# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """The Something-Something dataset (version 2) is a collection of 220,847 labeled video clips of humans performing pre-defined, basic actions with everyday objects.""" import csv import json import os import datasets from .classes import SOMETHING_SOMETHING_V2_CLASSES _CITATION = """ @inproceedings{goyal2017something, title={The" something something" video database for learning and evaluating visual common sense}, author={Goyal, Raghav and Ebrahimi Kahou, Samira and Michalski, Vincent and Materzynska, Joanna and Westphal, Susanne and Kim, Heuna and Haenel, Valentin and Fruend, Ingo and Yianilos, Peter and Mueller-Freitag, Moritz and others}, booktitle={Proceedings of the IEEE international conference on computer vision}, pages={5842--5850}, year={2017} } """ _DESCRIPTION = """\ The Something-Something dataset (version 2) is a collection of 220,847 labeled video clips of humans performing pre-defined, basic actions with everyday objects. It is designed to train machine learning models in fine-grained understanding of human hand gestures like putting something into something, turning something upside down and covering something with something. """ class SomethingSomethingV2(datasets.GeneratorBasedBuilder): """Charades is dataset composed of 9848 videos of daily indoors activities collected through Amazon Mechanical Turk""" BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")] DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "video_id": datasets.Value("string"), "video": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.features.ClassLabel( num_classes=len(SOMETHING_SOMETHING_V2_CLASSES), names=SOMETHING_SOMETHING_V2_CLASSES, ), "placeholders": datasets.Sequence(datasets.Value("string")), } ), supervised_keys=None, homepage="", citation=_CITATION, ) @property def manual_download_instructions(self): return ( "To use Something-Something-v2, please download the 19 data files and the labels file " "from 'https://developer.qualcomm.com/software/ai-datasets/something-something'. " "Unzip the 19 files and concatenate the extracts in order into a tar file named '20bn-something-something-v2.tar.gz. " "Use command like `cat 20bn-something-something-v2-?? >> 20bn-something-something-v2.tar.gz` " "Place the `labels.zip` file and the tar file into a folder '/path/to/data/' and load the dataset using " "`load_dataset('something-something-v2', data_dir='/path/to/data')`" ) def _split_generators(self, dl_manager): data_dir = dl_manager.manual_dir labels_path = os.path.join(data_dir, "labels.zip") videos_path = os.path.join(data_dir, "20bn-something-something-v2.tar.gz") if not os.path.exists(labels_path): raise FileNotFoundError( f"labels.zip doesn't exist in {data_dir}. Please follow manual download instructions." ) if not os.path.exists(videos_path): raise FileNotFoundError( f"20bn-something-sokmething-v2.tar.gz doesn't exist in {data_dir}. Please follow manual download instructions." ) labels_path = dl_manager.extract(labels_path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annotation_file": os.path.join( labels_path, "labels", "train.json" ), "video_files": dl_manager.iter_archive(videos_path), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "annotation_file": os.path.join( labels_path, "labels", "validation.json" ), "video_files": dl_manager.iter_archive(videos_path), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "annotation_file": os.path.join(labels_path, "labels", "test.json"), "video_files": dl_manager.iter_archive(videos_path), "labels_file": os.path.join( labels_path, "labels", "test-answers.csv" ), }, ), ] def _generate_examples(self, annotation_file, video_files, labels_file=None): data = {} labels = None if labels_file is not None: with open(labels_file, "r", encoding="utf-8") as fobj: labels = {} for label in fobj.readlines(): label = label.strip().split(";") labels[label[0]] = label[1] with open(annotation_file, "r", encoding="utf-8") as fobj: annotations = json.load(fobj) for annotation in annotations: if "template" in annotation: annotation["template"] = ( annotation["template"].replace("[", "").replace("]", "") ) if labels: annotation["template"] = labels[annotation["id"]] data[annotation["id"]] = annotation idx = 0 for path, file in video_files: video_id = os.path.splitext(os.path.split(path)[1])[0] if video_id not in data: continue info = data[video_id] yield idx, { "video_id": video_id, "video": file, "placeholders": info.get("placeholders", []), "label": info["template"], "text": info["label"] if "label" in info else -1, } idx += 1