import pandas as pd import re from concurrent.futures import ProcessPoolExecutor from tqdm import tqdm import os import glob # Expanded financial keywords (formatted for regex word boundaries) financial_keywords = [ r"\bfinance\b", r"\bfinancial\b", r"\beconomy\b", r"\beconomic\b", r"\bmarket\b", r"\bstock\b", r"\bbond\b", r"\bshare\b", r"\basset\b", r"\bportfolio\b", r"\binvestment\b", r"\binvestor\b", r"\btrading\b", r"\bbroker\b", r"\bcommodity\b", r"\bcurrency\b", r"\bforeign exchange\b", r"\bforex\b", r"\bderivative\b", r"\boption\b", r"\bfutures\b", r"\bhedging\b", r"\brisk\b", r"\bdividend\b", r"\binterest\b", r"\bliquidity\b", r"\bcredit\b", r"\bdebt\b", r"\bcapital\b", r"\bfund\b", r"\bventure\b", r"\bvaluation\b", r"\bmerger\b", r"\bacquisition\b", r"\bIPO\b", r"\binitial public offering\b", r"\bprivate equity\b", r"\bhedge fund\b", r"\bmutual fund\b", r"\bETF\b", r"\bexchange-traded fund\b", r"\bfinancial statement\b", r"\bbalance sheet\b", r"\bincome statement\b", r"\bcash flow\b", r"\brevenue\b", r"\bprofit\b", r"\bloss\b", r"\bexpense\b", r"\bbudget\b", r"\bforecast\b", r"\banalysis\b", r"\bearnings\b", r"\bEBITDA\b", r"\bEPS\b", r"\bP/E ratio\b", r"\bprice to earnings\b", r"\bROI\b", r"\breturn on investment\b", r"\bROE\b", r"\breturn on equity\b", r"\bdiversification\b", r"\bNASDAQ\b", r"\bNYSE\b", r"\bS&P 500\b", r"\bDow Jones\b", r"\bFTSE\b", r"\bNikkei\b", r"\bcommodities\b", r"\bgold\b", r"\bsilver\b", r"\boil\b", r"\bGDP\b", r"\bgross domestic product\b", r"\binflation\b", r"\bunemployment\b", r"\binterest rate\b", r"\bfederal reserve\b", r"\bcentral bank\b", r"\bmonetary policy\b", r"\bquantitative easing\b", r"\bfiscal policy\b", r"\btax\b", r"\btreasury\b", r"\bbudget deficit\b", r"\bnational debt\b", r"\bcredit rating\b", r"\bstandard & poor's\b", r"\bmoody's\b", r"\bfitch\b", r"\bsovereign wealth fund\b", r"\binternational monetary fund\b", r"\bIMF\b", r"\bworld bank\b", r"\bbasel III\b", r"\bdodd-frank\b", r"\bfinancial regulation\b", r"\binsurance\b", r"\breal estate\b", r"\bmortgage\b", r"\bloan\b", r"\bbank\b", r"\bbanking\b", r"\bfintech\b", r"\bblockchain\b", r"\bcryptocurrency\b", r"\bbitcoin\b", r"\bethereum\b", r"\bsmart contract\b", r"\bdigital currency\b", r"\bdecentralized finance\b", # Add more general financial terms as needed ] # Combine financial keywords into a single regex pattern using non-capturing groups financial_regex = r'(?:' + r'|'.join(financial_keywords) + r')' # Function to process a chunk of the dataset def process_chunk(chunk): # Use vectorized string operations for efficiency # Count the number of matches in each column score_counts = chunk['score'].astype(str).str.count(financial_regex, flags=re.IGNORECASE) url_counts = chunk['url'].astype(str).str.count(financial_regex, flags=re.IGNORECASE) text_counts = chunk['text'].astype(str).str.count(financial_regex, flags=re.IGNORECASE) # Handle NaN values by filling them with zero score_counts = score_counts.fillna(0) url_counts = url_counts.fillna(0) text_counts = text_counts.fillna(0) # Sum the counts to get the financial score match_counts = score_counts + url_counts + text_counts match_counts = match_counts.astype(int) # Set a threshold for the minimum financial score threshold = 14 # Adjust this value as needed # Filter rows that meet the threshold filtered_chunk = chunk[match_counts >= threshold].copy() filtered_chunk['financial_score'] = match_counts[match_counts >= threshold] # Replace the original 'score' with 'financial_score' filtered_chunk['score'] = filtered_chunk['financial_score'] filtered_chunk = filtered_chunk.drop(columns=['financial_score']) return filtered_chunk # Function to process a single CSV file def process_file(input_file, output_file): # Read the CSV file in chunks chunk_size = 10000 # Adjust this value based on your memory constraints reader = pd.read_csv(input_file, chunksize=chunk_size) # Prepare the output file first_chunk = True # Number of worker processes num_workers = 8 # Adjust based on your CPU cores # Batch size for chunks to process in parallel batch_size = num_workers * 4 # Adjust based on memory constraints chunk_list = [] with ProcessPoolExecutor(max_workers=num_workers) as executor: futures = [] for chunk in tqdm(reader, desc=f'Reading chunks from {os.path.basename(input_file)}'): chunk_list.append(chunk) if len(chunk_list) == batch_size: # Process batch of chunks in parallel futures = [executor.submit(process_chunk, c) for c in chunk_list] for future in tqdm(futures, desc='Processing batch', leave=False): filtered_chunk = future.result() if not filtered_chunk.empty: if first_chunk: filtered_chunk.to_csv(output_file, mode='w', index=False) first_chunk = False else: filtered_chunk.to_csv(output_file, mode='a', index=False, header=False) chunk_list = [] # Process any remaining chunks if chunk_list: futures = [executor.submit(process_chunk, c) for c in chunk_list] for future in tqdm(futures, desc='Processing last batch', leave=False): filtered_chunk = future.result() if not filtered_chunk.empty: if first_chunk: filtered_chunk.to_csv(output_file, mode='w', index=False) first_chunk = False else: filtered_chunk.to_csv(output_file, mode='a', index=False, header=False) print(f'Finished processing {input_file}') # List of directories to process data_dir = '/media/joe/512-3/csv' years = [f'CC-MAIN-{year}' for year in range(2013, 2025)] # Adjust years as needed directories = [os.path.join(data_dir, year) for year in years] # Process each CSV file in each directory for dir_path in directories: if not os.path.isdir(dir_path): print(f'Directory not found: {dir_path}') continue csv_files = glob.glob(os.path.join(dir_path, '*.csv')) print(f'Found {len(csv_files)} CSV files in {dir_path}') for input_file in csv_files: # Construct output file name # Example: If input_file is '/path/CC-MAIN-2013/train-00001-of-00001.csv' # Output file will be 'fin_CC-MAIN-2013_train-00001-of-00001.csv' base_name = os.path.basename(input_file) output_file = os.path.join( dir_path, 'fin_' + base_name ) # Check if output file already exists to avoid reprocessing if os.path.exists(output_file): print(f'Output file already exists. Skipping: {output_file}') continue process_file(input_file, output_file)