# bash /home/butt/run_docker_cpu.sh python splitting_rup_data.py import pandas as pd import numpy as np # File path to the input CSV file input_file_path = '../original_data/data.csv' # Output file paths for training, test, and validation sets base_path = "." train_output_path = base_path + 'train_set.csv' test_output_path = base_path + 'test_set.csv' validation_output_path = base_path + 'validation_set.csv' small_test_output_path = base_path + 'small_test_set.csv' small_validation_output_path = base_path + 'small_validation_set.csv' NUMBER_OF_UNIQUE_SENTENCES = 1500 NUMBER_OF_REPLICATED_SENTENCES = 3000 REPLICATION_RATE = 10 # Load the CSV file into a Pandas DataFrame df = pd.read_csv(input_file_path, encoding='utf-8') # Drop rows where 'Urdu text' is NaN df = df.dropna(subset=['Urdu text']) # Group by 'Urdu text' and aggregate the corresponding 'Roman-Urdu text' grouped = df.groupby('Urdu text')['Roman-Urdu text'].apply(list).reset_index() # Add a 'count' column to store the number of occurrences grouped['count'] = grouped['Roman-Urdu text'].apply(len) # Select NUMBER_OF_UNIQUE_SENTENCES least occurring groupbys (unique sentences without replication in the dataset) for validation unique_sentences_val = grouped[grouped['count'] == 1].sample(n=NUMBER_OF_UNIQUE_SENTENCES, random_state=42) unique_sentences_val = unique_sentences_val.explode('Roman-Urdu text') # Convert list to individual rows # select NUMBER_OF_UNIQUE_SENTENCES least occuring groupbys for test but they should not be in validation set (unique_sentences_val) unique_sentences_test = grouped[grouped['count'] == 1] unique_sentences_test = unique_sentences_test[~unique_sentences_test['Urdu text'].isin(unique_sentences_val['Urdu text'])] unique_sentences_test = unique_sentences_test.sample(n=NUMBER_OF_UNIQUE_SENTENCES, random_state=42) unique_sentences_test = unique_sentences_test.explode('Roman-Urdu text') # Convert list to individual rows # variables replicated are for whole test/val sets and one_replicated are for small test/val sets # Select NUMBER_OF_REPLICATED_SENTENCES groupbys from sentences that appear less than or equal to REPLICATION_RATE times replicated_sentences_val = grouped[(grouped['count'] <= REPLICATION_RATE) & (grouped['count'] > 1)].sample(n=NUMBER_OF_REPLICATED_SENTENCES, random_state=42) # do the same but for test set and they should not be in validation set replicated_sentences_test = grouped[(grouped['count'] <= REPLICATION_RATE) & (grouped['count'] > 1)] replicated_sentences_test = replicated_sentences_test[~replicated_sentences_test['Urdu text'].isin(replicated_sentences_val['Urdu text'])] replicated_sentences_test = replicated_sentences_test.sample(n=NUMBER_OF_REPLICATED_SENTENCES, random_state=42) # select any 1 sentence from each group of the replicated sentences one_replicated_sentences_val = replicated_sentences_val.groupby('Urdu text').apply(lambda x: x.sample(1, random_state=42)).reset_index(drop=True) # do the same but for test set one_replicated_sentences_test = replicated_sentences_test.groupby('Urdu text').apply(lambda x: x.sample(1, random_state=42)).reset_index(drop=True) # explode both the replicated and one_replicated replicated_sentences_val = replicated_sentences_val.explode('Roman-Urdu text') one_replicated_sentences_val = one_replicated_sentences_val.explode('Roman-Urdu text') replicated_sentences_test = replicated_sentences_test.explode('Roman-Urdu text') one_replicated_sentences_test = one_replicated_sentences_test.explode('Roman-Urdu text') # Prepare the test and validation sets test_set = pd.concat([unique_sentences_test, replicated_sentences_test]).reset_index(drop=True) validation_set = pd.concat([unique_sentences_val, replicated_sentences_val]).reset_index(drop=True) # create smaller test and validation sets # subset NUMBER_OF_UNIQUE_SENTENCES from unique test small_unique_sentences_test = unique_sentences_test.sample(n=NUMBER_OF_UNIQUE_SENTENCES, random_state=42) # subset NUMBER_OF_UNIQUE_SENTENCES from unique validation small_unique_sentences_val = unique_sentences_val.sample(n=NUMBER_OF_UNIQUE_SENTENCES, random_state=42) # subset NUMBER_OF_REPLICATED_SENTENCES from replicated test small_replicated_sentences_test = replicated_sentences_test.sample(n=NUMBER_OF_REPLICATED_SENTENCES, random_state=42) # subset NUMBER_OF_REPLICATED_SENTENCES from replicated validation small_replicated_sentences_val = replicated_sentences_val.sample(n=NUMBER_OF_REPLICATED_SENTENCES, random_state=42) # explode all the small sets small_unique_sentences_test = small_unique_sentences_test.explode('Roman-Urdu text') small_unique_sentences_val = small_unique_sentences_val.explode('Roman-Urdu text') small_replicated_sentences_test = small_replicated_sentences_test.explode('Roman-Urdu text') small_replicated_sentences_val = small_replicated_sentences_val.explode('Roman-Urdu text') # combine the small sets small_test_set = pd.concat([small_unique_sentences_test, small_replicated_sentences_test]).reset_index(drop=True) small_validation_set = pd.concat([small_unique_sentences_val, small_replicated_sentences_val]).reset_index(drop=True) # Prepare the training set by excluding the test and validation sets from the original DataFrame # training set should be the whole data except fpr test_set and validation_set training_set = df[~df['Urdu text'].isin(test_set['Urdu text']) & ~df['Urdu text'].isin(validation_set['Urdu text'])] # Save only 'Urdu text' and 'Roman-Urdu text' columns to CSV files training_set[['Urdu text', 'Roman-Urdu text']].to_csv(train_output_path, index=False, encoding='utf-8') test_set[['Urdu text', 'Roman-Urdu text']].to_csv(test_output_path, index=False, encoding='utf-8') validation_set[['Urdu text', 'Roman-Urdu text']].to_csv(validation_output_path, index=False, encoding='utf-8') small_test_set[['Urdu text', 'Roman-Urdu text']].to_csv(small_test_output_path, index=False, encoding='utf-8') small_validation_set[['Urdu text', 'Roman-Urdu text']].to_csv(small_validation_output_path, index=False, encoding='utf-8') print(f"Training, test, validation, and smaller subsets have been saved to respective CSV files.") # Print the number of rows in each file print(f"Number of rows in training set: {len(training_set)}") print(f"Number of rows in test set: {len(test_set)}") print(f"Number of rows in validation set: {len(validation_set)}") print(f"Number of rows in small test set: {len(small_test_set)}") print(f"Number of rows in small validation set: {len(small_validation_set)}")