Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
File size: 37,465 Bytes
3d799f3
 
 
e3f026d
3d799f3
e3f026d
3d799f3
 
e3f026d
3d799f3
e3f026d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d799f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a181cbc
3d799f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9224423
 
3d799f3
9224423
 
 
 
 
 
 
 
3d799f3
e3f026d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
---
license: odc-by
task_categories:
- text-generation
language:
- en
pretty_name: FineWeb
size_categories:
- 1K<n<10K
configs:
- config_name: default
  data_files:
  - split: train
    path: data/*/*
- config_name: sample-10BT
  data_files:
  - split: train
    path: sample/10BT/*
- config_name: sample-100BT
  data_files:
  - split: train
    path: sample/100BT/*
- config_name: sample-350BT
  data_files:
  - split: train
    path: sample/350BT/*
- config_name: CC-MAIN-2024-18
  data_files:
  - split: train
    path: data/CC-MAIN-2024-18/*
- config_name: CC-MAIN-2024-10
  data_files:
  - split: train
    path: data/CC-MAIN-2024-10/*
- config_name: CC-MAIN-2023-50
  data_files:
  - split: train
    path: data/CC-MAIN-2023-50/*
- config_name: CC-MAIN-2023-40
  data_files:
  - split: train
    path: data/CC-MAIN-2023-40/*
- config_name: CC-MAIN-2023-23
  data_files:
  - split: train
    path: data/CC-MAIN-2023-23/*
- config_name: CC-MAIN-2023-14
  data_files:
  - split: train
    path: data/CC-MAIN-2023-14/*
- config_name: CC-MAIN-2023-06
  data_files:
  - split: train
    path: data/CC-MAIN-2023-06/*
- config_name: CC-MAIN-2022-49
  data_files:
  - split: train
    path: data/CC-MAIN-2022-49/*
- config_name: CC-MAIN-2022-40
  data_files:
  - split: train
    path: data/CC-MAIN-2022-40/*
- config_name: CC-MAIN-2022-33
  data_files:
  - split: train
    path: data/CC-MAIN-2022-33/*
- config_name: CC-MAIN-2022-27
  data_files:
  - split: train
    path: data/CC-MAIN-2022-27/*
- config_name: CC-MAIN-2022-21
  data_files:
  - split: train
    path: data/CC-MAIN-2022-21/*
- config_name: CC-MAIN-2022-05
  data_files:
  - split: train
    path: data/CC-MAIN-2022-05/*
- config_name: CC-MAIN-2021-49
  data_files:
  - split: train
    path: data/CC-MAIN-2021-49/*
- config_name: CC-MAIN-2021-43
  data_files:
  - split: train
    path: data/CC-MAIN-2021-43/*
- config_name: CC-MAIN-2021-39
  data_files:
  - split: train
    path: data/CC-MAIN-2021-39/*
- config_name: CC-MAIN-2021-31
  data_files:
  - split: train
    path: data/CC-MAIN-2021-31/*
- config_name: CC-MAIN-2021-25
  data_files:
  - split: train
    path: data/CC-MAIN-2021-25/*
- config_name: CC-MAIN-2021-21
  data_files:
  - split: train
    path: data/CC-MAIN-2021-21/*
- config_name: CC-MAIN-2021-17
  data_files:
  - split: train
    path: data/CC-MAIN-2021-17/*
- config_name: CC-MAIN-2021-10
  data_files:
  - split: train
    path: data/CC-MAIN-2021-10/*
- config_name: CC-MAIN-2021-04
  data_files:
  - split: train
    path: data/CC-MAIN-2021-04/*
- config_name: CC-MAIN-2020-50
  data_files:
  - split: train
    path: data/CC-MAIN-2020-50/*
- config_name: CC-MAIN-2020-45
  data_files:
  - split: train
    path: data/CC-MAIN-2020-45/*
- config_name: CC-MAIN-2020-40
  data_files:
  - split: train
    path: data/CC-MAIN-2020-40/*
- config_name: CC-MAIN-2020-34
  data_files:
  - split: train
    path: data/CC-MAIN-2020-34/*
- config_name: CC-MAIN-2020-29
  data_files:
  - split: train
    path: data/CC-MAIN-2020-29/*
- config_name: CC-MAIN-2020-24
  data_files:
  - split: train
    path: data/CC-MAIN-2020-24/*
- config_name: CC-MAIN-2020-16
  data_files:
  - split: train
    path: data/CC-MAIN-2020-16/*
- config_name: CC-MAIN-2020-10
  data_files:
  - split: train
    path: data/CC-MAIN-2020-10/*
- config_name: CC-MAIN-2020-05
  data_files:
  - split: train
    path: data/CC-MAIN-2020-05/*
- config_name: CC-MAIN-2019-51
  data_files:
  - split: train
    path: data/CC-MAIN-2019-51/*
- config_name: CC-MAIN-2019-47
  data_files:
  - split: train
    path: data/CC-MAIN-2019-47/*
- config_name: CC-MAIN-2019-43
  data_files:
  - split: train
    path: data/CC-MAIN-2019-43/*
- config_name: CC-MAIN-2019-39
  data_files:
  - split: train
    path: data/CC-MAIN-2019-39/*
- config_name: CC-MAIN-2019-35
  data_files:
  - split: train
    path: data/CC-MAIN-2019-35/*
- config_name: CC-MAIN-2019-30
  data_files:
  - split: train
    path: data/CC-MAIN-2019-30/*
- config_name: CC-MAIN-2019-26
  data_files:
  - split: train
    path: data/CC-MAIN-2019-26/*
- config_name: CC-MAIN-2019-22
  data_files:
  - split: train
    path: data/CC-MAIN-2019-22/*
- config_name: CC-MAIN-2019-18
  data_files:
  - split: train
    path: data/CC-MAIN-2019-18/*
- config_name: CC-MAIN-2019-13
  data_files:
  - split: train
    path: data/CC-MAIN-2019-13/*
- config_name: CC-MAIN-2019-09
  data_files:
  - split: train
    path: data/CC-MAIN-2019-09/*
- config_name: CC-MAIN-2019-04
  data_files:
  - split: train
    path: data/CC-MAIN-2019-04/*
- config_name: CC-MAIN-2018-51
  data_files:
  - split: train
    path: data/CC-MAIN-2018-51/*
- config_name: CC-MAIN-2018-47
