diff --git "a/attnserver.run_attnserver.slurm.sh.343196.out.log" "b/attnserver.run_attnserver.slurm.sh.343196.out.log" --- "a/attnserver.run_attnserver.slurm.sh.343196.out.log" +++ "b/attnserver.run_attnserver.slurm.sh.343196.out.log" @@ -11711,3 +11711,6087 @@ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/mega time to initialize megatron (seconds): 10.504 [after megatron is initialized] datetime: 2025-06-21 20:55:48 building GPT model ... +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding>>> embedding + +>>> decoder>>> decoder + +>>> output_layer>>> output_layer + +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 87094784 +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 87094784 +>>> embedding>>> embedding + +>>> decoder +>>> decoder>>> output_layer + +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 87094784 +>>> embedding + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 87094784 +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 87094784 +>>> embedding +>>> decoder + > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 87094784 + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 87094784 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 87094784 +INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False) +INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1 +Params for bucket 1 (87094784 elements, 87094784 padded size): + module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias + module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias + module.decoder.layers.0.self_attention.linear_proj.weight + module.embedding.word_embeddings.weight + module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight + module.decoder.layers.1.self_attention.linear_qkv.bias + module.decoder.layers.0.mlp.linear_fc2.bias + module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight + module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias + module.decoder.layers.0.self_attention.linear_proj.bias + module.decoder.layers.1.mlp.linear_fc1.weight + module.decoder.layers.0.mlp.linear_fc1.weight + module.decoder.final_layernorm.bias + module.decoder.layers.1.mlp.linear_fc2.bias + module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight + module.decoder.layers.0.self_attention.linear_qkv.weight + module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias + module.decoder.layers.0.mlp.linear_fc1.bias + module.decoder.layers.1.mlp.linear_fc1.bias + module.decoder.final_layernorm.weight + module.decoder.layers.0.mlp.linear_fc2.weight + module.decoder.layers.1.self_attention.linear_qkv.weight + module.decoder.layers.1.self_attention.linear_proj.weight + module.decoder.layers.0.self_attention.linear_qkv.bias + module.decoder.layers.1.mlp.linear_fc2.weight + module.decoder.layers.1.self_attention.linear_proj.bias + module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight + module.embedding.position_embeddings.weight +INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=, config_logger_dir='') +INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine +WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt + will not load any checkpoints and will start from random +(min, max) time across ranks (ms): + load-checkpoint ................................: (3.55, 3.71) +[after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 20:55:48 +> building train, validation, and test datasets ... + > datasets target sizes (minimum size): + train: 10 + validation: 1 + test: 1 +INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None +INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True +INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)] +> building train, validation, and test datasets for GPT ... +INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=4096, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None) +INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices +DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False +WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None +DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.005269 seconds +INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 16648 +INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1 +INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices +DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False +WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None +DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.002157 seconds +INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 16640 +INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1 +INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices +DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False +WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None +DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.002009 seconds +INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 16671 +INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1 +> finished creating GPT datasets ... +[after dataloaders are built] datetime: 2025-06-21 20:55:48 +done with setup ... +training ... +(min, max) time across ranks (ms): + model-and-optimizer-setup ......................: (682.19, 698.68) + train/valid/test-data-iterators-setup ..........: (17.96, 135.32) +Setting rerun_state_machine.current_iteration to 0... +[before the start of training step] datetime: 2025-06-21 20:55:48 +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor:batch tensor: tokens tokens torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: batch tensor:labels labelstorch.Size([2, 8192]) +torch.Size([2, 8192])batch tensor: +batch tensor: position_ids torch.Size([2, 8192]) + loss_maskbatch tensor: loss_masktorch.Size([2, 8192]) +torch.Size([2, 8192])batch tensor: +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) + batch tensor:attention_mask attention_mask torch.Size([2, 1, 8192, 8192])torch.Size([2, 1, 8192, 8192]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor:batch tensor: position_idsposition_ids torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192])batch tensor: +batch tensor: attention_mask tokenstorch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 0 +Done exporting trace 0 +Number of parameters in transformer block in billions: 0.35 +Number of parameters in embedding layers in billions: 0.21 +Total number of parameters in billions: 0.56 +Number of parameters in most loaded shard in billions: 0.0703 +Theoretical memory footprints: weight and optimizer=1206.09 MB + [2025-06-21 20:56:02] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 13702.