""" NOTE: Major TOM standard does not require any specific type of thumbnail to be computed. Instead these are shared as optional help since this is how the Core dataset thumbnails have been computed. """ from rasterio.io import MemoryFile from PIL import Image import numpy as np def s1rtc_thumbnail(vv, vh, vv_NODATA = -32768.0, vh_NODATA = -32768.0): """ Takes vv and vh numpy arrays along with the corresponding NODATA values (default is -32768.0) Returns a numpy array with the thumbnail """ # valid data masks vv_mask = vv != vv_NODATA vh_mask = vh != vh_NODATA # remove invalid values before log op vv[vv<0] = vv[vv>=0].min() vh[vh<0] = vh[vh>=0].min() # apply log op vv_dB = 10*np.log10(vv) vh_dB = 10*np.log10(vh) # scale to 0-255 vv_dB = (vv_dB - vv_dB[vv_mask].min()) / (vv_dB[vv_mask].max() - vv_dB[vv_mask].min()) * 255 vh_dB = (vh_dB - vh_dB[vh_mask].min()) / (vh_dB[vh_mask].max() - vh_dB[vh_mask].min()) * 255 # represent nodata as 0 vv_dB[vv_mask==0] = 0 vh_dB[vh_mask==0] = 0 # false colour composite return np.stack([vv_dB, 255*(vv_dB+vh_dB)/np.max(vv_dB+vh_dB), vh_dB ],-1).astype(np.uint8) def s1rtc_thumbnail_from_datarow(datarow): """ Takes a datarow directly from one of the data parquet files Returns a PIL Image """ with MemoryFile(datarow['vv'][0].as_py()) as mem_f: with mem_f.open(driver='GTiff') as f: vv=f.read().squeeze() vv_NODATA = f.nodata with MemoryFile(datarow['vh'][0].as_py()) as mem_f: with mem_f.open(driver='GTiff') as f: vh=f.read().squeeze() vh_NODATA = f.nodata img = s1rtc_thumbnail(vv, vh, vv_NODATA=vv_NODATA, vh_NODATA=vh_NODATA) return Image.fromarray(img) if __name__ == '__main__': from fsspec.parquet import open_parquet_file import pyarrow.parquet as pq print('[example run] reading file from HuggingFace...') url = "https://huggingface.co/datasets/Major-TOM/Core-S1RTC/resolve/main/images/part_00001.parquet" with open_parquet_file(url) as f: with pq.ParquetFile(f) as pf: first_row_group = pf.read_row_group(1) print('[example run] computing the thumbnail...') thumbnail = s1rtc_thumbnail_from_datarow(first_row_group) thumbnail_fname = 'example_thumbnail.png' thumbnail.save(thumbnail_fname, format = 'PNG') print('[example run] saved as "{}"'.format(thumbnail_fname))