  data_files:
  - split: train
    path: data/CC-MAIN-2018-47/*
- config_name: CC-MAIN-2018-43
  data_files:
  - split: train
    path: data/CC-MAIN-2018-43/*
- config_name: CC-MAIN-2018-39
  data_files:
  - split: train
    path: data/CC-MAIN-2018-39/*
- config_name: CC-MAIN-2018-34
  data_files:
  - split: train
    path: data/CC-MAIN-2018-34/*
- config_name: CC-MAIN-2018-30
  data_files:
  - split: train
    path: data/CC-MAIN-2018-30/*
- config_name: CC-MAIN-2018-26
  data_files:
  - split: train
    path: data/CC-MAIN-2018-26/*
- config_name: CC-MAIN-2018-22
  data_files:
  - split: train
    path: data/CC-MAIN-2018-22/*
- config_name: CC-MAIN-2018-17
  data_files:
  - split: train
    path: data/CC-MAIN-2018-17/*
- config_name: CC-MAIN-2018-13
  data_files:
  - split: train
    path: data/CC-MAIN-2018-13/*
- config_name: CC-MAIN-2018-09
  data_files:
  - split: train
    path: data/CC-MAIN-2018-09/*
- config_name: CC-MAIN-2018-05
  data_files:
  - split: train
    path: data/CC-MAIN-2018-05/*
- config_name: CC-MAIN-2017-51
  data_files:
  - split: train
    path: data/CC-MAIN-2017-51/*
- config_name: CC-MAIN-2017-47
  data_files:
  - split: train
    path: data/CC-MAIN-2017-47/*
- config_name: CC-MAIN-2017-43
  data_files:
  - split: train
    path: data/CC-MAIN-2017-43/*
- config_name: CC-MAIN-2017-39
  data_files:
  - split: train
    path: data/CC-MAIN-2017-39/*
- config_name: CC-MAIN-2017-34
  data_files:
  - split: train
    path: data/CC-MAIN-2017-34/*
- config_name: CC-MAIN-2017-30
  data_files:
  - split: train
    path: data/CC-MAIN-2017-30/*
- config_name: CC-MAIN-2017-26
  data_files:
  - split: train
    path: data/CC-MAIN-2017-26/*
- config_name: CC-MAIN-2017-22
  data_files:
  - split: train
    path: data/CC-MAIN-2017-22/*
- config_name: CC-MAIN-2017-17
  data_files:
  - split: train
    path: data/CC-MAIN-2017-17/*
- config_name: CC-MAIN-2017-13
  data_files:
  - split: train
    path: data/CC-MAIN-2017-13/*
- config_name: CC-MAIN-2017-09
  data_files:
  - split: train
    path: data/CC-MAIN-2017-09/*
- config_name: CC-MAIN-2017-04
  data_files:
  - split: train
    path: data/CC-MAIN-2017-04/*
- config_name: CC-MAIN-2016-50
  data_files:
  - split: train
    path: data/CC-MAIN-2016-50/*
- config_name: CC-MAIN-2016-44
  data_files:
  - split: train
    path: data/CC-MAIN-2016-44/*
- config_name: CC-MAIN-2016-40
  data_files:
  - split: train
    path: data/CC-MAIN-2016-40/*
- config_name: CC-MAIN-2016-36
  data_files:
  - split: train
    path: data/CC-MAIN-2016-36/*
- config_name: CC-MAIN-2016-30
  data_files:
  - split: train
    path: data/CC-MAIN-2016-30/*
- config_name: CC-MAIN-2016-26
  data_files:
  - split: train
    path: data/CC-MAIN-2016-26/*
- config_name: CC-MAIN-2016-22
  data_files:
  - split: train
    path: data/CC-MAIN-2016-22/*
- config_name: CC-MAIN-2016-18
  data_files:
  - split: train
    path: data/CC-MAIN-2016-18/*
- config_name: CC-MAIN-2016-07
  data_files:
  - split: train
    path: data/CC-MAIN-2016-07/*
- config_name: CC-MAIN-2015-48
  data_files:
  - split: train
    path: data/CC-MAIN-2015-48/*
- config_name: CC-MAIN-2015-40
  data_files:
  - split: train
    path: data/CC-MAIN-2015-40/*
- config_name: CC-MAIN-2015-35
  data_files:
  - split: train
    path: data/CC-MAIN-2015-35/*
- config_name: CC-MAIN-2015-32
  data_files:
  - split: train
    path: data/CC-MAIN-2015-32/*
- config_name: CC-MAIN-2015-27
  data_files:
  - split: train
    path: data/CC-MAIN-2015-27/*
- config_name: CC-MAIN-2015-22
  data_files:
  - split: train
    path: data/CC-MAIN-2015-22/*
- config_name: CC-MAIN-2015-18
  data_files:
  - split: train
    path: data/CC-MAIN-2015-18/*
- config_name: CC-MAIN-2015-14
  data_files:
  - split: train
    path: data/CC-MAIN-2015-14/*
- config_name: CC-MAIN-2015-11
  data_files:
  - split: train
    path: data/CC-MAIN-2015-11/*
- config_name: CC-MAIN-2015-06
  data_files:
  - split: train
    path: data/CC-MAIN-2015-06/*
- config_name: CC-MAIN-2014-52
  data_files:
  - split: train
    path: data/CC-MAIN-2014-52/*
- config_name: CC-MAIN-2014-49
  data_files:
  - split: train
    path: data/CC-MAIN-2014-49/*
- config_name: CC-MAIN-2014-42
  data_files:
  - split: train
    path: data/CC-MAIN-2014-42/*
- config_name: CC-MAIN-2014-41
  data_files:
  - split: train
    path: data/CC-MAIN-2014-41/*
- config_name: CC-MAIN-2014-35
  data_files:
  - split: train
    path: data/CC-MAIN-2014-35/*
- config_name: CC-MAIN-2014-23
  data_files:
  - split: train
    path: data/CC-MAIN-2014-23/*
- config_name: CC-MAIN-2014-15
  data_files:
  - split: train
    path: data/CC-MAIN-2014-15/*
- config_name: CC-MAIN-2014-10
  data_files:
  - split: train
    path: data/CC-MAIN-2014-10/*
- config_name: CC-MAIN-2013-48
  data_files:
  - split: train
    path: data/CC-MAIN-2013-48/*
- config_name: CC-MAIN-2013-20
  data_files:
  - split: train
    path: data/CC-MAIN-2013-20/*
---
# 🍷 FineWeb
<center>
    <img src="https://huggingface.co/datasets/HuggingFaceFW/admin/resolve/main/fineweb-logo.png" alt="FineWeb: The finest collection of data the web has to offer">
</center>

