PR: RFTSDNMT1 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99914336 protein cleaner0 2023-07-25T14:58:04Z PR: UHRF1 0.9992223 structure_element cleaner0 2023-07-25T16:32:43Z SO: catalytic domain 0.99927205 protein cleaner0 2023-07-25T15:00:38Z PR: DNMT1 protein_state DUMMY: cleaner0 2023-07-25T15:13:04Z binds to 0.99804133 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA METHODS title_1 35052 Methods METHODS title_2 35060 Protein expression and purification METHODS paragraph 35096 The ubiquitin-like domain (residues 1–133), TTD (residues 134–285), PHD (residues 307–366), TTD–PHD (residues 134–366), SRA (residues 414–617), SRA–Spacer (residues 414–674), Spacer (residues 587–674), RING (residues 675–793), UHRF1 (residues 1–793) and other mutants or truncations of human UHRF1 were sub-cloned in a pGEX-6p-1 derivative vector. The truncated Spacer (residues 627–674) used for NMR analyses was inserted into modified pRSF-Duet-1 vector. All the proteins were expressed in E. coli strain BL21 (DE3) and purified as described previously. In brief, the transformants were grown at 37 °C in 2X YT medium and induced by adding isopropyl-β-D-thiogalactopyranoside (IPTG) to 0.1 mM when the OD600 reached 0.6 and further incubated at 15 °C overnight. The cells were harvested and disrupted. After centrifugation, the supernatant of GST-tagged proteins was purified by GST affinity column (GE Healthcare) and the His-tagged truncated Spacer (residues 627–674) was purified by Nickel Nitrilotriacetic Acid affinity chromatography (GE Healthcare). The GST-tagged proteins used for GST pull-down experiment were eluted directly. The fusion proteins were digested with PreScission protease and further purified by ion exchange and gel filtration chromatography. The proteins were concentrated to 5–20 mg ml−1 for the following biochemical and structural analyses. METHODS paragraph 36511 To purify 15N- and 13C-labelled proteins, the transformants were grown in M9 medium containing 15N-labelled NH4Cl (1 g l−1) and 13C-labelled glucose (2 g l−1). The isotope-labelled TTD and truncated Spacer were purified as described above. METHODS title_2 36763 Pull-down experiments METHODS paragraph 36785 For GST pull-down assays, 15 μg GST-tagged proteins were incubated with 40 μg recombinant proteins in 500 μl pull-down buffer (20 mM HEPES-NaOH, pH 8.0, 100 mM NaCl, 5% glycerol and 0.1% Triton X-100) for 1 h at 4 °C. Glutathione resins (GE Healthcare) were washed six times with pull-down buffer then mixed with the proteins for 1 h at 4 °C. After washed three times with pull-down buffer, the bound proteins were analysed by SDS–PAGE Coomassie blue staining. For competitive pull-down experiments: purified proteins were pre-incubated with hemi-methylated-DNA (12 bp, upper strand: 5′-GGGCCXGCAGGG-3′, X=5-methyldeoxycytosine) at the indicated molar ratios for 10 min at 4 °C. For salt concentration-dependent pull-down experiments, the pull-down buffer contains 50, 100 or 150 mM NaCl, respectively. METHODS paragraph 37626 For histone peptide or hm-DNA pull-down, 1 μg biotinylated histone H3 peptide (residues 1–21) or hm-DNA (12-bp, upper strand 5′-GAGGCXGCCTGC-3′ and lower strand 5′-biotin-GCAGGCGGCCTC-3′, X=5-methyldeoxycytosine) were incubated with 20 μg wild type or mutants of UHRF1 proteins in 500 μl pull-down buffer (20 mM HEPES-NaOH, pH 8.0, 100 mM NaCl, 5% glycerol and 0.1% Triton X-100) for 1 h at 4 °C. The proteins were pre-incubated with hm-DNA (12- bp, upper strand: 5′-GGGCCXGCAGGG-3′, X=5-methyldeoxycytosine) or indicated H3 peptide, or binding buffer as a control, at 1:2 molar ratios for 10 min at 4 °C. Then, 20 μl streptavidin beads were washed six times with pull-down buffer and incubated with the mixture for 1 h at 4 °C. The bound proteins were analysed as described above. The results are summarized in Supplementary Fig. 10. METHODS title_2 38508 ITC measurements METHODS paragraph 38525 The binding affinity of protein/protein, protein/peptide or protein/DNA was measured by adding 0.05 mM protein in cell and titrated with 0.5 mM protein, peptide or hm-DNA (12 bp, upper strand: 5′-GGGCCXGCAGGG-3′, X=5-methyldeoxycytosine) in the syringe using iTC200 microcalorimeter (GE Healthcare) at 18 °C. For competition ITC experiments: the indicated proteins were pre-incubated with competitive peptide, protein or hm-DNA (at 1:2 molar ratio if not specified) for 10 min followed by ITC measurements as described above. Proteins, DNA and peptides were prepared within ITC buffer containing 10 mM HEPES, pH 8.0, 100 mM NaCl. The data were fitted by software Origin 7.0. All ITC results were summarized in Supplementary Table 2 and raw data were shown in Supplementary Fig. 9. METHODS title_2 39325 NMR titration assay METHODS paragraph 39345 To determine the mole ratio of TTD versus Spacer peptide (residues 627–674) in the complex for NMR studies, NMR stepwise titration assay was performed at 20 °C in a PBS buffer supplemented with 0.01% NaN3, pH 7.4 and 10% D2O. The Spacer peptide was added into 15N-labelled TTD solution with an increasing molar ratio of TTD/Spacer as follows: 1:0.0, 1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1.2 and 1:1.5. The 1H–15N heteronuclear single-quantum correlation (HSQC) spectra of the TTD were collected after each addition. METHODS title_2 39861 NMR spectroscopy and analysis METHODS paragraph 39891 Two NMR samples were prepared in a mole ratio of 1:1.2 (TTD/Spacer). One is 0.7 mM uniformly 13C/15N-labelled TTD in complex with unlabelled Spacer peptide in NMR buffer (PBS buffer, 0.01% NaN3, pH 7.4 and 10% D2O). The other is 0.5 mM 15N-labelled Spacer peptide