from transformers import AutoTokenizer import jsonlines import random import os tokenizer = AutoTokenizer.from_pretrained("NilanE/tinyllama-relora-merge") max_seq_len = 2048 # max context length prompt = "Translate this from Japanese to English:\n### JAPANESE: \n### ENGLISH: " # insert SFT prompt to add to token count input_file_path = "dataset-parallel-complete.jsonl" output_file_path = input_file_path.split('.')[0] + "-chunked." + input_file_path.split('.')[1] promptTokens = len(tokenizer.tokenize(prompt)) def load_jsonl(file_path): data = [] with jsonlines.open(file_path) as reader: for entry in reader: source = entry['src'].replace('', '').strip() target = entry['trg'].replace('', '').strip() data.append([source, target]) return data def save_jsonl(file_path, data): with jsonlines.open(file_path, 'w') as writer: writer.write_all(data) chunks = [] data = load_jsonl(input_file_path) #tolerance max_seq_len -= 10 skippedDocs = 0 for doc in data: src_lines = doc[0].split('\n') trg_lines = doc[1].split('\n') out_src = [] out_trg = [] tokenCount = 0 lastTokenCount = 0 longLines = 0 try: for x in range(len(src_lines)): out_src.append(src_lines[x]) out_trg.append(trg_lines[x]) out_src_string = "\n".join(out_src) trg_src_string = "\n".join(out_trg) tokenCount = len(tokenizer.tokenize(out_src_string.strip() + trg_src_string.strip())) + promptTokens if tokenCount-lastTokenCount < max_seq_len-1: # avoid lines > max line length if tokenCount > max_seq_len-1: src_end = out_src.pop() trg_end = out_trg.pop() out_src_string = "\n".join(out_src) trg_src_string = "\n".join(out_trg) data = { 'src' : out_src_string.strip(), 'trg' : trg_src_string.strip() } chunks.append(data) out_src = [src_end] out_trg = [trg_end] elif x+1 == len(src_lines): #and len(out_src) > 2: data = { 'src' : out_src_string.strip(), 'trg' : trg_src_string.strip() } chunks.append(data) else: # remove offending line > max_seq_len out_src.pop() out_trg.pop() out_src_string = "\n".join(out_src) trg_src_string = "\n".join(out_trg) tokenCount = len(tokenizer.tokenize(out_src_string.strip() + trg_src_string.strip())) + promptTokens longLines += 1 lastTokenCount = tokenCount except: skippedDocs += 1 random.shuffle(chunks) print(f"LINES LONGER THAN MAX SEQUENCE LENTH: {longLines}") print(f"SKIPPED DOCS: {skippedDocs}") # Save the randomized data to a new JSONL file if os.path.exists(output_file_path): os.remove(output_file_path) save_jsonl(output_file_path, chunks)