> 15 trillion tokens of the finest data the 🌐 web has to offer

# Table of Contents
- [🍷 FineWeb](#-fineweb)
   * [What is it?](#what-is-it)
   * [What is being released?](#what-is-being-released)
   * [Changelog](#changelog)
   * [How to download and use 🍷 FineWeb](#how-to-download-and-use-🍷-fineweb)
      + [Using 🏭 `datatrove`](#using-datatrove)
      + [Using `huggingface_hub`](#using-huggingface_hub)
      + [Using `datasets`](#using-datasets)
   * [Breakdown by dump/crawl](#breakdown-by-dumpcrawl)
   * [Dataset performance evaluation and ablations](#dataset-performance-evaluation-and-ablations)
      + [Hyper-parameters for ablation models](#hyper-parameters-for-ablation-models)
      + [Ablation evaluation benchmarks](#ablation-evaluation-benchmarks)
      + [Comparison with other datasets](#comparison-with-other-datasets)
- [Dataset card for 🍷 FineWeb](#dataset-card-for-🍷-fineweb)
   * [Dataset Summary](#dataset-summary)
   * [Dataset Structure](#dataset-structure)
      + [Data Instances](#data-instances)
      + [Data Fields](#data-fields)
      + [Data Splits](#data-splits)
   * [Dataset Creation](#dataset-creation)
      + [Curation Rationale](#curation-rationale)
      + [Source Data](#source-data)
      + [Data processing steps](#data-processing-steps)
      + [Annotations](#annotations)
      + [Personal and Sensitive Information](#personal-and-sensitive-information)
   * [Considerations for Using the Data](#considerations-for-using-the-data)
      + [Social Impact of Dataset](#social-impact-of-dataset)
      + [Discussion of Biases](#discussion-of-biases)
      + [Other Known Limitations](#other-known-limitations)
   * [Additional Information](#additional-information)
      + [Licensing Information](#licensing-information)
      + [Future work](#future-work)
      + [Citation Information](#citation-information)

## What is it?

The 🍷 FineWeb dataset consists of more than **15T tokens** of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 [`datatrove`](https://github.com/huggingface/datatrove/) library, our large scale data processing library. 

