# Dronescapes dataset ![Logo](logo.png) As introduced in our ICCV 2023 workshop paper: [link](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf) # 1. Downloading the data ## Option 1. Download the pre-processed dataset from HuggingFace repository ``` git lfs install # Make sure you have git-lfs installed (https://git-lfs.com) git clone https://huggingface.co/datasets/Meehai/dronescapes ``` Note: the dataset has about 500GB, so it may take a while to clone it.
Option 2. Generating the dataset from raw videos and basic labels . Recommended if you intend on understanding how the dataset was created or add new videos or representations. ### 1.2.1 Raw videos Follow the commands in each directory under `raw_data/videos/*/commands.txt` if you want to start from the 4K videos. If you only want the 540p videos as used in the paper, they are already provided in the `raw_data/videos/*` directories. ### 1.2.2 Semantic segmentation labels (human annotated) These were human annotated and then propagated using [segprop](https://github.com/vlicaret/segprop). ```bash cd raw_data/ tar -xzvf segprop_npz_540.tar.gz ``` ### 1.2.3 Generate the rest of the representations We use the [video-representations-extractor](https://gitlab.com/meehai/video-representations-extractor) to generate the rest of the labels using pre-traing networks or algoritms. ``` VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/atanasie_DJI_0652_full/atanasie_DJI_0652_full_540p.mp4 -o raw_data/npz_540p/atanasie_DJI_0652_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/barsana_DJI_0500_0501_combined_sliced_2700_14700/barsana_DJI_0500_0501_combined_sliced_2700_14700_540p.mp4 -o raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=2 vre raw_data/videos/comana_DJI_0881_full/comana_DJI_0881_full_540p.mp4 -o raw_data/npz_540p/comana_DJI_0881_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=3 vre raw_data/videos/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110_540p.mp4 -o raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=4 vre raw_data/videos/herculane_DJI_0021_full/herculane_DJI_0021_full_540p.mp4 -o raw_data/npz_540p/herculane_DJI_0021_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=5 vre raw_data/videos/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715_540p.mp4 -o raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=6 vre raw_data/videos/norway_210821_DJI_0015_full/norway_210821_DJI_0015_full_540p.mp4 -o raw_data/npz_540p/norway_210821_DJI_0015_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre raw_data/videos/olanesti_DJI_0416_full/olanesti_DJI_0416_full_540p.mp4 -o raw_data/npz_540p/olanesti_DJI_0416_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/petrova_DJI_0525_0526_combined_sliced_2850_11850/petrova_DJI_0525_0526_combined_sliced_2850_11850_540p.mp4 -o raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/slanic_DJI_0956_0957_combined_sliced_780_9780/slanic_DJI_0956_0957_combined_sliced_780_9780_540p.mp4 -o raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite --representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb" ``` Note: `depth_sfm`, `normals_sfm` and `depth_ufo` are not available in VRE. Contact us for more info about them. ### 1.2.4 Convert Mask2Former from Mapillary classes to segprop8 classes Since we are using pre-trained Mask2Former which has either mapillary or COCO panoptic classes, we need to convert them to dronescapes-compatible (8) classes. To do this, we use the `scripts/convert_m2f_to_dronescapes.py` script: ``` python scripts/convert_m2f_to_dronescapes.py in_dir out_dir mapillary/coco [--overwrite] ``` ``` python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/atanasie_DJI_0652_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/atanasie_DJI_0652_full/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/semantic_mask2former_swin_mapillary raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/comana_DJI_0881_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/comana_DJI_0881_full/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/semantic_mask2former_swin_mapillary raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/herculane_DJI_0021_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/herculane_DJI_0021_full/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/semantic_mask2former_swin_mapillary raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/norway_210821_DJI_0015_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/norway_210821_DJI_0015_full/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/olanesti_DJI_0416_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/olanesti_DJI_0416_full/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/semantic_mask2former_swin_mapillary raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/semantic_mask2former_swin_mapillary_converted mapillary python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/semantic_mask2former_swin_mapillary raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/semantic_mask2former_swin_mapillary_converted mapillary ``` ### 1.2.5 Check counts for consistency Run: `bash scripts/count_npz.sh raw_data/npz_540p`. At this point it should return: | scene | rgb | depth_dpt | depth_sfm_manual20.. | edges_dexined | normals_sfm_manual.. | opticalflow_rife | semantic_mask2form.. | semantic_segprop8 | |:----------|------:|------------:|-----------------------:|----------------:|-----------------------:|-------------------:|-----------------------:|--------------------:| | atanasie | 9021 | 9021 | 9020 | 9021 | 9020 | 9021 | 9021 | 9001 | | barsana | 12001 | 12001 | 12001 | 12001 | 12001 | 12000 | 12001 | 1573 | | comana | 9022 | 9022 | 0 | 9022 | 0 | 9022 | 9022 | 1210 | | gradistei | 9601 | 9601 | 9600 | 9601 | 9600 | 9600 | 9601 | 1210 | | herculane | 9022 | 9022 | 9021 | 9022 | 9021 | 9022 | 9022 | 1210 | | jupiter | 11066 | 11066 | 11065 | 11066 | 11065 | 11066 | 11066 | 1452 | | norway | 2983 | 2983 | 0 | 2983 | 0 | 2983 | 2983 | 2941 | | olanesti | 9022 | 9022 | 9021 | 9022 | 9021 | 9022 | 9022 | 1210 | | petrova | 9001 | 9001 | 9001 | 9001 | 9001 | 9000 | 9001 | 1210 | | slanic | 9001 | 9001 | 9001 | 9001 | 9001 | 9000 | 9001 | 9001 | ### 1.2.6. Split intro train, validation, semisupervised and train We include 8 splits: 4 using only GT annotated semantic data and 4 using all available data (i.e. segproped between annotated data). The indexes are taken from `txt_files/*`, i.e. `txt_files/manually_adnotated_files/test_files_116.txt` refers to the fact that the (unseen at train time) test set (norway + petrova + barsana) contains 116 manually annotated semantic files. We include all representations from above, not just semantic for all possible splits. Adding new representations is as simple as running VRE on the 540p mp4 file ``` python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/train_files_11664.txt -o data/train_set --overwrite python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/val_files_605.txt -o data/validation_set --overwrite python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/semisup_files_11299.txt -o data/semisupervised_set --overwrite python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/test_files_5603.txt -o data/test_set --overwrite python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/train_files_218.txt -o data/train_set_annotated_only --overwrite python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/val_files_15.txt -o data/validation_set_annotated_only --overwrite python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/semisup_files_207.txt -o data/semisupervised_set_annotated_nly --overwrite python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/test_files_116.txt -o data/test_set_annotated_only --overwrite ``` Note: `add --copy_files` if you want to make copies instead of using symlinks. Upon calling this, you should be able to see something like this: ``` user> ls data/* data/semisupervised_set: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 data/semisupervised_set_annotated_nly: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 data/test_set: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 data/test_set_annotated_nly: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 data/train_set: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 data/train_set_annotated_only: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 data/validation_set: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 data/validation_set_annotated_only: depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8 ``` ### 1.2.7 Convert Camera Normals to World Normals This is an optional step, but for some use cases, it may be better to use world normals instead of camera normals, which are provided by default in `normals_sfm_manual202204`. To convert, we provide camera rotation matrices in `raw_data/camera_matrics.tar.gz` for all 8 scenes that also have SfM. In order to convert, use this function (for each npz file): ``` def convert_camera_to_world(normals: np.ndarray, rotation_matrix: np.ndarray) -> np.ndarray: normals = (normals.copy() - 0.5) * 2 # [-1:1] -> [0:1] camera_normals = camera_normals @ np.linalg.inv(rotation_matrix) camera_normals = (camera_normals / 2) + 0.5 # [0:1] => [-1:1] return np.clip(camera_normals, 0.0, 1.0) ```
