Datasets:

DOI:
License:
plant-genomic-benchmark / plant-genomic-benchmark.py
etrop's picture
Rename agro-nt-tasks.py to plant-genomic-benchmark.py
ceb2add
raw
history blame
7.08 kB
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import os
from typing import List
from Bio import SeqIO
import datasets
# TODO: Add BibTeX citation
_CITATION = ''
# """\
# @InProceedings{huggingface:dataset,
# title = {A great new dataset},
# author={huggingface, Inc.
# },
# year={2020}
# }
# """
_DESCRIPTION = """\
This dataset comprises the various supervised learning tasks considered in the agro-nt
paper. The task types include binary classification,multi-label classification,
regression,and multi-output regression. The actual underlying genomic tasks range from
predicting regulatory features, RNA processing sites, and gene expression values.
"""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_TASK_NAMES = ['poly_a.arabidopsis_thaliana',
'poly_a.oryza_sativa_indica_group',
'poly_a.trifolium_pratense',
'poly_a.medicago_truncatula',
'poly_a.chlamydomonas_reinhardtii',
'poly_a.oryza_sativa_japonica_group',
'splicing.arabidopsis_thaliana_donor',
'splicing.arabidopsis_thaliana_acceptor',
'lncrna.m_esculenta',
'lncrna.z_mays',
'lncrna.g_max',
'lncrna.s_lycopersicum',
'lncrna.t_aestivum',
'lncrna.s_bicolor',
'promoter_strength.leaf',
'promoter_strength.protoplast',
'gene_exp.glycine_max',
'gene_exp.oryza_sativa',
'gene_exp.solanum_lycopersicum',
'gene_exp.zea_mays',
'gene_exp.arabidopsis_thaliana',
'chromatin_access.oryza_sativa_MH63_RS2',
'chromatin_access.setaria_italica',
'chromatin_access.oryza_sativa_ZS97_RS2',
'chromatin_access.arabidopis_thaliana',
'chromatin_access.brachypodium_distachyon',
'chromatin_access.sorghum_bicolor',
'chromatin_access.zea_mays',
'pro_seq.m_esculenta']
_TASK_INFO = {'poly_a':{'type': 'binary', 'val_set':False},
'splicing':{'type': 'binary', 'val_set':False},
'lncrna':{'type': 'binary', 'val_set':False},
'promoter_strength': {'type': 'regression', 'val_set': True},
'gene_exp':{'type':'multi_regression','val_set':True},
'chromatin_access':{'type':'multi_label','val_set':True},
'pro_seq':{'type':'binary','val_set':True}
}
class AgroNtTasksConfig(datasets.BuilderConfig):
"""BuilderConfig for the Agro NT supervised learning tasks dataset."""
def __init__(self, *args, task_name: str, **kwargs):
"""BuilderConfig downstream tasks dataset.
Args:
task (:obj:`str`): Task name.
**kwargs: keyword arguments forwarded to super.
"""
self.task,self.sub_task = task_name.split(".")
self.task_type = _TASK_INFO[self.task]['type']
self.val_set = _TASK_INFO[self.task]['val_set']
super().__init__(
*args,
name=f"{task_name}",
**kwargs,
)
class AgroNtTasks(datasets.GeneratorBasedBuilder):
"""GeneratorBasedBuilder for the Agro NT supervised learning tasks dataset."""
BUILDER_CONFIG_CLASS = AgroNtTasksConfig
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [AgroNtTasksConfig(task_name=TASK_NAME) for TASK_NAME
in _TASK_NAMES]
def _info(self):
feature_dit = {"sequence": datasets.Value("string"),
"name": datasets.Value("string")}
if self.config.task_type == 'binary':
feature_dit["label"] = datasets.Value("int8")
elif self.config.task_type == 'regression':
feature_dit["label"] = datasets.Value("float32")
elif self.config.task_type == 'multi_regression':
feature_dit['labels'] = [datasets.Value("float32")]
elif self.config.task_type == 'multi_label':
feature_dit['labels'] = [datasets.Value("int8")]
features = datasets.Features(feature_dit)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
train_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.sub_task + "_train.fa"))
test_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.sub_task + "_test.fa"))
generator_list = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": train_file,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": test_file,
},
),
]
if self.config.val_set:
validation_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.sub_task + "_validation.fa"))
generator_list += datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": validation_file,
},
),
return generator_list
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
with open(filepath, 'r') as f:
key = 0
for record in SeqIO.parse(f,'fasta'):
# Yields examples as (key, example) tuples
split_name = record.name.split("|")
name = split_name[0]
labels = split_name[1:]
if 'multi' in self.config.task_type:
yield key, {
"sequence": str(record.seq),
"name": name,
"labels": labels
}
else:
yield key, {
"sequence": str(record.seq),
"name": name,
"label": labels[0],
}
key += 1