🍷 FineWeb was originally meant to be a fully open replication of πŸ¦… [RefinedWeb](https://huggingface.co/papers/2306.01116), with a release of the **full dataset** under the **ODC-By 1.0 license**. However, by carefully adding additional filtering steps, we managed to push the performance of 🍷 FineWeb well above that of the original πŸ¦… RefinedWeb, and models trained on our dataset also outperform models trained on other commonly used high quality web datasets (like C4, Dolma-v1.6, The Pile, SlimPajama, RedPajam2) on our aggregate group of [benchmark tasks](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py).

That said, we think there is still room for additional filtering and improvement and intend to continue exploring how to improve the dataset quality in coming versions of 🍷 FineWeb.

## What is being released?

Along with the dataset, which includes all CommonCrawl dumps since 2013, we also share all the code needed to fully reproduce our processing setup using the 🏭 [`datatrove`](https://github.com/huggingface/datatrove/) library [here](https://github.com/huggingface/datatrove/blob/main/examples/fineweb.py). To enable full replication of our results, we have also published the small ablation models we have trained using [`nanotron`](https://github.com/huggingface/nanotron/) to validate the dataset and compare it with other reference datasets. You will find them [here](https://huggingface.co/collections/HuggingFaceFW/ablation-models-662457b0d213e8c14fe47f32), with checkpoints every 1000 steps. We have also published our evaluation results [here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/eval_results.csv). Our evaluation setup is available [here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py).

You will find details on the different processing decisions we took and some interesting explorations of deduplication methods on our [blogpost](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1).

## Changelog
_Previous versions remain available in the branch `version name`._

- **v1.1.0 (31-05-2024):** We reprocessed and reuploaded 11 dumps, `CC-MAIN-2021-49` to `CC-MAIN-2023-40`, as we found a bug on their deduplication. We also added the most recent dump: `CC-MAIN-2024-18`, crawled over April 2024. Expect a small perf improvement
- **v1.0.0 (21-04-2024):** Initial version

## How to download and use 🍷 FineWeb

You can load the full dataset or a specific crawl/dump (see table below). Dumps have the format `CC-MAIN-(year)-(week number)`.

### (Smaller) sample versions
Along with config `default` (all the data), and the configs for each individual dump, you can also download the following configs:
- `sample-350BT`: a subset randomly sampled from the whole dataset of around 350B gpt2 tokens (388GB)
- `sample-100BT`: a subset randomly sampled from the whole dataset of around 100B gpt2 tokens (277.4GB)
- `sample-10BT`: a subset randomly sampled from the whole dataset of around 10B gpt2 tokens (27.6GB)

`sample-10B` was sampled from `sample-100B` which in turn was sampled from `sample-350BT`.

### Using 🏭 [`datatrove`](https://github.com/huggingface/datatrove/)

```python
from datatrove.pipeline.readers import ParquetReader

# limit determines how many documents will be streamed (remove for all)
# to fetch a specific dump: hf://datasets/HuggingFaceFW/fineweb/data/CC-MAIN-2024-10
# replace "data" with "sample/100BT" to use the 100BT sample
data_reader = ParquetReader("hf://datasets/HuggingFaceFW/fineweb/data", limit=1000) 
for document in data_reader():
    # do something with document
    print(document)

###############################    
# OR for a processing pipeline:
###############################

from datatrove.executor import LocalPipelineExecutor
from datatrove.pipeline.readers import ParquetReader
from datatrove.pipeline.filters import LambdaFilter
from datatrove.pipeline.writers import JsonlWriter

pipeline_exec = LocalPipelineExecutor(
    pipeline=[
        # replace "data/CC-MAIN-2024-10" with "sample/100BT" to use the 100BT sample
        ParquetReader("hf://datasets/HuggingFaceFW/fineweb/data/CC-MAIN-2024-10", limit=1000),
        LambdaFilter(lambda doc: "hugging" in doc.text),
        JsonlWriter("some-output-path")
    ],
    tasks=10
)
pipeline_exec.run()
```

### Using `huggingface_hub`

```python
from huggingface_hub import snapshot_download
folder = snapshot_download(
                "HuggingFaceFW/fineweb", 
                repo_type="dataset",
                local_dir="./fineweb/",
                # replace "data/CC-MAIN-2023-50/*" with "sample/100BT/*" to use the 100BT sample
                allow_patterns="data/CC-MAIN-2023-50/*")
```

For faster downloads, make sure to install `pip install huggingface_hub[hf_transfer]` and set the environment variable `HF_HUB_ENABLE_HF_TRANSFER=1`.

