--- language: - en size_categories: - 10K

WebLINX: Real-World Website Navigation with Multi-Turn Dialogue

Xing Han Lù*, Zdeněk Kasner*, Siva Reddy
| [**💾Code**](https://github.com/McGill-NLP/WebLINX) | [**📄Paper**](https://arxiv.org/abs/2402.05930) | [**🌐Website**](https://mcgill-nlp.github.io/weblinx) | [**📓Colab**](https://colab.research.google.com/github/McGill-NLP/weblinx/blob/main/examples/WebLINX_Colab_Notebook.ipynb) | | :--: | :--: | :--: | :--: | | [**🤖Models**](https://huggingface.co/collections/McGill-NLP/weblinx-models-65c57d4afeeb282d1dcf8434) | [**💻Explorer**](https://huggingface.co/spaces/McGill-NLP/weblinx-explorer) | [**🐦Tweets**](https://twitter.com/sivareddyg/status/1755799365031965140) | [**🏆Leaderboard**](https://paperswithcode.com/sota/conversational-web-navigation-on-weblinx) | ## Quickstart To get started, simply install `datasets` with `pip install datasets` and load the chat data splits: ```python from datasets import load_dataset from huggingface_hub import snapshot_download # Load the validation split valid = load_dataset("McGill-NLP/weblinx", split="validation") # Download the input templates and use the LLaMA one snapshot_download( "McGill-NLP/WebLINX", repo_type="dataset", allow_patterns="templates/*", local_dir="." ) with open('templates/llama.txt') as f: template = f.read() # To get the input text, simply pass a turn from the valid split to the template turn = valid[0] turn_text = template.format(**turn) ``` You can now use `turn_text` as an input to LLaMA-style models. For example, you can use Sheared-LLaMA: ```python from transformers import pipeline action_model = pipeline( model="McGill-NLP/Sheared-LLaMA-2.7B-weblinx", device=0, torch_dtype='auto' ) out = action_model(turn_text, return_full_text=False, max_new_tokens=64, truncation=True) pred = out[0]['generated_text'] print("Ref:", turn["action"]) print("Pred:", pred) ``` ## Raw Data To use the raw data, you will need to use the `huggingface_hub`: ```python from huggingface_hub import snapshot_download # If you want to download the complete dataset (may take a while!) snapshot_download(repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data") # You can download specific demos, for example demo_names = ['saabwsg', 'ygprzve', 'iqaazif'] # 3 random demo from valid patterns = [f"demonstrations/{name}/*" for name in demo_names] snapshot_download( repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data", allow_patterns=patterns ) ``` For more information on how to use this data using our [official library](https://github.com/McGill-NLP/WebLINX), please refer to the [WebLINX documentation](https://mcgill-nlp.github.io/weblinx/docs). ## Reranking Data You can also access the data processed for reranking tasks. To do that: ```python from datasets import load_dataset name = 'xhluca/WebLINX-testing' # validation split: valid = load_dataset(name, 'reranking', split='validation') # test-iid split test_iid = load_dataset(name, 'reranking', split='test_iid') # other options: test_cat, test_geo, test_vis, test_web print("Query:") print(valid[0]['query']) print("\nPositive:") print(valid[0]['positives'][0]) print("\nNegative #1:") print(valid[0]['negatives'][0]) print("\nNegative #2:") print(valid[0]['negatives'][1]) ``` ## License and Terms of Use License: The Dataset is made available under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). By downloading this Dataset, you agree to comply with the following terms of use: - Restrictions: You agree not to use the Dataset in any way that is unlawful or would infringe upon the rights of others. - Acknowledgment: By using the Dataset, you acknowledge that the Dataset may contain data derived from third-party sources, and you agree to abide by any additional terms and conditions that may apply to such third-party data. - Fair Use Declaration: The Dataset may be used for research if it constitutes "fair use" under copyright laws within your jurisdiction. You are responsible for ensuring your use complies with applicable laws. Derivatives must also include the terms of use above. ## Citation If you use our dataset, please cite our work as follows: ```bibtex @misc{lu-2024-weblinx, title={WebLINX: Real-World Website Navigation with Multi-Turn Dialogue}, author={Xing Han Lù and Zdeněk Kasner and Siva Reddy}, year={2024}, eprint={2402.05930}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```