import numpy as np import torch as t import torch.nn as nn import jukebox.utils.dist_adapter as dist from jukebox.transformer.ops import LayerNorm from jukebox.prior.autoregressive import ConditionalAutoregressive2D from jukebox.prior.conditioners import Conditioner, LabelConditioner from jukebox.data.labels import EmptyLabeller, Labeller from jukebox.utils.torch_utils import assert_shape from jukebox.utils.dist_utils import print_once from jukebox.vqvae.vqvae import calculate_strides """ Model the prior on vq codes conditioned on timing, artist, genre, lyrics and codes from levels above. To condition on the timing, genre and artist, we use the LabelConditioner class To condition on the codes from the level above, we use the Conditioner class To condition on lyrics, we allow two types of priors: - Separate Encoder Decoder: This is the usual encoder-decoder style transformer. The encoder transformer autoregressively models the lyrics, and we use its last layer to produce keys/values that are attened to by the decoder transformer - Single Encoder Decoder: This is a simplification where we combine them into a single model. We merge the text vocab and VQ vocab into a single large vocab, and the lyric tokens and VQ tokens into a single longer sequence of tokens which we autoregressively model together. """ class SimplePrior(nn.Module): def __init__(self, z_shapes, l_bins, encoder, decoder, level, downs_t, strides_t, labels, prior_kwargs, x_cond_kwargs, y_cond_kwargs, prime_kwargs, copy_input, labels_v3=False, merged_decoder=False, single_enc_dec=False): super().__init__() self.use_tokens = prime_kwargs.pop('use_tokens') self.n_tokens = prime_kwargs.pop('n_tokens') self.prime_loss_fraction = prime_kwargs.pop('prime_loss_fraction') self.copy_input = copy_input if self.copy_input: prime_kwargs['bins'] = l_bins self.z_shapes = z_shapes self.levels = len(self.z_shapes) self.z_shape = self.z_shapes[level] self.level = level assert level < self.levels, f"Total levels {self.levels}, got level {level}" self.l_bins = l_bins # Passing functions instead of the vqvae module to avoid getting params self.encoder = encoder self.decoder = decoder # X conditioning self.x_cond = (level != (self.levels - 1)) self.cond_level = level + 1 # Y conditioning self.y_cond = labels self.single_enc_dec = single_enc_dec # X conditioning if self.x_cond: self.conditioner_blocks = nn.ModuleList() conditioner_block = lambda _level: Conditioner(input_shape=z_shapes[_level], bins=l_bins, down_t=downs_t[_level], stride_t=strides_t[_level], **x_cond_kwargs) if dist.get_rank() == 0: print(f"Conditioning on 1 above level(s)") self.conditioner_blocks.append(conditioner_block(self.cond_level)) # Y conditioning if self.y_cond: self.n_time = self.z_shape[0] # Assuming STFT=TF order and raw=T1 order, so T is first dim self.y_emb = LabelConditioner(n_time=self.n_time,include_time_signal=not self.x_cond,**y_cond_kwargs) # Lyric conditioning if single_enc_dec: # Single encoder-decoder transformer self.prior_shapes = [(self.n_tokens,), prior_kwargs.pop('input_shape')] self.prior_bins = [prime_kwargs['bins'], prior_kwargs.pop('bins')] self.prior_dims = [np.prod(shape) for shape in self.prior_shapes] self.prior_bins_shift = np.cumsum([0, *self.prior_bins])[:-1] self.prior_width = prior_kwargs['width'] print_once(f'Creating cond. autoregress with prior bins {self.prior_bins}, ') print_once(f'dims {self.prior_dims}, ') print_once(f'shift {self.prior_bins_shift}') print_once(f'input shape {sum(self.prior_dims)}') print_once(f'input bins {sum(self.prior_bins)}') print_once(f'Self copy is {self.copy_input}') self.prime_loss_dims, self.gen_loss_dims = self.prior_dims[0], self.prior_dims[1] self.total_loss_dims = self.prime_loss_dims + self.gen_loss_dims self.prior = ConditionalAutoregressive2D(input_shape=(sum(self.prior_dims),), bins=sum(self.prior_bins), x_cond=(self.x_cond or self.y_cond), y_cond=True, prime_len=self.prime_loss_dims, **prior_kwargs) else: # Separate encoder-decoder transformer if self.n_tokens != 0 and self.use_tokens: from jukebox.transformer.ops import Conv1D prime_input_shape = (self.n_tokens,) self.prime_loss_dims = np.prod(prime_input_shape) self.prime_acts_width, self.prime_state_width = prime_kwargs['width'], prior_kwargs['width'] self.prime_prior = ConditionalAutoregressive2D(input_shape=prime_input_shape, x_cond=False, y_cond=False, only_encode=True, **prime_kwargs) self.prime_state_proj = Conv1D(self.prime_acts_width, self.prime_state_width, init_scale=prime_kwargs['init_scale']) self.prime_state_ln = LayerNorm(self.prime_state_width) self.prime_bins = prime_kwargs['bins'] self.prime_x_out = nn.Linear(self.prime_state_width, self.prime_bins, bias=False) nn.init.normal_(self.prime_x_out.weight, std=0.02 * prior_kwargs['init_scale']) else: self.prime_loss_dims = 0 self.gen_loss_dims = np.prod(self.z_shape) self.total_loss_dims = self.prime_loss_dims + self.gen_loss_dims self.prior = ConditionalAutoregressive2D(x_cond=(self.x_cond or self.y_cond), y_cond=self.y_cond, encoder_dims = self.prime_loss_dims, merged_decoder=merged_decoder, **prior_kwargs) self.n_ctx = self.gen_loss_dims self.downsamples = calculate_strides(strides_t, downs_t) self.cond_downsample = self.downsamples[level+1] if level != self.levels - 1 else None self.raw_to_tokens = np.prod(self.downsamples[:level+1]) self.sample_length = self.n_ctx*self.raw_to_tokens if labels: self.labels_v3 = labels_v3 self.labeller = Labeller(self.y_emb.max_bow_genre_size, self.n_tokens, self.sample_length, v3=self.labels_v3) else: self.labeller = EmptyLabeller() print(f"Level:{level}, Cond downsample:{self.cond_downsample}, Raw to tokens:{self.raw_to_tokens}, Sample length:{self.sample_length}") def get_y(self, labels, start, get_indices=False): if isinstance(self.labeller, EmptyLabeller): return None y = labels['y'].clone() # Set sample_length to match this level y[:, 2] = int(self.sample_length) # Set offset y[:, 1:2] = y[:, 1:2] + int(start * self.raw_to_tokens) # Set lyric tokens indices = self.labeller.set_y_lyric_tokens(y, labels) if get_indices: return y, indices else: return y def get_z_conds(self, zs, start, end): if self.level != self.levels - 1: assert start % self.cond_downsample == end % self.cond_downsample == 0 z_cond = zs[self.level + 1][:,start//self.cond_downsample:end//self.cond_downsample] assert z_cond.shape[1] == self.n_ctx//self.cond_downsample z_conds = [z_cond] else: z_conds = None return z_conds def prior_preprocess(self, xs, conds): N = xs[0].shape[0] for i in range(len(xs)): x, shape, dims = xs[i], self.prior_shapes[i], self.prior_dims[i] bins, bins_shift = int(self.prior_bins[i]), int(self.prior_bins_shift[i]) assert isinstance(x, t.cuda.LongTensor), x assert (0 <= x).all() and (x < bins).all() #assert_shape(x, (N, *shape)) xs[i] = (xs[i] + bins_shift).view(N, -1) for i in range(len(conds)): cond, shape, dims = conds[i], self.prior_shapes[i], self.prior_dims[i] if cond is not None: assert_shape(cond, (N, dims, self.prior_width)) else: conds[i] = t.zeros((N, dims, self.prior_width), dtype=t.float, device='cuda') return t.cat(xs, dim=1), t.cat(conds, dim=1) def prior_postprocess(self, z): N = z.shape[0] dims = (self.prior_dims[0], z.shape[1] - self.prior_dims[0]) # xs = list(t.split(z, self.prior_dims, dim=1)) xs = list(t.split(z, dims, dim=1)) for i in range(len(xs)): # x, shape, dims, bins, bins_shift = xs[i], self.prior_shapes[i], self.prior_dims[i], self.prior_bins[i], self.prior_bins_shift[i] # assert_shape(x, (N, dims)) shape = self.prior_shapes[i] bins, bins_shift = int(self.prior_bins[i]), int(self.prior_bins_shift[i]) # xs[i] = (xs[i] - bins_shift).view(N, *shape) #view(N, -1, *shape[1:]) xs[i] = (xs[i] - bins_shift).view(N, -1, *shape[1:]) xs[i] = t.clamp(xs[i], min=0) # If not masking loss, model may have generated lyric/midi tokens which are now shifted <0 by bin_shift assert (xs[i] < bins).all(), f'rank: {dist.get_rank()}, bins: {bins}, dims {dims}, shape {shape}, prior_shape {self.prior_shapes}, bins_shift {bins_shift}, xs[i]: {xs[i]}' return xs[-1] def x_emb(self, z_conds): z_conds = z_conds[:self.cond_level - self.level] assert len(z_conds) == len(self.conditioner_blocks) == self.cond_level - self.level, f"Expected {len(z_conds)} == {len(self.conditioner_blocks)} == {self.cond_level} - {self.level}" x_cond = None for z_cond, conditioner_block in reversed(list(zip(z_conds, self.conditioner_blocks))): x_cond = conditioner_block(z_cond, x_cond) return x_cond def encode(self, x, start_level=None, end_level=None, bs_chunks=1): if start_level == None: start_level = self.level if end_level == None: end_level = self.levels # Get latents with t.no_grad(): zs = self.encoder(x, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks) return zs def decode(self, zs, start_level=None, end_level=None, bs_chunks=1): if start_level == None: start_level = self.level if end_level == None: end_level = self.levels assert len(zs) == end_level - start_level with t.no_grad(): x_out = self.decoder(zs, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks) return x_out def get_cond(self, z_conds, y): if y is not None: assert y.shape[1] == 4 + self.y_emb.max_bow_genre_size + self.n_tokens, f"Expected {4} + {self.y_emb.max_bow_genre_size} + {self.n_tokens}, got {y.shape[1]}" n_labels = y.shape[1] - self.n_tokens y, prime = y[:,:n_labels], y[:,n_labels:] else: y, prime = None, None y_cond, y_pos = self.y_emb(y) if self.y_cond else (None, None) x_cond = self.x_emb(z_conds) if self.x_cond else y_pos return x_cond, y_cond, prime def sample(self, n_samples, z=None, z_conds=None, y=None, fp16=False, temp=1.0, top_k=0, top_p=0.0, chunk_size=None, sample_tokens=None): N = n_samples if z is not None: assert z.shape[0] == N, f"Expected shape ({N},**), got shape {z.shape}" if y is not None: assert y.shape[0] == N, f"Expected shape ({N},**), got shape {y.shape}" if z_conds is not None: for z_cond in z_conds: assert z_cond.shape[0] == N, f"Expected shape ({N},**), got shape {z_cond.shape}" no_past_context = (z is None or z.shape[1] == 0) if dist.get_rank() == 0: name = {True: 'Ancestral', False: 'Primed'}[no_past_context] print(f"{name} sampling {n_samples} samples with temp={temp}, top_k={top_k}, top_p={top_p}") with t.no_grad(): # Currently x_cond only uses immediately above layer x_cond, y_cond, prime = self.get_cond(z_conds, y) if self.single_enc_dec: # assert chunk_size % self.prime_loss_dims == 0. TODO: Check if needed if no_past_context: z, x_cond = self.prior_preprocess([prime], [None, x_cond]) else: z, x_cond = self.prior_preprocess([prime, z], [None, x_cond]) if sample_tokens is not None: sample_tokens += self.n_tokens z = self.prior.primed_sample(n_samples, z, x_cond, y_cond, fp16=fp16, temp=temp, top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens) z = self.prior_postprocess(z) else: encoder_kv = self.get_encoder_kv(prime, fp16=fp16, sample=True) if no_past_context: z = self.prior.sample(n_samples, x_cond, y_cond, encoder_kv, fp16=fp16, temp=temp, top_k=top_k, top_p=top_p, sample_tokens=sample_tokens) else: z = self.prior.primed_sample(n_samples, z, x_cond, y_cond, encoder_kv, fp16=fp16, temp=temp, top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens) if sample_tokens is None: assert_shape(z, (N, *self.z_shape)) return z def get_encoder_kv(self, prime, fp16=False, sample=False): if self.n_tokens != 0 and self.use_tokens: if sample: self.prime_prior.cuda() N = prime.shape[0] prime_acts = self.prime_prior(prime, None, None, None, fp16=fp16) assert_shape(prime_acts, (N, self.prime_loss_dims, self.prime_acts_width)) assert prime_acts.dtype == t.float, f'Expected t.float, got {prime_acts.dtype}' encoder_kv = self.prime_state_ln(self.prime_state_proj(prime_acts)) assert encoder_kv.dtype == t.float, f'Expected t.float, got {encoder_kv.dtype}' if sample: self.prime_prior.cpu() if fp16: encoder_kv = encoder_kv.half() else: encoder_kv = None return encoder_kv def get_prime_loss(self, encoder_kv, prime_t): if self.use_tokens: encoder_kv = encoder_kv.float() encoder_kv = self.prime_x_out(encoder_kv) prime_loss = nn.functional.cross_entropy(encoder_kv.view(-1, self.prime_bins), prime_t.view(-1)) / np.log(2.) else: prime_loss = t.tensor(0.0, device='cuda') return prime_loss def z_forward(self, z, z_conds=[], y=None, fp16=False, get_preds=False, get_attn_weights=False): """ Arguments: get_attn_weights (bool or set): Makes forward prop dump self-attention softmaxes to self.prior.transformer.ws. Either a set of layer indices indicating which layers to store, or a boolean value indicating whether to dump all. """ assert isinstance(get_attn_weights, (bool, set)) if get_attn_weights: self.prior.transformer.set_record_attn(get_attn_weights) x_cond, y_cond, prime = self.get_cond(z_conds, y) if self.copy_input: prime = z[:,:self.n_tokens] if self.single_enc_dec: z, x_cond = self.prior_preprocess([prime, z], [None, x_cond]) (prime_loss, gen_loss), preds = self.prior(z, x_cond, y_cond, fp16=fp16, get_sep_loss=True, get_preds=get_preds) else: encoder_kv = self.get_encoder_kv(prime, fp16=fp16) prime_loss = self.get_prime_loss(encoder_kv, prime) gen_loss, preds = self.prior(z, x_cond, y_cond, encoder_kv, fp16=fp16, get_preds=get_preds) loss = (self.prime_loss_fraction*prime_loss*self.prime_loss_dims/self.total_loss_dims) + \ (gen_loss*self.gen_loss_dims/self.total_loss_dims) metrics=dict(bpd=gen_loss.clone().detach(), prime_loss=prime_loss.clone().detach(), gen_loss=gen_loss.clone().detach()) if get_preds: metrics["preds"] = preds.clone().detach() if get_attn_weights: ws = self.prior.transformer.ws self.prior.transformer.set_record_attn(False) return ws else: return loss, metrics def forward(self, x, y=None, fp16=False, decode=False, get_preds=False): bs = x.shape[0] z, *z_conds = self.encode(x, bs_chunks=bs) loss, metrics = self.z_forward(z=z, z_conds=z_conds, y=y, fp16=fp16, get_preds=get_preds) if decode: x_out = self.decode([z, *z_conds]) else: x_out = None return x_out, loss, metrics