# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Story Cloze datasets.""" import csv import os import datasets _DESCRIPTION = """ Story Cloze Test' is a commonsense reasoning framework for evaluating story understanding, story generation, and script learning.This test requires a system to choose the correct ending to a four-sentence story. """ _CITATION = """\ @article{DBLP:journals/corr/abs-2112-10668, author = {Xi Victoria Lin and Todor Mihaylov and Mikel Artetxe and Tianlu Wang and Shuohui Chen and Daniel Simig and Myle Ott and Naman Goyal and Shruti Bhosale and Jingfei Du and Ramakanth Pasunuru and Sam Shleifer and Punit Singh Koura and Vishrav Chaudhary and Brian O'Horo and Jeff Wang and Luke Zettlemoyer and Zornitsa Kozareva and Mona T. Diab and Veselin Stoyanov and Xian Li}, title = {Few-shot Learning with Multilingual Language Models}, journal = {CoRR}, volume = {abs/2112.10668}, year = {2021}, url = {https://arxiv.org/abs/2112.10668}, eprinttype = {arXiv}, eprint = {2112.10668}, timestamp = {Tue, 04 Jan 2022 15:59:27 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2112-10668.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _LANG = ["ru", "zh", "es", "ar", "hi", "id", "te", "sw", "eu", "my"] _VERSION = "1.0.0" class XStoryCloze(datasets.GeneratorBasedBuilder): """Story Cloze.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name=lang, description=f"XStory Cloze {lang}", version=_VERSION, ) for lang in _LANG ] @property def manual_download_instructions(self): return ( "To use Story Cloze you have to download it manually. Please fill this " "google form (http://goo.gl/forms/aQz39sdDrO). Complete the form. " "Then you will receive a download link for the dataset. Load it using: " "`datasets.load_dataset('story_cloze', data_dir='path/to/folder/folder_name')`" ) def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "story_id": datasets.Value("string"), "input_sentence_1": datasets.Value("string"), "input_sentence_2": datasets.Value("string"), "input_sentence_3": datasets.Value("string"), "input_sentence_4": datasets.Value("string"), "sentence_quiz1": datasets.Value("string"), "sentence_quiz2": datasets.Value("string"), "answer_right_ending": datasets.Value("int32"), } ), homepage="https://cs.rochester.edu/nlp/rocstories/", citation=_CITATION, ) def _split_generators(self, dl_manager): path_to_manual_folder = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) train_file = os.path.join(path_to_manual_folder, f"spring2016.val.{self.config.name}.tsv.split_20_80_train.tsv") val_file = os.path.join(path_to_manual_folder, f"spring2016.val.{self.config.name}.tsv.split_20_80_eval.tsv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_file, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": val_file, }, ), ] def _generate_examples(self, filepath): """Generate Story Cloze examples.""" with open(filepath, encoding="utf-8") as tsv_file: csv_reader = csv.reader( tsv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True ) _ = next(csv_reader) for id_, row in enumerate(csv_reader): if row and len(row) == 8: yield id_, { "story_id": row[0], "input_sentence_1": row[1], "input_sentence_2": row[2], "input_sentence_3": row[3], "input_sentence_4": row[4], "sentence_quiz1": row[5], "sentence_quiz2": row[6], "answer_right_ending": int(row[7]), }