### Using `datasets`

```python
from datasets import load_dataset
# use name="sample-10BT" to use the 10BT sample
fw = load_dataset("HuggingFaceFW/fineweb", name="CC-MAIN-2024-10", split="train", streaming=True)
```

## Breakdown by dump/crawl

| Dump | Time period | Disk size (GB) | gpt2 tokens (billions) |
| --- | --- | --- | --- |
| CC-MAIN-2024-18 | April 2024             | 417.6          | 154.4                       |
| CC-MAIN-2024-10 | February/March 2024    | 432.0          | 157.2                       |
| CC-MAIN-2023-50 | November/December 2023 | 650.0          | 239.7                       |
| CC-MAIN-2023-40 | September/October 2023 | 668.7          | 252.0                       |
| CC-MAIN-2023-23 | May/June 2023          | 654.4          | 249.2                       |
| CC-MAIN-2023-14 | March/April 2023       | 621.3          | 236.5                       |
| CC-MAIN-2023-06 | January/February 2023  | 621.9          | 233.9                       |
| CC-MAIN-2022-49 | November/December 2022 | 631.2          | 237.5                       |
| CC-MAIN-2022-40 | September/October 2022 | 606.4          | 228.7                       |
| CC-MAIN-2022-33 | August 2022            | 434.6          | 163.5                       |
| CC-MAIN-2022-27 | June/July 2022         | 574.9          | 216.1                       |
| CC-MAIN-2022-21 | May 2022               | 646.4          | 242.7                       |
| CC-MAIN-2022-05 | January 2022           | 520.1          | 195.4                       |
| CC-MAIN-2021-49 | November/December 2021 | 413.7          | 155.5                       |
| CC-MAIN-2021-43 | October 2021           | 601.5          | 221.0                       |
| CC-MAIN-2021-43 | October 2021 | 601.5 | 221.0 |
| CC-MAIN-2021-39 | September 2021 | 518.9 | 190.6 |
| CC-MAIN-2021-31 | July/August 2021 | 593.9 | 217.7 |
| CC-MAIN-2021-25 | June 2021 | 424.4 | 155.7 |
| CC-MAIN-2021-21 | May 2021 | 455.9 | 167.4 |
| CC-MAIN-2021-17 | April 2021 | 556.0 | 204.1 |
| CC-MAIN-2021-10 | February/March 2021 | 463.2 | 169.6 |
| CC-MAIN-2021-04 | January 2021 | 562.4 | 205.4 |
| CC-MAIN-2020-50 | November/December 2020 | 422.8 | 154.3 |
| CC-MAIN-2020-45 | October 2020 | 426.9 | 155.8 |
| CC-MAIN-2020-40 | September 2020 | 555.5 | 202.4 |
| CC-MAIN-2020-34 | August 2020 | 379.6 | 138.7 |
| CC-MAIN-2020-29 | July 2020 | 489.6 | 178.7 |
| CC-MAIN-2020-24 | May/June 2020 | 398.7 | 145.1 |
| CC-MAIN-2020-16 | March/April 2020 | 454.0 | 165.6 |
| CC-MAIN-2020-10 | February 2020 | 369.6 | 134.7 |
| CC-MAIN-2020-05 | January 2020 | 483.3 | 176.4 |
| CC-MAIN-2019-51 | December 2019 | 359.3 | 130.9 |
| CC-MAIN-2019-47 | November 2019 | 395.4 | 144.0 |
| CC-MAIN-2019-43 | October 2019 | 422.3 | 153.9 |
| CC-MAIN-2019-39 | September 2019 | 394.4 | 143.7 |
| CC-MAIN-2019-35 | August 2019 | 454.2 | 165.4 |
| CC-MAIN-2019-30 | July 2019 | 416.6 | 151.5 |
| CC-MAIN-2019-26 | June 2019 | 412.9 | 150.1 |
| CC-MAIN-2019-22 | May 2019 | 432.8 | 157.4 |
| CC-MAIN-2019-18 | April 2019 | 426.7 | 155.3 |
| CC-MAIN-2019-13 | March 2019 | 417.8 | 152.1 |
| CC-MAIN-2019-09 | February 2019 | 467.2 | 169.9 |
| CC-MAIN-2019-04 | January 2019 | 438.1 | 158.7 |
| CC-MAIN-2018-51 | December 2018 | 498.6 | 180.8 |
| CC-MAIN-2018-47 | November 2018 | 437.7 | 158.9 |
| CC-MAIN-2018-43 | October 2018 | 468.8 | 169.9 |
| CC-MAIN-2018-39 | September 2018 | 429.2 | 155.2 |
| CC-MAIN-2018-34 | August 2018 | 408.2 | 148.0 |
| CC-MAIN-2018-30 | July 2018 | 501.5 | 181.4 |
| CC-MAIN-2018-26 | June 2018 | 467.5 | 170.0 |
| CC-MAIN-2018-22 | May 2018 | 398.6 | 144.2 |
| CC-MAIN-2018-17 | April 2018 | 435.1 | 158.1 |
| CC-MAIN-2018-13 | March 2018 | 471.5 | 171.5 |
| CC-MAIN-2018-09 | February 2018 | 490.2 | 178.0 |
| CC-MAIN-2018-05 | January 2018 | 493.5 | 180.7 |
| CC-MAIN-2017-51 | December 2017 | 442.6 | 161.5 |
| CC-MAIN-2017-47 | November 2017 | 457.9 | 167.1 |
| CC-MAIN-2017-43 | October 2017 | 535.6 | 194.9 |
| CC-MAIN-2017-39 | September 2017 | 444.5 | 162.3 |
| CC-MAIN-2017-34 | August 2017 | 503.2 | 183.4 |
| CC-MAIN-2017-30 | July 2017 | 439.2 | 161.2 |
| CC-MAIN-2017-26 | June 2017 | 491.5 | 179.8 |
| CC-MAIN-2017-22 | May 2017 | 441.0 | 161.5 |
| CC-MAIN-2017-17 | April 2017 | 596.8 | 218.6 |
| CC-MAIN-2017-13 | March 2017 | 579.8 | 212.1 |
| CC-MAIN-2017-09 | February 2017 | 492.2 | 180.2 |
| CC-MAIN-2017-04 | January 2017 | 474.3 | 174.4 |
| CC-MAIN-2016-50 | December 2016 | 448.9 | 165.4 |
| CC-MAIN-2016-44 | October 2016 | 467.8 | 172.0 |
| CC-MAIN-2016-40 | September 2016 | 386.1 | 142.8 |
| CC-MAIN-2016-36 | August 2016 | 339.6 | 126.3 |
| CC-MAIN-2016-30 | July 2016 | 346.0 | 128.4 |
| CC-MAIN-2016-26 | June 2016 | 256.5 | 95.5 |
| CC-MAIN-2016-22 | May 2016 | 310.9 | 115.4 |
| CC-MAIN-2016-18 | April 2016 | 298.1 | 110.8 |
| CC-MAIN-2016-07 | February 2016 | 342.7 | 127.2 |
| CC-MAIN-2015-48 | November 2015 | 353.9 | 131.3 |
| CC-MAIN-2015-40 | September 2015 | 284.0 | 105.5 |
| CC-MAIN-2015-35 | August 2015 | 359.4 | 133.2 |
| CC-MAIN-2015-32 | July 2015 | 352.4 | 130.1 |
| CC-MAIN-2015-27 | June 2015 | 335.5 | 124.0 |
| CC-MAIN-2015-22 | May 2015 | 380.2 | 140.4 |
| CC-MAIN-2015-18 | April 2015 | 389.0 | 143.8 |
| CC-MAIN-2015-14 | March 2015 | 337.5 | 124.5 |
| CC-MAIN-2015-11 | February 2015 | 361.4 | 133.3 |
| CC-MAIN-2015-06 | January 2015 | 356.1 | 131.3 |
| CC-MAIN-2014-52 | December 2014 | 388.5 | 143.3 |
| CC-MAIN-2014-49 | November 2014 | 319.9 | 117.7 |
| CC-MAIN-2014-42 | October 2014 | 371.1 | 136.4 |
| CC-MAIN-2014-41 | September 2014 | 408.1 | 150.2 |
| CC-MAIN-2014-35 | August 2014 | 395.7 | 145.6 |
| CC-MAIN-2014-23 | July 2014 | 425.0 | 156.5 |
| CC-MAIN-2014-15 | April 2014 | 369.1 | 135.7 |
| CC-MAIN-2014-10 | March 2014 | 396.2 | 146.2 |
| CC-MAIN-2013-48 | Winter 2013 | 396.8 | 145.9 |
| CC-MAIN-2013-20 | Summer 2013 | 393.9 | 144.5 |
| Total |  | 43056.6 | 15835.2 |

