import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig from peft import PeftModel, PeftConfig import json import csv lora_path = "/root/lanyun-tmp/output/MiniCPM/checkpoint-9000/" model_path = '/root/lanyun-tmp/OpenBMB/MiniCPM-2B-sft-fp32' model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) model.generation_config = GenerationConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained( model_path, use_fast=False, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, lora_path ) # 读取JSONL文件 filename = '/root/lanyun-tmp/Dataset/test.jsonl' data = [] with open(filename, 'r') as f: for line in f: item = json.loads(line) data.append(item) files = 'MiniCPM2B-ZH-_answers.csv' with open(files, 'w', newline='') as csvfile: writer = csv.writer(csvfile) # 提取内容 for item in data: context = item['context'] question = item['question'] answer0 = item['answer0'] answer1 = item['answer1'] answer2 = item['answer2'] answer3 = item['answer3'] messages = str([ {"role": "system", "content": "作为阅读理解专家,你​​将收到上下文,问题和四个选项,请先理解下面给出的上下文,然后根据上下文输出正确选项的标签作为问题的答案}"}, {"role": "user", "content": str({'context':{context},'question':{question},"answer0":{answer0},"answer1":{answer1},"answer2":{answer2},"answer3":{answer3}})}, ]) response = model.chat(tokenizer, messages) answer = response[0][0] print(answer) writer.writerow(answer)