# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """MAGICDATA Mandarin Chinese Read Speech Corpus.""" import os import datasets from datasets.tasks import AutomaticSpeechRecognition _CITATION = """\ @misc{magicdata_2019, title={MAGICDATA Mandarin Chinese Read Speech Corpus}, url={https://openslr.org/68/}, publisher={Magic Data Technology Co., Ltd.}, year={2019}, month={May}} """ _DESCRIPTION = """\ The corpus by Magic Data Technology Co., Ltd. , containing 755 hours of scripted read speech data from 1080 native speakers of the Mandarin Chinese spoken in mainland China. The sentence transcription accuracy is higher than 98%. """ _URL = "https://openslr.org/68/" _DL_URL = "http://www.openslr.org/resources/68/" _DL_URLS = { "train": _DL_URL + "train_set.tar.gz", "dev": _DL_URL + "dev_set.tar.gz", "test": _DL_URL + "test_set.tar.gz", } class MMCRSCConfig(datasets.BuilderConfig): """BuilderConfig for MMCRSC.""" def __init__(self, **kwargs): """ Args: data_dir: `string`, the path to the folder containing the files in the downloaded .tar citation: `string`, citation for the data set url: `string`, url for information about the data set **kwargs: keyword arguments forwarded to super. """ # version history # 0.1.0: First release on Huggingface super(MMCRSCConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs) class MMCRSC(datasets.GeneratorBasedBuilder): """MMCRSC dataset.""" DEFAULT_WRITER_BATCH_SIZE = 256 DEFAULT_CONFIG_NAME = "all" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "file": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "text": datasets.Value("string"), "speaker_id": datasets.Value("int64"), "id": datasets.Value("string"), } ), supervised_keys=("file", "text"), homepage=_URL, citation=_CITATION, task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(_DL_URLS) # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files: local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {} return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "local_extracted_archive": local_extracted_archive.get("train"), "files": dl_manager.iter_archive(archive_path["train"]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "local_extracted_archive": local_extracted_archive.get("dev"), "files": dl_manager.iter_archive(archive_path["dev"]), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "local_extracted_archive": local_extracted_archive.get("test"), "files": dl_manager.iter_archive(archive_path["test"]), }, ), ] def _generate_examples(self, files, local_extracted_archive): """Generate examples from a LibriSpeech archive_path.""" audio_data = {} transcripts = [] for path, f in files: if path.endswith(".wav"): id_ = path.split("/")[-1] audio_data[id_] = f.read() elif path.endswith("TRANS.txt"): for line in f: if line and (b'.wav' in line): line = line.decode("utf-8").strip() id_, speaker_id, transcript = line.split("\t") audio_file = id_ audio_file = ( os.path.join(local_extracted_archive, audio_file) if local_extracted_archive else audio_file ) transcripts.append( { "id": id_, "speaker_id": speaker_id, "file": audio_file, "text": transcript, } ) if audio_data: for key, transcript in enumerate(transcripts): if transcript["id"] in audio_data: audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]} yield key, {"audio": audio, **transcript} audio_data = {} transcripts = []