import argparse import csv import json import os from datetime import datetime def load_csv(file_path): try: rows = [] with open(file_path, "r", encoding="utf-8") as f: reader = csv.reader(f) for row in reader: rows.append(row) return rows, None except Exception as e: return [], str(e) def evaluate(pred_file, truth_file): pred_rows, pred_err = load_csv(pred_file) truth_rows, truth_err = load_csv(truth_file) process_ok = True comments = [] # Check for read errors if pred_err: comments.append(f"[Prediction file read failed] {pred_err}") process_ok = False if truth_err: comments.append(f"[GT file read failed] {truth_err}") process_ok = False if not process_ok: return { "Process": False, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": "\n".join(comments) } # Need at least one row as header if not pred_rows or not truth_rows: comments.append("⚠️ No data rows found!") return { "Process": True, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": "\n".join(comments) } # Extract column names pred_header = pred_rows[0] truth_header = truth_rows[0] # Compare column name order if pred_header != truth_header: comments.append(f"⚠️ Column names or order mismatch! Prediction columns: {pred_header}, GT columns: {truth_header}") else: comments.append("✅ Column names and order match.") # Construct pure list content, skip header row pred_data = pred_rows[1:] truth_data = truth_rows[1:] total_rows = min(len(pred_data), len(truth_data)) if total_rows == 0: comments.append("⚠️ No data rows for comparison!") return { "Process": True, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": "\n".join(comments) } # Compare cell by cell in order match_count = 0 total_cells = 0 for i in range(total_rows): pr = pred_data[i] tr = truth_data[i] min_cols = min(len(pr), len(tr)) for j in range(min_cols): total_cells += 1 if pr[j] == tr[j]: match_count += 1 # Count mismatches for unequal column counts total_cells += abs(len(pr) - len(tr)) # Calculate match rate match_rate = (match_count / total_cells) * 100 if total_cells else 0 passed = match_rate >= 75 comments.append(f"Overall cell-by-cell match rate: {match_rate:.2f}% (threshold=75%)") if passed: comments.append("✅ Test passed!") else: comments.append("❌ Test failed!") return { "Process": True, "Result": passed, "TimePoint": datetime.now().isoformat(), "comments": "\n".join(comments) } def append_result_to_jsonl(result_path, result_dict): os.makedirs(os.path.dirname(result_path) or '.', exist_ok=True) with open(result_path, "a", encoding="utf-8") as f: json.dump(result_dict, f, ensure_ascii=False, default=str) f.write("\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--output", type=str, required=True, help="Path to extracted complete table") parser.add_argument("--groundtruth", type=str, required=True, help="Path to standard complete table") parser.add_argument("--result", type=str, required=True, help="Path to output JSONL result file") args = parser.parse_args() result_dict = evaluate(args.output, args.groundtruth) append_result_to_jsonl(args.result, result_dict)