--- configs: - config_name: General Knowledge data_files: - split: test path: data/HAERAE-Bench-v1-KGK.csv - config_name: History data_files: - split: test path: data/HAERAE-Bench-v1-HI.csv - config_name: Loan Words data_files: - split: test path: data/HAERAE-Bench-v1-LW.csv - config_name: Reading Comprehension data_files: - split: test path: data/HAERAE-Bench-v1-RC.csv - config_name: Rare Words data_files: - split: test path: data/HAERAE-Bench-v1-RW.csv - config_name: Standard Nomenclature data_files: - split: test path: data/HAERAE-Bench-v1-SN.csv --- The HAE_RAE_BENCH 1.0 is the original implementation of the dataset froom the paper: [HAE-RAE BENCH paper](https://arxiv.org/abs/2309.02706). The benchmark is a collection of 1,538 instances across 6 tasks: standard_nomenclature, loan_word, rare_word, general_knowledge, history and reading comprehension. To replicate the studies from the paper, see below. ### Dataset Overview | Task | Instances | Version | Explanation | |-----------------------------|-----------|---------|---------------------------------------------------------------------| | standard_nomenclature | 153 | v1.0 | Multiple-choice questions about Korean standard nomenclatures from NIKL. | | loan_word | 169 | v1.0 | Multiple-choice questions about Korean loan words from NIKL. | | rare_word | 405 | v1.0 | Multiple-choice questions about rare Korean words from NIKL. | | general_knowledge | 176 | v1.0 | Multiple-choice questions on Korean cultural knowledge. | | history | 188 | v1.0 | Multiple-choice questions on Korean history. | | reading_comprehension | 447 | v1.0 | Multiple-choice questions on Korean reading comprehension from the Korean Language Ability Test (KLAT). | | **Total** | **1538** | | | ### Evaluation Code ``` !git clone https://github.com/guijinSON/lm-evaluation-harness.git !pip install sentencepiece %cd lm-evaluation-harness !pip install -e . !pip install -e ".[multilingual]" !pip install huggingface_hub !lm_eval --model hf \ --model_args pretrained=EleutherAI/polyglot-ko-12.8b \ --tasks HRB \ --device cuda:0 \ --batch_size auto:4 \ --write_out ``` *We've observed minor differences with the original paper, we postulate that this is mostly because of the update in the LM-Eval-Harness repo.* ### Point of Contact For any questions contact us via the following email:) ``` spthsrbwls123@yonsei.ac.kr ```