# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """Jigsaw Toxic Comment Challenge dataset""" import pandas as pd import os import datasets # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """""" _DESCRIPTION = """\ Jigsaw Toxic Comment Challenge dataset. This dataset was the basis of a Kaggle competition run by Jigsaw """ _HOMEPAGE = "https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" _URLS = { "train": "train.csv", "validation": "validation.csv", "test": "test.csv", "balanced_train": "balanced_train.csv", } # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class WikiToxic(datasets.GeneratorBasedBuilder): """Jigsaw Toxic Comment Challenge dataset.""" VERSION = datasets.Version("1.0.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "comment_text": datasets.Value("string"), "label": datasets.ClassLabel(names=["non", "tox"]) } ) return datasets.DatasetInfo( description=_DESCRIPTION, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, features=features ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "train.csv"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "validation.csv"), "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "test.csv"), "split": "test" }, ), datasets.SplitGenerator( name="balanced_train", # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "balanced_train.csv"), "split": "balanced_train" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): cwd = os.getcwd() print(cwd) print(list(os.listdir(cwd))) df = pd.read_csv(filepath) for index, row in df.iterrows(): yield index, { "id": row["id"], "comment_text": row["comment_text"], "label": row["label"], }