# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import os import datasets _DESCRIPTION = """\ Giga-word corpus for French-English from WMT2010 collected by Chris Callison-Burch 2 languages, total number of files: 452 total number of tokens: 1.43G total number of sentence fragments: 47.55M """ _HOMEPAGE_URL = "http://opus.nlpl.eu/giga-fren.php" _CITATION = """\ @InProceedings{TIEDEMANN12.463, author = {J{\"o}rg Tiedemann}, title = {Parallel Data, Tools and Interfaces in OPUS}, booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)}, year = {2012}, month = {may}, date = {23-25}, address = {Istanbul, Turkey}, editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Ugur Dogan and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis}, publisher = {European Language Resources Association (ELRA)}, isbn = {978-2-9517408-7-7}, language = {english} } """ _VERSION = "2.0.0" _BASE_NAME = "giga-fren.{}.{}" _URL = "https://object.pouta.csc.fi/OPUS-giga-fren/v2/moses/en-fr.txt.zip" class GigaFrenConfig(datasets.BuilderConfig): def __init__(self, *args, **kwargs): super().__init__( *args, name="en-fr", **kwargs, ) @property def lang1(self): return "en" @property def lang2(self): return "fr" class GigaFren(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [GigaFrenConfig(description=f"Translating en to fr ", version=datasets.Version(_VERSION))] BUILDER_CONFIG_CLASS = GigaFrenConfig def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)), }, ), supervised_keys=None, homepage=_HOMEPAGE_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): path = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"datapath": path}, ) ] def _generate_examples(self, datapath): l1, l2 = self.config.lang1, self.config.lang2 folder = l1 + "-" + l2 l1_file = _BASE_NAME.format(folder, l1) l2_file = _BASE_NAME.format(folder, l2) l1_path = os.path.join(datapath, l1_file) l2_path = os.path.join(datapath, l2_file) with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2: for sentence_counter, (x, y) in enumerate(zip(f1, f2)): x = x.strip() y = y.strip() result = ( sentence_counter, { "id": str(sentence_counter), "translation": {l1: x, l2: y}, }, ) yield result