mixed with unlabelled TTD protein. All NMR experiments were performed at 20 °C on a Varian Unity Inova 600 NMR spectrometer equipped with a triple resonances cryoprobe and pulsed field gradients. The standard suite of experiments for assigning the 1H, 13C and 15N backbone, determining the side-chain chemical shifts of the TTD in complex with the Spacer peptide and collecting the Nuclear Overhauser effect (NOE)-based distance restraints were measured, including two-dimensional (2D) 13C-edited HSQC and 15N-edited HSQC; three-dimensional (3D) HNCA, HNCO, HN(CO)CA, HNCACB, CBCA(CO)NH, 15N-resolved HSQC-total correlation spectroscopy (TOCSY) and 13C-resolved HSQC-TOCSY in both aliphatic and aromatic regions; 15N-resolved HSQC-NOESY; 13C-resolved HSQC-NOESY for both aliphatic and aromatic resonances and 2D hbcbcgcdceheA and hbcbcgcdhdA spectra for the correlation of Cβ and Hδ or Hɛ in the aromatic ring that is used for aromatic proton assignment. The NMR signals of bound TTD were assigned according to the previously report. The proton NMR signals of the bound Spacer peptide were assigned by analysing the 2D 13C-filtered, 15N-filtered and J-resolved NOE spectroscopy (NOESY) and TOCSY spectra recorded for the 13C- and 15N-labelled protein with the unlabelled Spacer peptide and the 2D 1H–1H COSY, NOESY and TOCSY spectra recorded for the unlabelled free Spacer peptide, and 15N-edited HSQC, 3D 15N-resolved HSQC-TOCSY for the 15N-labelled Spacer in complex with the TTD protein in the NMR buffer described above, respectively. The intermolecular NOEs between the labelled protein and the unlabelled Spacer peptide were obtained by analysing the 3D 13C-F1-edited and 13C/15N-F3-filtered NOESY spectra. The spectra were processed with the NMRPipe programme and analysed using Sparky 3 (http://www.cgl.ucsf.edu/home/sparky/). METHODS title_2 42002 Determining the NMR structure METHODS paragraph 42032 The calculations were performed using a standard simulated annealing protocol implemented in the XPLOR-2.29 programme (NIH version). The inter-proton distance restraints derived from the NOE intensities were grouped into three distance ranges, namely 1.8–2.9, 1.8–3.5and 1.8–6.0 Å, which corresponds to strong, medium and weak NOEs, respectively. The dihedral angles phi and psi were derived from the backbone chemical shifts (HN, HA, CO and CA) using the programme TALOS. The hydrogen-bond constraints were generated based on the observed NOE pattern between anti-β-sheets in the TTD domain, confirmed by H-D exchange experiments, and used in structural calculation. A total of ten iterations were performed (50 structures in the initial eight iterations). In total, 100 structures were computed during the last two iterations, and the 20 conformers with the lowest energy were used to represent the 3D structures. The conformers of these bundles (TTD in complex with the Spacer peptide) do not violate the following constraints: NOE >0.3 Å and dihedral angle >3o. The entire structure statistics were evaluated with PROCHECK and PROCHECK-NMR and are summarized in Supplementary Table 3. All of the structure figures were generated using the PyMOL and MOLMOL programmes. METHODS title_2 43317 Electrophoretic mobility-shift assay METHODS paragraph 43354 A 6-carboxy-fluorescein (FAM)-labelled primer, 5′-CCATGCGCTGAC-3′, was annealed to a primer 5′-GTCAGXGCATGG-3′ (X=5-methyldeoxycytosine). The hemi-methylated double-strand DNA was used in both electrophoretic mobility-shift assay and FP assays. 50 nM FAM-hm-DNA (1 pmole per lane) was pre-incubated with indicated amount of proteins in reaction buffer (20 mM HEPES, pH 7.5, 100 mM NaCl, 8% glycerol and 1 mM DTT) for 20 min on ice. The samples were subjected to a 10% polyacrylamide gel electrophoresis and run in 0.5 × Tris-borate-EDTA buffer at 100 V for 1 h at 4 °C. The results were visualized on Tanon-5200 Chemiluminescent Imaging System (Tanon Science & Technology Co., Ltd). METHODS title_2 44065 FP measurements METHODS paragraph 44081 The 12-bp FAM-labelled hm-DNA (as described above) was incubated with increasing amount of indicated proteins for 20 min at 25 °C in reaction buffer containing 20 mM HEPES, pH 7.5, 175 mM NaCl, 8% glycerol and 1 mM DTT. FP measurements were performed at 25 °C on Synergy 4 Microplate Reader (BioTek). The 16-bp and 20-bp FAM-labelled hm-DNA (lower strand: 5′-GTGTCAGXGCATGGCC-3′ and 5′-CCGTGTCAGXGCATGGCCAT-3′, respectively. X=5-methyldeoxycytosine) were used in the FP experiment to test the effect of DNA length on the protein/DNA interaction. All experiments were performed in triplicate. The curves were fitted by GraphPad Prism 5. For salt concentration-dependent FP experiments, the reaction buffer contains 50 mM or 150 mM NaCl, respectively. METHODS title_2 44857 Crystallization and data collection METHODS paragraph 44893 Crystals of SRA–Spacer in complex with an 18-bp hm-DNA (upper strand: 5′-CATCGTCCCTGCGGGCCC-3′, lower strand: 5′-GGGCCXGCAGGGACGATG-3′. X=5-methyldeoxycytosine) were grown at 18 °C using the hanging drop vapour diffusion method by mixing an equal volume of protein–DNA complex and crystallization buffer containing 12% PEG 3350, 45 mM citric acid/55 mM BIS-TRIS propane (pH 6.9). Protein and hm-DNA were mixed at the molar ratio of 1:1.5 and incubated for 0.5 h on ice before crystallization. Crystals were flash frozen in a cold nitrogen stream at −173 °C. All data sets were collected on beamline BL17U at the SSRF (Shanghai Synchrotron Radiation Facility, China). The data were processed using the programme HKL2000 (ref.). METHODS title_2 45646 Structure determination METHODS paragraph 45670 The structure