## 2. Using the data As per the split from the paper: ![Split](split.png) The data is in `data/*` (see the `ls` call above, it should match even if you download from huggingface). ## 2.1 Using the provided viewer The simplest way to explore the data is to use the [provided notebook](scripts/dronescapes_viewer.ipynb). Upon running it, you should get a collage with all the default tasks, like this: ![Collage](collage.png) For a CLI-only method, you can use the provided reader as well: ``` python scripts/dronescapes_viewer.py data/test_set_annotated_only/ # or any of the 8 directories in data/ ```
Expected output ``` [MultiTaskDataset] - Path: '/export/home/proiecte/aux/mihai_cristian.pirvu/datasets/dronescapes/data/test_set_annotated_only' - Tasks (11): [DepthRepresentation(depth_dpt), DepthRepresentation(depth_sfm_manual202204), DepthRepresentation(depth_ufo), ColorRepresentation(edges_dexined), EdgesRepresentation(edges_gb), NpzRepresentation(normals_sfm_manual202204), OpticalFlowRepresentation(opticalflow_rife), ColorRepresentation(rgb), SemanticRepresentation(semantic_mask2former_swin_mapillary_converted), SemanticRepresentation(semantic_segprop8), ColorRepresentation(softseg_gb)] - Length: 116 - Handle missing data mode: 'fill_none' == Shapes == {'depth_dpt': torch.Size([540, 960]), 'depth_sfm_manual202204': torch.Size([540, 960]), 'depth_ufo': torch.Size([540, 960, 1]), 'edges_dexined': torch.Size([540, 960]), 'edges_gb': torch.Size([540, 960, 1]), 'normals_sfm_manual202204': torch.Size([540, 960, 3]), 'opticalflow_rife': torch.Size([540, 960, 2]), 'rgb': torch.Size([540, 960, 3]), 'semantic_mask2former_swin_mapillary_converted': torch.Size([540, 960, 8]), 'semantic_segprop8': torch.Size([540, 960, 8]), 'softseg_gb': torch.Size([540, 960, 3])} == Random loaded item == {'depth_dpt': tensor[540, 960] n=518400 (2.0Mb) x∈[0.043, 1.000] μ=0.341 σ=0.418, 'depth_sfm_manual202204': None, 'depth_ufo': tensor[540, 960, 1] n=518400 (2.0Mb) x∈[0.115, 0.588] μ=0.297 σ=0.138, 'edges_dexined': tensor[540, 960] n=518400 (2.0Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001, 'edges_gb': tensor[540, 960, 1] n=518400 (2.0Mb) x∈[0., 1.000] μ=0.063 σ=0.100, 'normals_sfm_manual202204': None, 'opticalflow_rife': tensor[540, 960, 2] n=1036800 (4.0Mb) x∈[-0.004, 0.005] μ=0.000 σ=0.000, 'rgb': tensor[540, 960, 3] n=1555200 (5.9Mb) x∈[0., 1.000] μ=0.392 σ=0.238, 'semantic_mask2former_swin_mapillary_converted': tensor[540, 960, 8] n=4147200 (16Mb) x∈[0., 1.000] μ=0.125 σ=0.331, 'semantic_segprop8': tensor[540, 960, 8] n=4147200 (16Mb) x∈[0., 1.000] μ=0.125 σ=0.331, 'softseg_gb': tensor[540, 960, 3] n=1555200 (5.9Mb) x∈[0., 0.004] μ=0.002 σ=0.001} == Random loaded batch == {'depth_dpt': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.043, 1.000] μ=0.340 σ=0.417, 'depth_sfm_manual202204': tensor[5, 540, 960] n=2592000 (9.9Mb) NaN!, 'depth_ufo': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0.115, 0.588] μ=0.296 σ=0.137, 'edges_dexined': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001, 'edges_gb': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.063 σ=0.102, 'normals_sfm_manual202204': tensor[5, 540, 960, 3] n=7776000 (30Mb) NaN!, 'opticalflow_rife': tensor[5, 540, 960, 2] n=5184000 (20Mb) x∈[-0.004, 0.006] μ=0.000 σ=0.000, 'rgb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 1.000] μ=0.393 σ=0.238, 'semantic_mask2former_swin_mapillary_converted': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331, 'semantic_segprop8': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331, 'softseg_gb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 0.004] μ=0.002 σ=0.001} == Random loaded batch using torch DataLoader == {'depth_dpt': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.025, 1.000] μ=0.216 σ=0.343, 'depth_sfm_manual202204': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.562 σ=0.335 NaN!, 'depth_ufo': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0.100, 