import numpy as np import pybullet as p from surrol.gym.surrol_env import SurRoLEnv, RENDER_HEIGHT from surrol.robots.ecm import Ecm from surrol.utils.pybullet_utils import ( get_link_pose, reset_camera ) from surrol.utils.robotics import get_pose_2d_from_matrix def goal_distance(goal_a, goal_b): assert goal_a.shape == goal_b.shape return np.linalg.norm(goal_a - goal_b, axis=-1) class EcmEnv(SurRoLEnv): """ Single arm env using ECM (active_track is not a GoalEnv) Refer to Gym fetch https://github.com/openai/gym/blob/master/gym/envs/robotics/fetch_env.py ravens https://github.com/google-research/ravens/blob/master/ravens/environments/environment.py """ ACTION_SIZE = 3 # (dx, dy, dz) or cVc or droll (1) ACTION_MODE = 'cVc' DISTANCE_THRESHOLD = 0.005 POSE_ECM = ((0.15, 0.0, 0.7524), (0, 30 / 180 * np.pi, 0)) QPOS_ECM = (0, 0.6, 0.04, 0) WORKSPACE_LIMITS = ((0.45, 0.55), (-0.05, 0.05), (0.60, 0.70)) SCALING = 1. def __init__(self, render_mode: str = None, cid = -1): # workspace self.workspace_limits = np.asarray(self.WORKSPACE_LIMITS) self.workspace_limits *= self.SCALING # camera self.use_camera = False # has_object self.has_object = False self.obj_id = None super(EcmEnv, self).__init__(render_mode, cid) # change duration self._duration = 0.1 # distance_threshold self.distance_threshold = self.DISTANCE_THRESHOLD * self.SCALING # render related setting self._view_matrix = p.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING), distance=1.80 * self.SCALING, yaw=150, pitch=-30, roll=0, upAxisIndex=2 ) def render(self, mode='rgb_array'): # TODO: check how to disable specular color when using EGL renderer if mode != "rgb_array": return np.array([]) rgb_array = super().render(mode) if self.use_camera: rgb_cam, _ = self.ecm.render_image(RENDER_HEIGHT, RENDER_HEIGHT) rgb_array = np.concatenate((rgb_array, rgb_cam), axis=1) return rgb_array def compute_reward(self, achieved_goal: np.ndarray, desired_goal: np.ndarray, info): """ Sparse reward. """ # d = goal_distance(achieved_goal, desired_goal) # return - (d > self.distance_threshold).astype(np.float32) return self._is_success(achieved_goal, desired_goal).astype(np.float32) - 1. def _env_setup(self): assert self.ACTION_MODE in ('cVc', 'dmove', 'droll') # camera if self._render_mode == 'human': reset_camera(yaw=150.0, pitch=-30.0, dist=1.50 * self.SCALING, target=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING)) # robot self.ecm = Ecm(self.POSE_ECM[0], p.getQuaternionFromEuler(self.POSE_ECM[1]), scaling=self.SCALING) pass # need to implement based on every task # self.obj_ids def _get_robot_state(self) -> np.ndarray: # TODO # robot state: eef pose in the ECM coordinate pose_rcm = get_pose_2d_from_matrix(self.ecm.get_current_position()) return np.concatenate([ np.array(pose_rcm[0]), np.array(p.getEulerFromQuaternion(pose_rcm[1])) ]) def _get_obs(self) -> dict: robot_state = self._get_robot_state() # may need to modify if self.has_object: pos, _ = get_link_pose(self.obj_id, -1) object_pos = np.array(pos) else: object_pos = np.zeros(0) if self.has_object: achieved_goal = object_pos.copy() else: achieved_goal = np.array(get_link_pose(self.ecm.body, self.ecm.EEF_LINK_INDEX)[0]) # eef position observation = np.concatenate([ robot_state, object_pos.ravel(), # achieved_goal.copy(), ]) obs = { 'observation': observation.copy(), 'achieved_goal': achieved_goal.copy(), 'desired_goal': self.goal.copy() } return obs def _set_action(self, action: np.ndarray): """ delta_position (3) and delta_theta (1); in world coordinate """ # print('action: ', action) assert len(action) == self.ACTION_SIZE action = action.copy() # ensure that we don't change the action outside of this scope if self.ACTION_MODE == 'cVc': # hyper-parameters are sensitive; need to tune # if np.linalg.norm(action) > 1: # action /= np.linalg.norm(action) action *= 0.01 * self.SCALING # velocity (HeadPitch, HeadYaw), limit maximum change in velocity dq = 0.05 * self.ecm.cVc_to_dq(action) # scaled result = self.ecm.dmove_joint(dq) if result is False: return False else: return True elif self.ACTION_MODE == 'dmove': # Incremental motion in cartesian space in the base frame action *= 0.01 * self.SCALING pose_rcm = self.ecm.get_current_position() pose_rcm[:3, 3] += action pos, _ = self.ecm.pose_rcm2world(pose_rcm, 'tuple') joint_positions = self.ecm.inverse_kinematics((pos, None), self.ecm.EEF_LINK_INDEX) # do not consider orn self.ecm.move_joint(joint_positions[:self.ecm.DoF]) elif self.ACTION_MODE == 'droll': # change the roll angle action *= np.deg2rad(3) self.ecm.dmove_joint_one(action[0], 3) else: raise NotImplementedError def _is_success(self, achieved_goal, desired_goal): """ Indicates whether or not the achieved goal successfully achieved the desired goal. """ d = goal_distance(achieved_goal, desired_goal) return (d < self.distance_threshold).astype(np.float32) def _sample_goal(self) -> np.ndarray: """ Samples a new goal and returns it. """ raise NotImplementedError @property def action_size(self): return self.ACTION_SIZE def get_oracle_action(self, obs) -> np.ndarray: """ Define a scripted oracle strategy """ raise NotImplementedError