of SRA–Spacer–hm-DNA complex was determined by molecular replacement using structure of the SRA (PDB:3BI7) as a searching model. Rotation and translation function searches were performed with the programme PHASER. The model was manually built with COOT. All refinements were performed using the refinement module phenix.refine of PHENIX package. The model quality was checked with the PROCHECK programme and all structure figures were generated by PyMol. METHODS title_2 46143 Cell culture, transient transfection and images capture METHODS paragraph 46199 NIH3T3 cells were obtained from the Shanghai Institute of Biochemistry and Cell Biology. Wild type and mutants of UHRF1 were sub-cloned into pEGFP-C1 vector. Transient transfections of NIH3T3 cells were carried out using Lipofectamine 2000 (Invitrogen). The NIH3T3 cells were grown on glass coverslips and harvested in 36 h after transfection. The images were acquired and examined as previously described. Briefly, cells were fixed with 4% paraformaldehyde for 25 min, then washed with PBS three times. Coverslips were mounted with Antifade reagent containing DAPI (Molecular Probes) on slides and examined with a confocal microscopy. METHODS title_2 46839 SAXS measurements METHODS paragraph 46857 SAXS measurements were performed with Anton Paar SAXSess mc2 instrument with linecolimation and charge-coupled-device detection. The X-ray wavelength was 1.5418 Å (CuKα), the sample to detector was 306.8 mm and the sample slit width was 10 mm. Each sample was prepared in 300 μl solution contained 150 mM NaCl, 10 mM HEPES, pH=8.0, 5 mM DTT and 5% glycerol. For the hm-DNA-bound form, the protein was pre-incubated with hm-DNA (12-bp, upper strand: 5′-GGGCCmCGCAGGG-3′, mC=5-methyldeoxycytosine) at 1:1.2 molar ratio for 10 min on ice. To correct for interparticle interference, the data of protein sample were collected twice and each time for 1 h. The solution containing no protein sample was also tested as background. METHODS paragraph 47605 The initial data were first processed using SAXSquant and the further analysis with ATSAS software. The SAXS data were only analysed these were collected in the first hour because there was no time effect on the samples. The radius of gyration Rg was estimated from primus. The distance distribution function P(r) was calculated in PCG package. The maximum particle dimension Dmax was estimated from the P(r) function as the r for which P(r)=0. METHODS title_1 48050 Additional information METHODS paragraph 48073 Accession codes: The coordinate and structure factor for the TTD–Spacer complex structure have been deposited in the Protein Data Bank under accession code 5IAY. The chemical shift assignment of TTD–Spacer was deposited with BMRB ADIT-NMR online deposition system under the accession number 30019. METHODS paragraph 48375 How to cite this article: Fang, J. et al. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat. Commun. 7:11197 doi: 10.1038/ncomms11197 (2016). SUPPL title_1 48567 Supplementary Material 245 254 surname:Jaenisch;given-names:R. surname:Bird;given-names:A. 12610534 REF Nature Genet. ref 33 2003 48590 Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals 204 220 surname:Smith;given-names:Z. D. surname:Meissner;given-names:A. 23400093 REF Nat. Rev. Genet. ref 14 2013 48694 DNA methylation: roles in mammalian development 204 220 surname:Law;given-names:J. A. surname:Jacobsen;given-names:S. E. 20142834 REF Nat. Rev. Genet. ref 11 2010 48742 Establishing, maintaining and modifying DNA methylation patterns in plants and animals 81 98 surname:Guibert;given-names:S. surname:Forne;given-names:T. surname:Weber;given-names:M. 22122638 REF Epigenomics ref 1 2009 48829 Dynamic regulation of DNA methylation during mammalian development 6 21 surname:Bird;given-names:A. 11782440 REF Genes Dev. ref 16 2002 48896 DNA methylation patterns and epigenetic memory 5559 5563 surname:Bestor;given-names:T. H. surname:Ingram;given-names:V. M. 6577443 REF Proc. Natl Acad. Sci. USA ref 80 1983 48943 Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA 247 257 surname:Okano;given-names:M. surname:Bell;given-names:D. W. surname:Haber;given-names:D. A. surname:Li;given-names:E. 10555141 REF Cell ref 99 1999 49074 DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development 2395 2402 surname:Bestor;given-names:T. H. 11005794 REF Hum. Mol. Genet. ref 9 2000 49179 The DNA methyltransferases of mammals 1760 1764 surname:Bostick;given-names:M. 17673620 REF Science ref 317 2007 49217 UHRF1 plays a role in maintaining DNA methylation in mammalian cells 908 912 surname:Sharif;given-names:J. 17994007 REF Nature ref 450 2007 49286 The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA 909 914 surname:Bonapace;given-names:I. M. 12058012 REF J. Cell Biol. ref 157 2002 49377 Np95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry 7337 7345 surname:Jeanblanc;given-names:M. 16007129 REF Oncogene ref 24 2005 49500 The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle 705 717 surname:Karagianni;given-names:P. surname:Amazit;given-names:L. surname:Qin;given-names:J. surname:Wong;given-names:J. 17967883 REF Mol. Cell. Biol. ref 28 2008 49625 ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation 419 434 surname:Bronner;given-names:C. 17658611 REF Pharmacol. Ther. ref 115 2007 49732 The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? 