from datasets import Dataset, load_dataset ds: Dataset = load_dataset("DDSC/partial-danish-gigaword-no-twitter") # type: ignore ds = ds["train"] # filter to only include spontaneous speech ds = ds.filter(lambda x: x["source"] == "spont", num_proc=6) texts = ds["text"] def remove_taler(text): if text.startswith("Taler"): text = text.split(":")[1:] text = ":".join(text) return text.strip() qa_pairs = [] for text in texts: lines = text.split("\n") lines = [remove_taler(line) for line in lines] questions = [ (i, text) for i, text in enumerate(lines) if len(text.split(" ")) > 7 and text.endswith("?") ] qa_pairs_ = [{"question": lines[i], "answer": lines[i + 1]} for i, _ in questions] qa_pairs += qa_pairs_ # filter qa pairs def get_length_of_pair(qa: dict): return len(qa["question"].split(" ")) + len(qa["answer"].split(" ")) def get_min_length_of_pair(qa: dict): return min(len(qa["question"].split(" ")), len(qa["answer"].split(" "))) qa_pairs = [ qa for qa in qa_pairs if get_length_of_pair(qa) < 20 and get_min_length_of_pair(qa) > 4 ] # create dataset qa_ds = Dataset.from_list(qa_pairs) # add readme qa_ds.info.description = """# Spontanous speech QA This dataset contains QA pairs from the spontaneous speech subsection of the Danish Gigaword. The dataset is created from the [DDSC dataset](DDSC/partial-danish-gigaword-no-twitter) and filtered to only include QA pairs where the question is less than 20 tokens and the answer is at least 4 tokens long. To find out more about the creation see the accompanying script. """ qa_ds.info.license = ds[0]["LICENSE"] qa_ds.info.dataset_name = "Spontanous Speech QA" # split dataset qa_ds = qa_ds.train_test_split(test_size=0.2) # upload dataset qa_ds.push_to_hub("spontanous-speech-qa")