# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """SUPERB: Speech processing Universal PERformance Benchmark.""" import datasets from datasets.tasks import AutomaticSpeechRecognition _CITATION = "" _DESCRIPTION = "" class AsrDummyConfig(datasets.BuilderConfig): """BuilderConfig for Superb.""" def __init__( self, data_url, url, task_templates=None, **kwargs, ): super().__init__(version=datasets.Version("1.9.0", ""), **kwargs) self.data_url = data_url self.url = url self.task_templates = task_templates class AsrDummy(datasets.GeneratorBasedBuilder): """Superb dataset.""" BUILDER_CONFIGS = [ AsrDummyConfig( name="conversational", description="", url="", data_url="", task_templates=[], ) ] DEFAULT_CONFIG_NAME = "conversational" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "generated_responses": datasets.features.Sequence( datasets.Value("string") ), "past_user_inputs": datasets.features.Sequence( datasets.Value("string") ), "new_user_input": datasets.Value("string"), } ), supervised_keys=("file",), homepage=self.config.url, citation=_CITATION, task_templates=self.config.task_templates, ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={}, ), ] def _generate_examples(self): """Generate examples.""" # Only odd number to have user prompt textss = [ ["Hello there", "Hello There", "Who are you ?"], ["Hello there"], [ "Hello there", "Hello There", "Can you help me ?", "Yes what do you need ?", "I am having a problem with your product", ], ] for i, texts in enumerate(textss): key = str(i) past_user_inputs = texts[:-1:2] generated_responses = texts[1::2] new_user_input = texts[-1] example = { "id": key, "generated_responses": generated_responses, "past_user_inputs": past_user_inputs, "new_user_input": new_user_input, } yield key, example