5621 5629 surname:Jenkins;given-names:Y. 16195352 REF Mol. Biol. Cell ref 16 2005 49824 Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth 120 127 surname:Mousli;given-names:M. 12838312 REF Br. J. Cancer ref 89 2003 49933 ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells 217 222 surname:Unoki;given-names:M. 20517312 REF Br. J. Cancer ref 103 2010 50031 UHRF1 is a novel diagnostic marker of lung cancer 12950 12955 surname:Arita;given-names:K. 22837395 REF Proc. Natl Acad. Sci. USA ref 109 2012 50081 Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1 1329 1339 surname:Cheng;given-names:J. 23161542 REF J. Biol. Chem. ref 288 2013 50204 Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein 1374 1378 surname:Hu;given-names:L. surname:Li;given-names:Z. surname:Wang;given-names:P. surname:Lin;given-names:Y. surname:Xu;given-names:Y. 21808300 REF Cell Res. ref 21 2011 50437 Crystal structure of PHD domain of UHRF1 and insights into recognition of unmodified histone H3 arginine residue 2 24300 24311 surname:Nady;given-names:N. 21489993 REF J. Biol. Chem. ref 286 2011 50552 Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein 275 284 surname:Rajakumara;given-names:E. 21777816 REF Mol. Cell ref 43 2011 50643 PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression 1288 1298 surname:Rothbart;given-names:S. B. 23752590 REF Genes Dev. ref 27 2013 50750 Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation 1379 1382 surname:Wang;given-names:C. 21808299 REF Cell Res. ref 21 2011 50895 Structural basis for site-specific reading of unmodified R2 of histone H3 tail by UHRF1 PHD finger 818 821 surname:Arita;given-names:K. surname:Ariyoshi;given-names:M. surname:Tochio;given-names:H. surname:Nakamura;given-names:Y. surname:Shirakawa;given-names:M. 18772891 REF Nature ref 455 2008 50994 Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism 822 825 surname:Avvakumov;given-names:G. V. 18772889 REF Nature ref 455 2008 51083 Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 826 829 surname:Hashimoto;given-names:H. 18772888 REF Nature ref 455 2008 51172 The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix 2187 2197 surname:Achour;given-names:M. 17934516 REF Oncogene ref 27 2008 51240 The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression 4106 4115 surname:Bashtrykov;given-names:P. surname:Jankevicius;given-names:G. surname:Jurkowska;given-names:R. Z. surname:Ragozin;given-names:S. surname:Jeltsch;given-names:A. 24368767 REF J. Biol. Chem. ref 289 2014 51367 The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism 379 386 surname:Berkyurek;given-names:A. C. 24253042 REF J. Biol. Chem. ref 289 2014 51499 The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA 905 919 surname:Gelato;given-names:K. A. 24813945 REF Mol. Cell ref 54 2014 51711 Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate rs3 surname:Rigbolt;given-names:K. T. 21406692 REF Sci. Signal. ref 4 2011 51838 System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation 1098 1106 surname:Papait;given-names:R. 17182844 REF Mol. Biol. Cell ref 18 2007 51957 Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing 1563 surname:Liu;given-names:X. 23463006 REF Nat. Commun. ref 4 2013 52056 UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9 249 253 surname:Nishiyama;given-names:A. 24013172 REF Nature ref 502 2013 52167 Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication 911 929 surname:Qin;given-names:W. 26065575 REF Cell Res. ref 25 2015 52256 DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination 4828 4833 surname:Ma;given-names:H. 22411829 REF Proc. Natl Acad. Sci. USA ref 109 2012 52350 M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability 121 128 surname:Hopfner;given-names:R. 10646863 REF Cancer Res. ref 60 2000 52486 ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression ra3 surname:Olsen;given-names:J. V. 20068231 REF Sci. Signal. ref 3 2010 52594 Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis 59 70 surname:Chu;given-names:J. 22072796 REF Mol. Biol. Cell ref 23 2012 52695 UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis 267 277 surname:Woo;given-names:H. R. surname:Pontes;given-names:O. surname:Pikaard;given-names:C. S. surname:Richards;given-names:E. J. 17242155 REF Genes Dev. ref 21 2007 52796 VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization 2585 2593 surname:Pichler;given-names:G. 21598301 REF J. Cell. Biochem. ref 112 2011 52883 Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways 1723 1739 surname:Zhang;given-names:J. 22064703 REF Cell Res. ref 21 2011 52979 S phase-dependent interaction with DNMT1 dictates the role of UHRF1 but not UHRF2 in DNA methylation maintenance 911 929 surname:Qin;given-names:W. H. 26065575 REF Cell Res. ref 25 2015 53092 DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination 709 712 surname:Song;given-names:J. surname:Teplova;given-names:M. surname:Ishibe-Murakami;given-names:S. surname:Patel;given-names:D. J. 22323818 REF Science ref 335 2012 53186 Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation 1036 1040 surname:Song;given-names:J. surname:Rechkoblit;given-names:O. surname:Bestor;given-names:T. H. surname:Patel;given-names:D. J. 21163962 REF Science ref 331 2011 53271 Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation 22 34 surname:Clore;given-names:G. M. surname:Gronenborn;given-names:A. M. 9470228 REF Trends Biotechnol. ref 16 1998 53367 Determining the structures of large proteins and protein complexes by NMR 11054 11055 surname:Yamazaki;given-names:T. surname:F.