# Copyright 2024 Xiao Fu, CUHK, Kuaishou Tech. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # If you find this code useful, we kindly ask you to cite our paper in your work. # More information about the method can be found at http://fuxiao0719.github.io/projects/3dtrajmaster # -------------------------------------------------------------------------- import os import numpy as np from io import BytesIO import imageio.v2 as imageio import open3d import math from tools.vis_cam import get_camera_frustum, frustums2lineset import trimesh def parse_matrix(matrix_str): rows = matrix_str.strip().split('] [') matrix = [] for row in rows: row = row.replace('[', '').replace(']', '') matrix.append(list(map(float, row.split()))) return np.array(matrix) def load_sceneposes(objs_file, obj_idx, obj_transl): ext_poses = [] for i, key in enumerate(objs_file.keys()): ext_poses.append(parse_matrix(objs_file[key][obj_idx]['matrix'])) ext_poses = np.stack(ext_poses) ext_poses = np.transpose(ext_poses, (0,2,1)) ext_poses[:,:3,3] -= obj_transl ext_poses[:,:3,3] /= 100. ext_poses = ext_poses[:, :, [1,2,0,3]] return ext_poses def save_images2video(images, video_name, fps): fps = fps format = "mp4" codec = "libx264" ffmpeg_params = ["-crf", str(12)] pixelformat = "yuv420p" video_stream = BytesIO() with imageio.get_writer( video_stream, fps=fps, format=format, codec=codec, ffmpeg_params=ffmpeg_params, pixelformat=pixelformat, ) as writer: for idx in range(len(images)): writer.append_data(images[idx]) video_data = video_stream.getvalue() output_path = os.path.join(video_name + ".mp4") with open(output_path, "wb") as f: f.write(video_data) def normalize(x): return x / np.linalg.norm(x) def viewmatrix(z, up, pos): vec2 = normalize(z) vec1_avg = up vec0 = normalize(np.cross(vec1_avg, vec2)) vec1 = normalize(np.cross(vec2, vec0)) m = np.stack([vec0, vec1, vec2, pos], 1) return m def matrix_to_euler_angles(matrix): sy = math.sqrt(matrix[0][0] * matrix[0][0] + matrix[1][0] * matrix[1][0]) singular = sy < 1e-6 if not singular: x = math.atan2(matrix[2][1], matrix[2][2]) y = math.atan2(-matrix[2][0], sy) z = math.atan2(matrix[1][0], matrix[0][0]) else: x = math.atan2(-matrix[1][2], matrix[1][1]) y = math.atan2(-matrix[2][0], sy) z = 0 return math.degrees(x), math.degrees(y), math.degrees(z) def eul2rot(theta) : R = np.array([[np.cos(theta[1])*np.cos(theta[2]), np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]), np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])], [np.sin(theta[2])*np.cos(theta[1]), np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]), np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])], [-np.sin(theta[1]), np.sin(theta[0])*np.cos(theta[1]), np.cos(theta[0])*np.cos(theta[1])]]) return R.T def extract_location_rotation(data): results = {} for key, value in data.items(): matrix = parse_matrix(value) location = np.array([matrix[3][0], matrix[3][1], matrix[3][2]]) rotation = eul2rot(matrix_to_euler_angles(matrix)) transofmed_matrix = np.identity(4) transofmed_matrix[:3,3] = location transofmed_matrix[:3,:3] = rotation results[key] = transofmed_matrix return results def get_cam_points_vis(W, H, intrinsics, ext_pose, color,frustum_length): cam = get_camera_frustum((W, H), intrinsics, np.linalg.inv(ext_pose), frustum_length=frustum_length, color=[0., 0., 1.]) cam_points = cam[0] for item in cam[1]: cam_points = np.concatenate((cam_points, np.linspace(cam[0][item[0]], cam[0][item[1]], num=1000, endpoint=True, retstep=False, dtype=None))) cam_points[:,0]*=-1 cam_points = trimesh.points.PointCloud(vertices = cam_points, colors=[0, 255, 0, 255]) cam_points_vis = open3d.geometry.PointCloud() cam_points_vis.points = open3d.utility.Vector3dVector(cam_points) cam_points_vis.paint_uniform_color(color) return cam_points_vis def batch_axis_angle_to_rotation_matrix(r_batch): batch_size = r_batch.shape[0] rotation_matrices = [] for i in range(batch_size): r = r_batch[i] theta = np.linalg.norm(r) if theta == 0: rotation_matrices.append(np.eye(3)) else: k = r / theta kx, ky, kz = k K = np.array([ [0, -kz, ky], [kz, 0, -kx], [-ky, kx, 0] ]) R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * np.dot(K, K) rotation_matrices.append(R) return np.array(rotation_matrices)