## Dataset performance evaluation and ablations

We conducted our dataset performance ablations and evaluations by training a series of 1.8B parameters models on 27 billion tokens. To compare 🍷 FineWeb with other datasets, we also trained one of these 1.8B models per target dataset, on 350 billion tokens sampled from it (or the entire dataset when its size was < 350 billion tokens).

### Hyper-parameters for ablation models

The detailed configurations for training the 1.8B parameters ablation model can be found here (link will be added soon).

### Ablation evaluation benchmarks

To conduct the ablations for each of our dataset filtering choices, we selected a set of benchmarks which we identified as β€œhigh-signal” benchmarks. These benchmarks were selected according to the following criteria:

- small variance between runs trained on different samplings of the same dataset
- performance increasing monotically during training (or close)
- separation between runs on datasets of known quality (C4, The Pile, RedPajama) higher than the variance between runs with various modeling/data seeds

We used the following list of benchmark for our ablation runs:

- commonsense_qa (acc/acc_norm)
- hellaswag (acc/acc_norm)
- openbookqa (acc/acc_norm)
- piqa (acc/acc_norm)
- siqa (acc/acc_norm)
- winogrande (acc/acc_norm)
- arc (acc/acc_norm)
- mmlu (acc/acc_norm)

To compare runs we consider an aggregate score, the average of the scores for these tasks.

The prompts for all these benchmarks are formatted in order to compute and compare the log-likelihood of the full answers for each multiple choice question. All the implementation details for the benchmarks are available in `lighteval` [here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py).