-K.;given-names:J. surname:Kay;given-names:L. E. REF J. Am. Chem. Soc. ref 115 1993 53441 Two-dimensional NMR experiments for correlating carbon-13. beta. and proton. delta./. epsilon. chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings 277 293 surname:Delaglio;given-names:F. 8520220 REF J. Biomol. NMR. ref 6 1995 53618 NMRPipe: a multidimensional spectral processing system based on UNIX pipes 249 254 surname:Kuszewski;given-names:J. surname:Clore;given-names:G. M. 11001840 REF J. Magn. Reson. ref 146 2000 53693 Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force 289 302 surname:Cornilescu;given-names:G. surname:Delaglio;given-names:F. surname:Bax;given-names:A. 10212987 REF J. Biomol. NMR ref 13 1999 53821 Protein backbone angle restraints from searching a database for chemical shift and sequence homology 283 291 surname:Laskowski;given-names:R. A. surname:MacArthur;given-names:M. W. surname:Moss;given-names:D. S. surname:Thornton;given-names:J. M. REF J. Appl. Crystallogr. ref 26 1993 53922 PROCHECK: a program to check the stereochemical quality of protein structures 477 486 surname:Laskowski;given-names:R. A. surname:Rullmannn;given-names:J. A. surname:MacArthur;given-names:M. W. surname:Kaptein;given-names:R. surname:Thornton;given-names:J. M. 9008363 REF J. Biomol. NMR ref 8 1996 54000 AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR surname:DeLano;given-names:W. L. REF ref 2002 54093 51 55 surname:Koradi;given-names:R. surname:Billeter;given-names:M. surname:Wuthrich;given-names:K. 8744573 REF J. Mol. Graph. ref 14 1996 54094 MOLMOL: a program for display and analysis of macromolecular structures 307 326 surname:Otwinowski;given-names:Z. surname:Minor;given-names:W. REF Methods Enzymol. ref 276 1997 54166 Processing of X-ray diffraction data collected in oscillation mode 458 464 surname:McCoy;given-names:A. J. surname:Grosse-Kunstleve;given-names:R. W. surname:Storoni;given-names:L. C. surname:Read;given-names:R. J. 15805601 REF Acta Crystallogr. D Biol. Crystallogr. ref 61 2005 54233 Likelihood-enhanced fast translation functions 2126 2132 surname:Emsley;given-names:P. surname:Cowtan;given-names:K. 15572765 REF Acta Crystallogr. D Biol. Crystallogr. ref 60 2004 54280 Coot: model-building tools for molecular graphics 1948 1954 surname:Adams;given-names:P. D. 12393927 REF Acta Crystallogr. D Biol. Crystallogr. ref 58 2002 54330 PHENIX: building new software for automated crystallographic structure determination SUPPL footnote 54415 Author contributions J.F., H.Y., C.C. and Y.X. designed the experiments. J.F., J.C., M.L., R.G., X.Z. and Y.F. performed protein purification and crystallization of SRA-Spacer-DNA complex. J.F., J.C. and P.W. collected the data and determined the crystal structure. Jia.W. and W.L. performed the NMR titration assay. Jiaolong W. determined the NMR structure of TTD-Spacer complex. Q.Z. performed all the cell-based assays. J.F., M.L. and J.C. performed protein interaction assays. J.F. and Z.G. performed the SAXS measurements. C.T., W.L., C.C. and Jie.W. helped in the data analysis. J.F., H.Y. and Y.X. analysed the data and wrote the manuscript. Y.X. supervised the project. ncomms11197-f1.jpg f1 FIG fig_title_caption 55093 Hm-DNA facilities histione tails recognition by full-length UHRF1. chemical CHEBI: cleaner0 2023-07-25T14:58:26Z Hm-DNA protein_type MESH: cleaner0 2023-07-25T16:33:30Z histione 0.9991283 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.99892884 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 ncomms11197-f1.jpg f1 FIG fig_caption 55160 (a) Colour-coded domain structure of human UHRF1. The boundaries of the domains are indicated with the numbers representing the amino-acid positions. Note that the conserved motif (green background) of the Linker (residues 286–306) and the Spacer (residues 587–674) bind to the TTD in a similar manner (Fig. 3b). (b) Hm-DNA facilities histone H3 and H3K9me3 recognition by UHRF1. Purified full-length UHRF1 was incubated with biotinylated H3 (1–21) or H3K9me3 (1–21) peptides in the presence or absence of hm-DNA (molar ratio UHRF1/hm-DNA=1:2). The mixture was immobilized onto streptavidin Sepharose beads. The bound proteins were analysed in SDS–PAGE followed by Coomassie blue staining. Sequences of the peptides are indicated in Supplementary Table 1. (c) Histone peptides do not affect hm-DNA-binding affinity of UHRF1. Full-length UHRF1 was incubated with biotinylated hm-DNA in the presence or absence of H3 (1–17) or H3K9me3 (1–17) peptides and analysed as in b. (d,e) Superimposed ITC enthalpy plots for binding of H3K9me3 peptide (1–17) to TTD–PHD and full-length UHRF1 (d), and H3 peptide (1–17) to the PHD and full-length UHRF1 (e). The estimated binding affinities (KD) are listed. The samples in the syringe (designated Sy hereafter) and cell are indicated. 0.9987324 species cleaner0 2023-07-25T16:39:11Z MESH: human 0.99917275 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9983405 protein_state cleaner0 2023-07-25T16:51:01Z DUMMY: conserved 0.9991084 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.9964264 residue_range cleaner0 2023-07-25T16:38:52Z DUMMY: 286–306 0.99924755 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.99628085 residue_range cleaner0 2023-07-25T16:38:56Z DUMMY: 587–674 0.9995442 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD 0.9703517 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: Hm-DNA protein_type MESH: cleaner0 2023-07-25T15:05:09Z histone 0.48119324 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T13:02:11Z H3 0.9991829 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9990461 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.99922454 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.87862474 protein_state cleaner0 2023-07-25T16:51:05Z DUMMY: biotinylated 0.91468906 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 residue_range DUMMY: melaniev@ebi.ac.uk 