--- license: apache-2.0 dataset_info: features: - name: task_id dtype: string - name: prompt dtype: string - name: entry_point dtype: string - name: test dtype: string - name: description dtype: string - name: language dtype: string - name: canonical_solution sequence: string splits: - name: train num_bytes: 505355 num_examples: 161 download_size: 174830 dataset_size: 505355 configs: - config_name: default data_files: - split: train path: data/train-* --- # Evaluation summary We introduce HumanEval for Kotlin, created from scratch by human experts. All HumanEval solutions and tests are written by an expert olympiad programmer with 6 years experience in Kotlin, and independently checked by a programmer with 4 years experience in Kotlin. The tests we implement are eqivalent to the original HumanEval tests for Python, and we fix the prompt signatures to address the generic variable signature we describe above. # How to use The evaluation presented as dataset which is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline. During the code generation step, we use early stopping on the `}\n}` sequence to expedite the process. We also perform some code post-processing before evaluation—specifically, we remove all comments and signatures. The early stopping method, post-processing steps, and evaluation code are available in the example below. ```python import torch import jsonlines import re from tqdm import tqdm from transformers import ( AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList, ) from mxeval.data import get_data from mxeval.evaluation import evaluate_functional_correctness from datasets import load_dataset class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops, tokenizer): (StoppingCriteria.__init__(self),) self.stops = rf"{stops}" self.tokenizer = tokenizer def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs ) -> bool: last_three_tokens = [int(x) for x in input_ids.data[0][-3:]] decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens) return bool(re.search(self.stops, decoded_last_three_tokens)) def generate(problem): stopping_criteria = StoppingCriteriaList( [ StoppingCriteriaSub( stops= "\n}\n", tokenizer=tokenizer ) ] ) problem = tokenizer.encode(problem, return_tensors="pt").to('cuda') sample = model.generate( problem, temperature=0.1, max_new_tokens=256, min_new_tokens=128, pad_token_id=tokenizer.eos_token_id, do_sample=False, num_beams=1, stopping_criteria=stopping_criteria, ) answer = tokenizer.decode(sample[0], skip_special_tokens=True) return answer def clean_asnwer(code): # Clean comments code_without_line_comments = re.sub(r"//.*", "", code) code_without_all_comments = re.sub( r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL ) #Clean signatures lines = code.split("\n") for i, line in enumerate(lines): if line.startswith("fun "): return "\n".join(lines[i + 1 :]) return code model_name = "JetBrains/CodeLlama-7B-Kexer" dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train'] problem_dict = {problem['task_id']: problem for problem in dataset} model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.bfloat16).to('cuda') tokenizer = AutoTokenizer.from_pretrained(model_name) output = [] for key in tqdm(list(problem_dict.keys()), leave=False): problem = problem_dict[key]["prompt"] answer = generate(problem) answer = clean_asnwer(answer) output.append({"task_id": key, "completion": answer, "language": "kotlin"}) output_file = f"answers" with jsonlines.open(output_file, mode="w") as writer: for line in output: writer.write(line) evaluate_functional_correctness( sample_file=output_file, k=[1], n_workers=16, timeout=15, problem_file=problem_dict, ) ``` # Results: We evaluated multiple coding models using this benchmark, and the results are presented in the table below.