--- pretty_name: TED-LIUM annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: [] multilinguality: - monolingual size_categories: - 10K i was so {COUGH} utterly unqualified for(2) this project and {NOISE} so utterly ridiculous {SMACK} and ignored the brief {SMACK} ', 'speaker_id': 'PaulaScher_2008P', 'gender': 'female', 'file': '/home/sanchitgandhi/cache/downloads/extracted/6e3655f9e735ae3c467deed1df788e0dabd671c1f3e2e386e30aa3b571bd9761/TEDLIUM_release1/train/sph/PaulaScher_2008P.sph', 'id': 'PaulaScher_2008P-1003.35-1011.16-'} ``` ### Data Fields - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - file: A path to the downloaded audio file in .sph format. - text: the transcription of the audio file. - gender: the gender of the speaker. One of: male, female or N/A. - id: unique id of the data sample. - speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples. ### Data Splits There are three releases for the TED-LIUM corpus, progressively increasing the number of transcribed speech training data from 118 hours (Release 1), to 207 hours (Release 2), to 452 hours (Release 3). Release 1: - 774 audio talks and automatically aligned transcriptions. - Contains 118 hours of speech audio data. - Homepage: https://www.openslr.org/7/ Release 2: - 1495 audio talks and automatically aligned transcriptions. - Contains 207 hours of speech audio data. - Dictionary with pronunciations (159848 entries). - Selected monolingual data for language modeling from WMT12 publicly available corpora. - Homepage: https://www.openslr.org/19/ Release 3: - 2351 audio talks and automatically aligned transcriptions. - Contains 452 hours of speech audio data. - TED-LIUM 2 validation and test data: 19 TED talks with their corresponding manual transcriptions. - Dictionary with pronunciations (159848 entries), the same file as the one included in TED-LIUM 2. - Selected monolingual data for language modeling from WMT12 publicly available corpora: these files come from the TED-LIUM 2 release, but have been modified to produce a tokenization more relevant for English language. - Homepage: https://www.openslr.org/51/ Release 3 contains two different corpus distributions: - The ‘legacy’ one, on which the dev and test datasets are the same as in TED-LIUM 2 (and TED-LIUM 1). - The ‘speaker adaptation’ one, specially designed for experiments on speaker adaptation. Each release is split into a training, validation and test set: | Split | Release 1 | Release 2 | Release 3 | |------------|-----------|-----------|-----------| | Train | 56,803 | 92,973 | 268,263 | | Validation | 591 | 591 | 591 | | Test | 1,469 | 1,469 | 1,469 | ## Dataset Creation ### Curation Rationale TED-LIUM was built during [The International Workshop on Spoken Language Trans- lation (IWSLT) 2011 Evaluation Campaign](https://aclanthology.org/2011.iwslt-evaluation.1/), an annual workshop focused on the automatic translation of public talks and included tracks for speech recognition, speech translation, text translation, and system combination. ### Source Data #### Initial Data Collection and Normalization The data was obtained from publicly available TED talks at http://www.ted.com. Proper alignments between the speech and the transcribed text were generated using an in-house speaker segmentation and clustering tool (_LIUM_SpkDiarization_). Speech disfluencies (e.g. repetitions, hesitations, false starts) were treated in the following way: repetitions were transcribed, hesitations mapped to a specific filler word, and false starts not taken into account. For full details on the data collection and processing, refer to the [TED-LIUM paper](https://aclanthology.org/L12-1405/). #### Who are the source language producers? TED Talks are influential videos from expert speakers on education, business, science, tech and creativity. ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information Licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). ### Citation Information Release 1: ``` @inproceedings{rousseau2012tedlium, title={TED-LIUM: an Automatic Speech Recognition dedicated corpus}, author={Rousseau, Anthony and Del{\'e}glise, Paul and Est{\`e}ve, Yannick}, booktitle={Conference on Language Resources and Evaluation (LREC)}, pages={125--129}, year={2012} } ``` Release 2: ``` @inproceedings{rousseau2014enhancing, title={Enhancing the TED-LIUM corpus with selected data for language modeling and more TED talks.}, author={Rousseau, Anthony and Del{\'e}glise, Paul and Esteve, Yannick and others}, booktitle={LREC}, pages={3935--3939}, year={2014} } ``` Release 3: ``` @inproceedings{hernandez2018ted, author="Hernandez, Fran{\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\`e}ve, Yannick", title="TED-LIUM 3: Twice as Much Data and Corpus Repartition for Experiments on Speaker Adaptation", booktitle="Speech and Computer", year="2018", publisher="Springer International Publishing", pages="198--208", } ```