### Comparison with other datasets

We compared 🍷 FineWeb with the following datasets:

- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [C4](https://huggingface.co/datasets/allenai/c4)
- [Dolma v1.6](https://huggingface.co/datasets/allenai/dolma) (the CommonCrawl part)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
- [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B)
- [RedPajama2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2) (deduplicated)

You will find these models on [this collection](https://huggingface.co/collections/HuggingFaceFW/ablation-models-662457b0d213e8c14fe47f32). We have uploaded checkpoints at every 1000 training steps. You will also find our full [evaluation results here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/eval_results.csv).

<center>
    <img src="https://huggingface.co/datasets/HuggingFaceFW/admin/resolve/main/fineweb-ablations.png" alt="ablations">
</center>

_Note:_ The plot is smoothed by averaging 5k steps in a rolling window.

# Dataset card for 🍷 FineWeb

## Dataset Description

- **Homepage and Repository:** [https://huggingface.co/datasets/HuggingFaceFW/fineweb](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- **Point of Contact:** please create a discussion on the Community tab
- **License:** Open Data Commons Attribution License (ODC-By) v1.0

### Dataset Summary

This dataset was created by processing 96 [CommonCrawl](https://commoncrawl.org/) dumps comprising web data crawled from the summer of 2013 to April of 2024. 🍷 FineWeb includes a variety of domains and topics in English and is primarily intended to be used as a research artifact on public data in the context of pretraining dataset for large language models. The CommonCrawl data was carefully processed, filtered and deduplicated with the 🏭 [`datatrove`](https://github.com/huggingface/datatrove/) library, resulting in the largest publicly available clean LLM pretraining dataset, counting around 15 trillion tokens (gpt2 tokenizer).

## Dataset Structure

### Data Instances

The following is an example sample from the dataset. It is part of the `CC-MAIN-2021-43` and was crawled on `2021-10-15T21:20:12Z`.

```json
{
   "text": "This is basically a peanut flavoured cream thickened with egg yolks and then set into a ramekin on top of some jam. Tony, one of the Wedgwood chefs, suggested sprinkling on some toasted crushed peanuts at the end to create extra crunch, which I thought was a great idea. The result is excellent.",
   "id": "<urn:uuid:e5a3e79a-13d4-4147-a26e-167536fcac5d>",
   "dump": "CC-MAIN-2021-43",
   "url": "<http://allrecipes.co.uk/recipe/24758/peanut-butter-and-jam-creme-brulee.aspx?o_is=SimilarRecipes&o_ln=SimRecipes_Photo_7>",
   "date": "2021-10-15T21:20:12Z",
   "file_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-43/segments/1634323583083.92/warc/CC-MAIN-20211015192439-20211015222439-00600.warc.gz",
   "language": "en",
   "language_score": 0.948729,
   "token_count": 69
}
```

### Data Fields

- `text` (string): the main text content
- `id` (string): original unique identifier for this sample from CommonCrawl
- `dump` (string): the CommonCrawl dump this sample was a part of
- `url` (string): url to the original page where `text` was present
- `date` (string): crawl date (from CommonCrawl)
- `file_path` (string): s3 path for the individual CommonCrawl warc file containing this sample
- `language` (string): `en` for all the samples in this dataset
- `language_score` (float): language prediction score (`0.01.0`) as reported by the [fastText language classifier](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/filters/language_filter.py)
- `token_count` (int): number of tokens when applying the `gpt2` tokenizer to this sample

### Data Splits

The `default` subset includes the entire dataset. If you would like to only use the data from a particular [CommonCrawl dump](https://commoncrawl.org/overview), you can use the dump name as a subset. You will find the full list of available dumps on the table above.
From experiments we have run, not all dumps give the same performance. For relatively small trainings (<550 billion tokens) we recommend using the recent `CC-MAIN-2023-50`, `CC-MAIN-2024-10` and `CC-MAIN-2024-18`. 

## Dataset Creation

### Curation Rationale

While multiple open-weights models have regularly been released in recent months, these releases often do not include the model's training data. With 🍷 FineWeb we aim to provide the open source community with a very large clean pretraining dataset that can be used to push the envelope on truly open source models (open source models where data is also released). 

### Source Data

The source data consists of webpages crawled by the CommonCrawl foundation over the 2013-2024 time period.

We then extracted the main page text from the html of each webpage, carefully filtered each sample and deduplicated each individual CommonCrawl dump/crawl.

While we originally intended to deduplicate the dataset as a whole, our ablations showed that training on a sampling of individually deduplicated dumps/crawls outperformed training on a sampling of all the dumps/crawls deduplicated together. You will find more details on our [blogpost](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1).

### Data processing steps

We used the 🏭 `datatrove` library to process the data.
You can find a **working script** that launches the [entire processing pipeline here](https://github.com/huggingface/datatrove/blob/main/examples/fineweb.py).