0.580] μ=0.290 σ=0.128, 'edges_dexined': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001, 'edges_gb': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.079 σ=0.116, 'normals_sfm_manual202204': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0.000, 1.000] μ=0.552 σ=0.253 NaN!, 'opticalflow_rife': tensor[5, 540, 960, 2] n=5184000 (20Mb) x∈[-0.013, 0.016] μ=0.000 σ=0.004, 'rgb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 1.000] μ=0.338 σ=0.237, 'semantic_mask2former_swin_mapillary_converted': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331, 'semantic_segprop8': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331, 'softseg_gb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 0.004] μ=0.002 σ=0.001} ```
## 3. Evaluation for semantic segmentation We evaluate in the paper on the 3 test scenes (unsees at train) as well as the semi-supervised scenes (seen, but different split) against the human annotated frames. The general evaluation script is in `scripts/evaluate_semantic_segmentation.py`. General usage is: ``` python scripts/evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv --classes C1 C2 .. Cn [--class_weights W1 W2 ... Wn] [--scenes s1 s2 ... sm] ```
Script explanation The script is a bit convoluted, so let's break it into parts: - `y_dir` and `gt_dir` Two directories of .npz files in the same format as the dataset (y_dir/1.npz, gt_dir/55.npz etc.) - `classes` A list of classes in the order that they appear in the predictions and gt files - `class_weights` (optional, but used in paper) How much to weigh each class. In the paper we compute these weights as the number of pixels in all the dataset (train/val/semisup/test) for each of the 8 classes resulting in the numbers below. - `scenes` if the `y_dir` and `gt_dir` contains multiple scenes that you want to evaluate separately, the script allows you to pass the prefix of all the scenes. For example, in `data/test_set_annotated_only/semantic_segprop8/` there are actually 3 scenes in the npz files and in the paper, we evaluate each scene independently. Even though the script outputs one csv file with predictions for each npz file, the scenes are used for proper aggregation at scene level.
Reproducing paper results for Mask2Former ``` python scripts/evaluate_semantic_segmentation.py \ data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \ # change this with your predictions dir data/test_set_annotated_only/semantic_segprop8/ \ -o results.csv \ --classes land forest residential road little-objects water sky hill \ --class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 \ --scenes barsana_DJI_0500_0501_combined_sliced_2700_14700 comana_DJI_0881_full norway_210821_DJI_0015_full ``` Should output: ``` scene iou f1 barsana_DJI_0500_0501_combined_sliced_2700_14700 63.371 75.338 comana_DJI_0881_full 60.559 73.779 norway_210821_DJI_0015_full 37.986 45.939 mean 53.972 65.019 ``` Not providing `--scenes` will make an average across all 3 scenes (not average after each metric individually): ``` iou f1 scene all 60.456 73.261 ```
### 3.1 Official benchmark #### IoU | method | #paramters | average | barsana_DJI_0500_0501_combined_sliced_2700_14700 | comana_DJI_0881_full | norway_210821_DJI_0015_full | |:-|:-|:-|:-|:-|:-| | [Mask2Former](https://openaccess.thecvf.com/content/CVPR2022/papers/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.pdf) | 216M | 53.97 | 63.37 | 60.55 | 37.98 | | [NGC(LR)](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf) | 32M | 40.75 | 46.51 | 45.59 | 30.17 | | [CShift](https://www.bmvc2021-virtualconference.com/assets/papers/0455.pdf)[^1] | n/a | 39.67 | 46.27 | 43.67 | 29.09 | | [NGC](https://cdn.aaai.org/ojs/16283/16283-13-19777-1-2-20210518.pdf)[^1] | 32M | 35.32 | 44.34 | 38.99 | 22.63 | | [SafeUAV](https://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Marcu_SafeUAV_Learning_to_estimate_depth_and_safe_landing_areas_for_ECCVW_2018_paper.pdf)[^1] | 1.1M | 32.79 | n/a | n/a | n/a | [^1]: reported in the [Dronescapes paper](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf). #### F1 Score | method | #paramters | average | barsana_DJI_0500_0501_combined_sliced_2700_14700 | comana_DJI_0881_full | norway_210821_DJI_0015_full | |:-|:-|:-|:-|:-|:-| | [Mask2Former](https://openaccess.thecvf.com/content/CVPR2022/papers/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.pdf) | 216M | 65.01 | 75.33 | 73.77 | 45.93 |