import os # import pandas as pd from utils import read_csv_file, write_jsonl_file, parse # new read_in function # def read_csv_file(filename): # with open(filename, "r", encoding="utf8") as fr: # return pd.read_csv(fr) def preprocess(args): filenames = os.listdir(args.input_dir) for filename in filenames: """ add train/eval/test instruction """ if not filename.endswith(".csv"): continue path = os.path.join(args.input_dir, filename) data = read_csv_file(path) turns = [] locale = filename[:5] if filename != "aux-en.csv" else "en-US" for i in data.index: t = {"turn": "single", "locale": locale, "dialog": []} item = data.iloc[i] d = { "role": "ROLE", "utterance": item["text_asr"] if filename != "aux-en.csv" else item[0], "active_intents": [ item["intent"] if filename != "aux-en.csv" else item[1] ], } t["dialog"].append(d) turns.append(t) if locale != "en-US": t_en = {"turn": "single", "locale": "en-US", "dialog": []} d = { "role": "ROLE", "utterance": item["text_translated"], "active_intents": [item["intent"]], } t_en["dialog"].append(d) turns.append(t_en) write_jsonl_file(turns, args.output_dir + "/" + filename[:5] + ".jsonl") if __name__ == "__main__": args = parse() preprocess(args)