The data processing pipeline consists of:

1. [Url Filtering](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/url_filter.py), removing documents originating from Malicious and NSFW websites, using both block-list as well as subwords detection
2. [Trafilatura](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/extractors/trafilatura.py) text extraction on the raw HTML from CommonCrawl’s warc files
3. [FastText LanguageFilter](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/language_filter.py), removing any document with `en` language score lower than **0.65**
4. Quality filtering
    1. [Gopher Repetition /](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/gopher_repetition_filter.py) [Quality](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/gopher_quality_filter.py)
    2. [C4 Quality filters](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/c4_quality_filter.py) except `terminal_punct` rule
    3. [FineWeb custom filters](https://github.com/huggingface/datatrove/blob/05194d3960741e7d5c0bd0d6dd69d44514622549/src/datatrove/pipeline/filters/fineweb_quality_filter.py), consisting of heuristics for removing list-like documents, documents with repeated lines and documents with likely wrong line formatting. 
5. [MinHash deduplication](https://github.com/huggingface/datatrove/blob/6daa5e879e06b21e6886b37e2b1be4ae58a658b6/src/datatrove/pipeline/dedup/minhash.py) with each crawl deduplicated individually (5-grams, 14x8 hash functions)
6. [PII Formatting](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/formatters/pii.py) to anonymize email and public IP addresses

### Annotations

We augment the original samples with the `language`, `language_score` and `token_count` annotations. The language related annotations are automatically generated by our [language filter](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/filters/language_filter.py). `token_count` is generated by [applying the gpt2 tokenizer](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/tokens/counter.py) to the `text` column.

### Personal and Sensitive Information

We anonymize email addresses and public IP addresses. 

For emails, we apply a regex pattern and replace any occurrence of an email address with either `email@example.com` or `firstname.lastname@example.org`. For IP addresses, we also employ a regex pattern and then further filter to only anonymize IP addresses [allocated for public networks](https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml). Matched IP addresses are then replaced with one of the following randomly generated IP addresses, which at the time of dataset creation were not responding to ping requests: `22.214.171.124`, `126.96.36.199`, `188.8.131.52`, `184.108.40.206`, `220.127.116.11`, and `18.104.22.168`. We decided against applying regex patterns for phone numbers due to the high false positive rate.

Despite our efforts, given that 🍷 FineWeb is sourced from the internet at large, it is very likely that some personable identifiable information (PII) will be present. If you find your own PII in 🍷 FineWeb and would like it removed, please fill out our [PII removal form](https://forms.gle/VyNT3ZAUPZjPuWp39).

## Considerations for Using the Data

### Social Impact of Dataset

With the release of this dataset we aim to make model training more accessible to the machine learning community at large. 

While multiple open-weights models with strong performance have been publicly released in the past, more often than not these releases are not accompanied by the corresponding training dataset. This is unfortunate as the dataset specificities and characteristics have been demonstrated to have a very large impact and role in the performances of the models. As the creation of a high quality training dataset is a fundamental requirement to training an LLM capable of excelling at downstream tasks, with 🍷 FineWeb we (a) not only make the dataset creation process more transparent, by sharing our entire processing setup including the codebase used, we also (b) help alleviate the costs of dataset curation, both in time and in compute, for model creators by publicly releasing our dataset with the community.

### Discussion of Biases

Efforts were made to minimize the amount of NSFW and toxic content present in the dataset by employing filtering on the URL level. However, there are still a significant number of documents present in the final dataset that could be considered toxic or contain harmful content. As 🍷 FineWeb was sourced from the web as a whole, any harmful biases typically present in it may be reproduced on our dataset.

We deliberately avoided using machine learning filtering methods that define text quality based on the similarity to a β€œgold” source such as wikipedia or toxicity classifiers as these methods have been known to [disproportionately remove content in specific dialects](https://aclanthology.org/D16-1120/) and [overclassify as toxic text related to specific social identities](https://arxiv.org/pdf/2109.07445.pdf), respectively.

### Other Known Limitations

As a consequence of some of the filtering steps applied, it is likely that code content is not prevalent in our dataset. If you are training a model that should also perform code tasks, we recommend you use 🍷 FineWeb with a code dataset, such as [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2). You should also probably consider complementing 🍷 FineWeb with specialized curated sources (such as Wikipedia, for example) as they will likely have better formatting than the wikipedia content included in 🍷 FineWeb (we did not tailor the processing to individual websites).

## Additional Information

### Licensing Information

The dataset is released under the **Open Data Commons Attribution License (ODC-By) v1.0** [license](https://opendatacommons.org/licenses/by/1-0/). The use of this dataset is also subject to [CommonCrawl's Terms of Use](https://commoncrawl.org/terms-of-use).

### Future work

We plan to not only continue but also expand our efforts to create open-source high quality training datasets and to improve 🍷 FineWeb itself in future iterations.

## Citation Information
Paper on [arXiv](https://arxiv.org/abs/2406.17557)
```
@misc{penedo2024finewebdatasetsdecantingweb,
      title={The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale}, 
      author={Guilherme Penedo and Hynek Kydlíček and Loubna Ben allal and Anton Lozhkov and Margaret Mitchell and Colin Raffel and Leandro Von Werra and Thomas Wolf},
      year={2024},
      eprint={2406.17557},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
      url={https://arxiv.org/abs/2406.17557}, 
}
```