2023-08-08T13:03:21Z 1–21 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T13:02:23Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T13:02:42Z K9me3 residue_range DUMMY: melaniev@ebi.ac.uk 2023-08-08T13:03:32Z 1–21 protein_state DUMMY: cleaner0 2023-07-25T15:50:14Z absence of 0.99181557 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.99652356 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.96265155 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA 0.9976464 experimental_method cleaner0 2023-07-25T16:42:52Z MESH: SDS–PAGE protein_type MESH: cleaner0 2023-07-25T15:05:09Z Histone 0.85392904 evidence cleaner0 2023-07-25T14:56:51Z DUMMY: hm-DNA-binding affinity 0.99919266 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9990065 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: Full-length 0.9992055 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.8146759 experimental_method cleaner0 2023-07-25T16:42:55Z MESH: incubated with 0.57842284 protein_state cleaner0 2023-07-25T16:51:08Z DUMMY: biotinylated 0.99434835 chemical cleaner0 2023-07-25T14:58:26Z CHEBI: hm-DNA protein_state DUMMY: cleaner0 2023-07-25T15:50:14Z absence of 0.9817586 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 residue_range DUMMY: cleaner0 2023-07-25T16:23:35Z 1–17 protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:59:02Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:59:11Z K9me3 residue_range DUMMY: cleaner0 2023-07-25T16:23:36Z 1–17 0.99561787 experimental_method cleaner0 2023-07-25T16:42:58Z MESH: ITC 0.96477485 evidence cleaner0 2023-07-25T16:46:04Z DUMMY: enthalpy plots protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:59:33Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:59:26Z K9me3 residue_range DUMMY: cleaner0 2023-07-25T16:23:36Z 1–17 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.99911135 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.9992053 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9958145 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 0.6578081 residue_range cleaner0 2023-07-25T16:23:36Z DUMMY: 1–17 0.99953353 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.99913436 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.9992557 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.99829507 evidence cleaner0 2023-07-25T16:46:09Z DUMMY: binding affinities 0.99740285 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD ncomms11197-f2.jpg f2 FIG fig_title_caption 56452 Intramolecular interactions inhibit histone recognition by UHRF1. protein_type MESH: cleaner0 2023-07-25T15:05:09Z histone 0.9990262 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 ncomms11197-f2.jpg f2 FIG fig_caption 56518 (a) GST pull-down assays for the intramolecular interactions. The isolated domains of UHRF1 were incubated with GST-tagged TTD or PHD immobilized on glutathione resin. The bound proteins were analysed by SDS–PAGE and Coomassie blue staining. (b,d) Superimposed ITC enthalpy plots for the intramolecular interactions of isolated UHRF1 domains. The estimated binding affinities (KD) were listed. ND, not detectable. (c) Superimposed ITC enthalpy plots for the binding of H3K9me3 to TTD–PHD in the absence or presence of the Spacer (molar ratio TTD–PHD/Spacer=1:2). (e) Superimposed ITC enthalpy plots for the binding of H3 to PHD–SRA or PHD in the absence or presence of the SRA (molar ratio PHD/SRA=1:1 or 1:2). ND, not determined; Sy., syringe. 0.9989753 experimental_method cleaner0 2023-07-25T16:24:11Z MESH: GST pull-down assays 0.9977849 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.97791547 experimental_method cleaner0 2023-07-25T16:43:03Z MESH: incubated 0.9943831 protein_state cleaner0 2023-07-25T16:24:19Z DUMMY: GST-tagged 0.99942833 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD 0.9994708 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.9921228 experimental_method cleaner0 2023-07-25T16:43:06Z MESH: SDS–PAGE 0.9880918 experimental_method cleaner0 2023-07-25T16:43:09Z MESH: ITC 0.9660795 evidence cleaner0 2023-07-25T16:46:13Z DUMMY: enthalpy plots 0.9971623 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9986558 evidence cleaner0 2023-07-25T16:46:22Z DUMMY: binding affinities 0.99723214 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9923856 experimental_method cleaner0 2023-07-25T16:43:23Z MESH: ITC 0.981375 evidence cleaner0 2023-07-25T16:46:16Z DUMMY: enthalpy plots protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T12:59:50Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T12:59:58Z K9me3 structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.99501556 protein_state cleaner0 2023-07-25T16:51:14Z DUMMY: absence 0.99276066 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.9653634 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.9408276 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.9922605 experimental_method cleaner0 2023-07-25T16:43:27Z MESH: ITC 0.98671687 evidence cleaner0 2023-07-25T16:46:18Z DUMMY: enthalpy plots 0.5302331 protein_type cleaner0 2023-07-25T15:07:50Z MESH: H3 structure_element SO: cleaner0 2023-07-25T15:47:40Z PHD–SRA 0.9993455 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.99725914 protein_state cleaner0 2023-07-25T16:51:17Z DUMMY: absence 0.9969782 protein_state cleaner0 2023-07-25T15:10:25Z DUMMY: presence of 0.9905939 structure_element cleaner0 2023-07-25T14:57:37Z SO: SRA 0.99839264 structure_element cleaner0 2023-07-25T14:57:50Z SO: PHD 0.98487955 structure_element cleaner0 2023-07-25T14:57:37Z SO: SRA ncomms11197-f3.jpg f3 FIG fig_title_caption 57271 NMR structure of the TTD bound to the Spacer. 