--- task_categories: - multiple-choice - question-answering - visual-question-answering language: - en size_categories: - 1K

Therefore, we introduce MMStar: an elite vision-indispensible multi-modal benchmark, aiming to ensure each curated sample exhibits **visual dependency**, **minimal data leakage**, and **requires advanced multi-modal capabilities**. 🎯 **We have released a full set comprising 1500 offline-evaluating samples.** After applying the coarse filter process and manual review, we narrow down from a total of 22,401 samples to 11,607 candidate samples and finally select 1,500 high-quality samples to construct our MMStar benchmark.


In MMStar, we display **6 core capabilities** in the inner ring, with **18 detailed axes** presented in the outer ring. The middle ring showcases the number of samples for each detailed dimension. Each core capability contains a meticulously **balanced 250 samples**. We further ensure a relatively even distribution across the 18 detailed axes.


## 🏆 Mini-Leaderboard We show a mini-leaderboard here and please find more information in our paper or [homepage](https://mmstar-benchmark.github.io/). | Model | Acc. | MG ⬆ | ML ⬇ | |----------------------------|:---------:|:------------:|:------------:| | GPT4V (high)| **57.1** | **43.6** | 1.3 | | InternLM-Xcomposer2| 55.4 | 28.1 | 7.5| | LLaVA-Next-34B |52.1|29.4|2.4| |GPT4V (low)|46.1|32.6|1.3| |InternVL-Chat-v1.2|43.7|32.6|**0.0**| |GeminiPro-Vision|42.6|27.4|**0.0**| |Sphinx-X-MoE|38.9|14.8|1.0| |Monkey-Chat|38.3|13.5|17.6| |Yi-VL-6B|37.9|15.6|**0.0**| |Qwen-VL-Chat|37.5|23.9|**0.0**| |Deepseek-VL-7B|37.1|15.7|**0.0**| |CogVLM-Chat|36.5|14.9|**0.0**| |Yi-VL-34B|36.1|18.8|**0.0**| |TinyLLaVA|36.0|16.4|7.6| |ShareGPT4V-7B|33.0|11.9|**0.0**| |LLaVA-1.5-13B|32.8|13.9|**0.0**| |LLaVA-1.5-7B|30.3|10.7|**0.0**| |Random Choice|24.6|-|-| ## 📧 Contact - [Lin Chen](https://lin-chen.site/): chlin@mail.ustc.edu.cn - [Jinsong Li](https://li-jinsong.github.io/): lijingsong@pjlab.org.cn ## ✒️ Citation If you find our work helpful for your research, please consider giving a star ⭐ and citation 📝 ```bibtex @article{chen2024we, title={Are We on the Right Way for Evaluating Large Vision-Language Models?}, author={Chen, Lin and Li, Jinsong and Dong, Xiaoyi and Zhang, Pan and Zang, Yuhang and Chen, Zehui and Duan, Haodong and Wang, Jiaqi and Qiao, Yu and Lin, Dahua and others}, journal={arXiv preprint arXiv:2403.20330}, year={2024} } ```