import torch as t def split_batch(obj, n_samples, split_size): n_passes = (n_samples + split_size - 1) // split_size if isinstance(obj, t.Tensor): return t.split(obj, split_size, dim=0) elif isinstance(obj, list): return list(zip(*[t.split(item, split_size, dim=0) for item in obj])) elif obj is None: return [None] * n_passes else: raise TypeError('Unknown input type') # Break total_length into hops/windows of size n_ctx separated by hop_length def get_starts(total_length, n_ctx, hop_length): starts = [] for start in range(0, total_length - n_ctx + hop_length, hop_length): if start + n_ctx >= total_length: # Last hop could be smaller, we make it n_ctx to maximise context start = total_length - n_ctx starts.append(start) return starts