0.9986047 experimental_method cleaner0 2023-07-25T16:43:31Z MESH: NMR 0.998346 evidence cleaner0 2023-07-25T16:46:27Z DUMMY: structure 0.99939525 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD protein_state DUMMY: cleaner0 2023-07-25T15:10:33Z bound to 0.9795172 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer ncomms11197-f3.jpg f3 FIG fig_caption 57317 (a) Ribbon representation of TTD–Spacer structure. N- and C-termini of the Spacer are indicated. The TTD is coloured in green, and the Spacer is coloured in yellow. The colour scheme is used the all the structure figures. (b) Superimposition of TTD–Spacer and TTD–PHD–H3K9me3 (4GY5.PDB) structures shown in ribbon representations. The TTD is coloured in green and the Spacer in yellow in TTD–Spacer structure. TTD–PHD–H3K9me3 complex is coloured in grey, and the PHD and H3K9me3 are omitted for simplicity. Residues for the interactions are shown in stick representation. (c) Electrostatic potential surface representation of the TTD with the Spacer shown in ribbon representation. The critical residues on the Spacer for the interaction are shown in stick representation. (d) Close-up view of TTD–Spacer interaction. Critical residues for the interaction are shown in stick representation. Hydrogen bonds are indicated as dashed lines. (e–g) Superimposed ITC enthalpy plots for the interaction between the Spacer and the TTD (or TTD–PHD) with the estimated binding affinity (KD) indicated. Wild-type and mutant proteins for the measurements are indicated. (h) GST pull-down assays for the intramolecular interactions. The wild-type or indicated truncations of UHRF1 were incubated with GST-tagged TTD, Linker or Spacer. The mixtures were immobilized on glutathione resin. The bound proteins were analysed by SDS–PAGE and Coomassie blue staining. ND, not determined; Sy., syringe. 0.99809724 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer 0.8751053 evidence cleaner0 2023-07-25T16:46:30Z DUMMY: structure 0.9955915 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.99941146 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD 0.99854636 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.988893 experimental_method cleaner0 2023-07-25T16:25:01Z MESH: Superimposition 0.9639978 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer 0.99869716 complex_assembly cleaner0 2023-07-25T15:22:29Z GO: TTD–PHD–H3K9me3 0.5059854 evidence cleaner0 2023-07-25T16:46:33Z DUMMY: structures 0.99940574 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD 0.99869233 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.99854136 structure_element cleaner0 2023-07-25T15:17:21Z SO: TTD–Spacer 0.8394155 evidence cleaner0 2023-07-25T16:46:36Z DUMMY: structure 0.99902695 complex_assembly cleaner0 2023-07-25T15:22:29Z GO: TTD–PHD–H3K9me3 0.9988858 structure_element cleaner0 2023-07-25T14:57:51Z SO: PHD protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T13:00:15Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T13:00:24Z K9me3 0.99935716 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD 0.9981571 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.9972881 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer 0.9962218 bond_interaction cleaner0 2023-07-25T15:24:59Z MESH: Hydrogen bonds 0.99756014 experimental_method cleaner0 2023-07-25T16:43:38Z MESH: ITC 0.9872527 evidence cleaner0 2023-07-25T16:46:39Z DUMMY: enthalpy plots 0.9953733 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.9989366 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD 0.9958517 structure_element cleaner0 2023-07-25T15:11:21Z SO: TTD–PHD 0.99859107 evidence cleaner0 2023-07-25T15:10:18Z DUMMY: binding affinity 0.9974821 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9990232 protein_state cleaner0 2023-07-25T15:34:11Z DUMMY: Wild-type protein_state DUMMY: cleaner0 2023-07-25T16:00:50Z mutant 0.99896955 experimental_method cleaner0 2023-07-25T16:26:12Z MESH: GST pull-down assays 0.9991037 protein_state cleaner0 2023-07-25T15:34:11Z DUMMY: wild-type 0.99932194 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9956762 protein_state cleaner0 2023-07-25T16:26:25Z DUMMY: GST-tagged 0.9994342 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD 0.99938715 structure_element cleaner0 2023-07-25T15:34:29Z SO: Linker 0.99925107 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.99821776 experimental_method cleaner0 2023-07-25T16:43:43Z MESH: SDS–PAGE ncomms11197-f4.jpg f4 FIG fig_title_caption 58820 Hm-DNA impairs the intramolecular interaction of UHRF1 and facilitates its histone recognition. 0.9944139 chemical cleaner0 2023-07-25T14:58:27Z CHEBI: Hm-DNA 0.9990503 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 protein_type MESH: cleaner0 2023-07-25T15:05:09Z histone ncomms11197-f4.jpg f4 FIG fig_caption 58916 (a) Hm-DNA impairs the intramolecular interaction of PHD–SRA. The SRA was incubated with GST-tagged PHD in the presence of increasing concentrations of hm-DNA and immobilized on glutathione resin. The bound proteins were analysed in SDS–PAGE and Coomassie blue staining (left) and quantified by band densitometry (right). Error bars, s.d. for triplicate experiments. (b) Purified fragments of UHRF1 were analysed by histone peptide (H3K9me0) pull-down assay as described in Fig. 1b. (c) Hm-DNA impairs the intramolecular interaction of TTD–Spacer. SRA–Spacer was incubated with GST-tagged TTD–PHD or TTD in the presence of increasing concentrations of hm-DNA and analysed in pull-down experiment as described in a. The quantified band densitometries are indicated below the Coomassie blue staining. Error