from nltk.stem import WordNetLemmatizer lemma = WordNetLemmatizer().lemmatize import nltk pos_tag = nltk.pos_tag from nltk.corpus import stopwords import sys mode = sys.argv[1] file_dir = "./WritingPrompts/ini_data/" if "w" in mode else "./ROCStories/ini_data/" file_name = "train.wp_target" if "w" in mode else "train.txt" def get_avail_phrases(): sw = set(stopwords.words('english')) avail_phrases = set() fin = open("./conceptnet_entity.csv", 'r') for i, line in enumerate(fin): avail_phrases.add(' '.join(line.strip().split("|||")[:-1])) avail_phrases = avail_phrases - sw fin.close() fin = open("./negation.txt", 'r') for i, line in enumerate(fin): avail_phrases.add(' '.join(line.strip().split()[1:])) fin.close() for w in [".", ",", "!", "?", "male", "female", "neutral"]: avail_phrases.add(w) return avail_phrases avail_phrases = get_avail_phrases() vocab = {} with open("%s/%s"%(file_dir, file_name), "r") as fin1: for kkk, line in enumerate(fin1): if kkk % 1000 == 0: print(kkk) tmp = line.strip().split() pos = pos_tag(tmp) for word_pos in pos: if lemma(word_pos[0], 'v' if word_pos[1][0] == 'V' else 'n') not in avail_phrases: continue if word_pos[0] in vocab: vocab[word_pos[0]]["number"] += 1 if word_pos[1] in vocab[word_pos[0]]: vocab[word_pos[0]][word_pos[1]] += 1 else: vocab[word_pos[0]][word_pos[1]] = 1 else: vocab[word_pos[0]] = {word_pos[1]:1, "number":1} vocab_list = sorted(vocab, key=lambda x: vocab[x]["number"], reverse=True) with open("%s/entity_vocab.txt"%file_dir, "w") as fout: for v in vocab_list: pos_list = sorted(vocab[v], key=vocab[v].get, reverse=True) pos_list.remove("number") fout.write("%s %d|||"%(v, vocab[v]["number"]) + "|||".join(["%s %d"%(p, vocab[v][p]) for p in pos_list]) + "\n")