--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: inst_no dtype: int64 - name: system dtype: string splits: - name: train num_bytes: 55286755 num_examples: 20000 - name: validation num_bytes: 2408874 num_examples: 1000 - name: test num_bytes: 10404070 num_examples: 5000 download_size: 33379631 dataset_size: 68099699 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- ### Original Dataset ``` @inproceedings{scialom-etal-2020-mlsum, title = "{MLSUM}: The Multilingual Summarization Corpus", author = "Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo", editor = "Webber, Bonnie and Cohn, Trevor and He, Yulan and Liu, Yang", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.emnlp-main.647", doi = "10.18653/v1/2020.emnlp-main.647", pages = "8051--8067", abstract = "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages {--} namely, French, German, Spanish, Russian, Turkish. Together with English news articles from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.", } ```