bars, s.d. for triplicate experiments. (d) Histone peptide pull-down assay using UHRF1 mutants as indicated. The assays were performed in the presence (+DTT) or absence (−DTT) of 15 mM DTT. 0.9981992 chemical cleaner0 2023-07-25T14:58:27Z CHEBI: Hm-DNA structure_element SO: cleaner0 2023-07-25T15:47:40Z PHD–SRA 0.99943036 structure_element cleaner0 2023-07-25T14:57:37Z SO: SRA 0.98517853 experimental_method cleaner0 2023-07-25T16:43:49Z MESH: incubated 0.9960082 protein_state cleaner0 2023-07-25T16:51:22Z DUMMY: GST-tagged 0.9994848 structure_element cleaner0 2023-07-25T14:57:51Z SO: PHD protein_state DUMMY: cleaner0 2023-07-25T15:10:25Z presence of 0.9988224 chemical cleaner0 2023-07-25T14:58:27Z CHEBI: hm-DNA 0.9975583 experimental_method cleaner0 2023-07-25T16:44:14Z MESH: SDS–PAGE experimental_method MESH: cleaner0 2023-07-25T16:44:05Z Coomassie blue staining 0.97438693 experimental_method cleaner0 2023-07-25T16:44:09Z MESH: band densitometry 0.9990325 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.994632 experimental_method cleaner0 2023-07-25T16:27:22Z MESH: histone peptide protein_type MESH: melaniev@ebi.ac.uk 2023-08-08T13:00:40Z H3 ptm MESH: melaniev@ebi.ac.uk 2023-08-08T13:00:52Z K9me0 0.99860966 experimental_method cleaner0 2023-07-25T16:27:25Z MESH: pull-down assay 0.9979406 chemical cleaner0 2023-07-25T14:58:27Z CHEBI: Hm-DNA structure_element SO: cleaner0 2023-07-25T15:17:21Z TTD–Spacer structure_element SO: cleaner0 2023-07-25T15:48:56Z SRA–Spacer 0.9862408 experimental_method cleaner0 2023-07-25T16:44:21Z MESH: incubated 0.9954321 protein_state cleaner0 2023-07-25T16:51:25Z DUMMY: GST-tagged structure_element SO: cleaner0 2023-07-25T15:11:21Z TTD–PHD 0.9994454 structure_element cleaner0 2023-07-25T14:57:22Z SO: TTD protein_state DUMMY: cleaner0 2023-07-25T15:10:25Z presence of 0.99866724 chemical cleaner0 2023-07-25T14:58:27Z CHEBI: hm-DNA 0.9964418 experimental_method cleaner0 2023-07-25T16:44:24Z MESH: pull-down experiment 0.6687745 experimental_method cleaner0 2023-07-25T16:47:04Z MESH: band densitometries experimental_method MESH: cleaner0 2023-07-25T16:47:18Z Coomassie blue staining 0.99877673 experimental_method cleaner0 2023-07-25T16:27:38Z MESH: Histone peptide pull-down assay 0.998818 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9971113 protein_state cleaner0 2023-07-25T16:00:01Z DUMMY: mutants 0.9741964 chemical cleaner0 2023-07-25T15:51:51Z CHEBI: DTT chemical CHEBI: cleaner0 2023-07-25T15:51:51Z DTT 0.9975981 chemical cleaner0 2023-07-25T15:51:51Z CHEBI: DTT ncomms11197-f5.jpg f5 FIG fig_title_caption 59925 The Spacer facilitates hm-DNA–SRA interaction and DNMT1–UHRF1 interaction. 0.99668473 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer 0.97400206 chemical cleaner0 2023-07-25T14:58:27Z CHEBI: hm-DNA 0.9543789 structure_element cleaner0 2023-07-25T14:57:37Z SO: SRA 0.90869576 complex_assembly cleaner0 2023-07-25T16:30:45Z GO: DNMT1–UHRF1 ncomms11197-f5.jpg f5 FIG fig_caption 60004 (a) Superimposed ITC enthalpy plots for hm-DNA-binding affinities of the SRA, the Spacer and SRA–Spacer. (b,c) Superimposed fluorescence polarization (FP) plots for hm-DNA-binding affinities of truncations or full-length UHRF1. The estimated binding affinities (KD) are listed above. (d) Subcellular localization of GFP-tagged wild-type or indicated mutants of UHRF1 in NIH3T3 cells. The percentages of cells showing co-localization with DAPI foci were counted from at least 100 cells and shown on the left of the corresponding representative confocal microscopy. The experiment was repeated three times in the same condition. Scale bar, 5 μm. (e) GST pull-down experiment for the interactions between wild-type or truncations of UHRF1 and RFTSDNMT1 as described in Fig. 2a. (f) Working model for hm-DNA-mediated conformational changes of UHRF1, as described in the Discussion. ND, not determined; Sy., syringe. 0.9923235 experimental_method cleaner0 2023-07-25T16:28:50Z MESH: ITC 0.9836543 evidence cleaner0 2023-07-25T16:47:28Z DUMMY: enthalpy plots 0.9968479 evidence cleaner0 2023-07-25T15:53:51Z DUMMY: hm-DNA-binding affinities 0.99944144 structure_element cleaner0 2023-07-25T14:57:37Z SO: SRA 0.9984194 structure_element cleaner0 2023-07-25T14:57:07Z SO: Spacer structure_element SO: cleaner0 2023-07-25T15:48:56Z SRA–Spacer evidence DUMMY: cleaner0 2023-07-25T16:28:30Z fluorescence polarization (FP) plots 0.99808145 evidence cleaner0 2023-07-25T15:53:51Z DUMMY: hm-DNA-binding affinities 0.99890304 protein_state cleaner0 2023-07-25T15:09:01Z DUMMY: full-length 0.99899775 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9986728 evidence cleaner0 2023-07-25T16:47:34Z DUMMY: binding affinities 0.9979559 evidence cleaner0 2023-07-25T15:10:11Z DUMMY: KD 0.9150217 protein_state cleaner0 2023-07-25T15:59:47Z DUMMY: GFP-tagged 0.9991537 protein_state cleaner0 2023-07-25T15:34:11Z DUMMY: wild-type protein_state DUMMY: cleaner0 2023-07-25T16:00:01Z mutants 0.99895537 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 chemical CHEBI: cleaner0 2023-07-25T16:00:11Z DAPI 0.9746206 experimental_method cleaner0 2023-07-25T16:28:45Z MESH: confocal microscopy 0.99787396 experimental_method cleaner0 2023-07-25T16:28:43Z MESH: GST pull-down experiment 0.9991854 protein_state cleaner0 2023-07-25T15:34:11Z DUMMY: wild-type 0.66345346 experimental_method cleaner0 2023-07-25T16:28:47Z MESH: truncations 0.99900025 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1 0.9981184 protein cleaner0 2023-07-25T16:02:13Z PR: RFTSDNMT1 0.9931757 chemical cleaner0 2023-07-25T14:58:27Z CHEBI: hm-DNA 0.9990509 protein cleaner0 2023-07-25T14:58:05Z PR: UHRF1