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +[Rank 16] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 2] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 10] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 11] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 8] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 2004.0 | max reserved: 2004.0 +[Rank 27] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 29] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 17] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 7] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 13] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1988.0 | max reserved: 1988.0 +[Rank 9] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 26] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 25] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 21] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0[Rank 19] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 + +[Rank 6] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0[Rank 0] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 + +[Rank 5] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 14] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 31] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 22] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 23] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 18] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 3] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 15] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 30] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 24] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 20] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 4] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 12] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1934.0 | max reserved: 1934.0 +[Rank 28] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +[Rank 1] (after 1 iterations) memory (MB) | allocated: 1295.27392578125 | max allocated: 1537.4814453125 | reserved: 1902.0 | max reserved: 1902.0 +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: tokensloss_mask torch.Size([2, 2048])torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) + +batch tensor after cp: batch tensor after cp:attention_mask labelstorch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: torch.Size([2, 2048])position_ids +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) + batch tensor after cp:torch.Size([2, 2048]) +loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_maskbatch tensor: torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192])tokens +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) + torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 1 +Done exporting trace 1 + [2025-06-21 20:56:02] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 167.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor:batch tensor: tokens tokens torch.Size([2, 8192]) +batch tensor:torch.Size([2, 8192]) labels + torch.Size([2, 8192]) +batch tensor:batch tensor: loss_masklabels torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor:batch tensor: attention_maskloss_mask torch.Size([2, 8192])torch.Size([2, 1, 8192, 8192]) + +batch tensor:batch tensor:batch tensor: tokensposition_ids attention_mask torch.Size([2, 8192])torch.Size([2, 1, 8192, 8192]) +torch.Size([2, 8192]) + +batch tensor: position_ids batch tensor:torch.Size([2, 8192]) +labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens batch tensor after cp:torch.Size([2, 2048]) + tokensbatch tensor after cp: labelstorch.Size([2, 2048]) +torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: labelsloss_mask torch.Size([2, 2048])torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens batch tensor:torch.Size([2, 8192]) + +batch tensor after cp:batch tensor after cp: loss_maskattention_mask torch.Size([2, 2048]) +torch.Size([2, 1, 2048, 8192])batch tensor after cp: +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) + tokens batch tensor: labels torch.Size([2, 8192]) + batch tensor after cp:attention_mask position_ids torch.Size([2, 1, 2048, 8192])torch.Size([2, 2048]) + +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor:torch.Size([2, 8192]) loss_mask + torch.Size([2, 8192]) +batch tensor: batch tensor:labels attention_masktorch.Size([2, 8192]) +torch.Size([2, 1, 8192, 8192])batch tensor: +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) + loss_maskbatch tensor: position_idstorch.Size([2, 8192]) +torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: batch tensor after cp:tokens tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +torch.Size([2, 8192])batch tensor after cp: +loss_mask torch.Size([2, 2048]) +batch tensor:batch tensor after cp: labelsattention_mask torch.Size([2, 8192]) +torch.Size([2, 1, 2048, 8192])batch tensor: + batch tensor after cp:loss_mask position_idstorch.Size([2, 8192]) +torch.Size([2, 2048])batch tensor: + attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048])batch tensor after cp: + batch tensor after cp:tokens labels torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp:batch tensor after cp: loss_masklabels torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: attention_maskloss_mask torch.Size([2, 1, 2048, 8192])torch.Size([2, 2048]) + +batch tensor after cp:batch tensor after cp: position_idsattention_mask torch.Size([2, 2048])batch tensor:torch.Size([2, 1, 2048, 8192]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_idstokens torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: batch tensor:position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) + tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +Start exporting trace 2 +batch tensor: labels torch.Size([2, 8192]) +Done exporting trace 2 +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) + [2025-06-21 20:56:02] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 109.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor:batch tensor: tokens tokens torch.Size([2, 8192]) +torch.Size([2, 8192])batch tensor: + labels batch tensor:torch.Size([2, 8192]) +labelsbatch tensor: torch.Size([2, 8192])loss_mask + batch tensor:torch.Size([2, 8192]) +loss_mask batch tensor:torch.Size([2, 8192]) +attention_mask batch tensor:torch.Size([2, 1, 8192, 8192]) +attention_mask batch tensor: torch.Size([2, 1, 8192, 8192])position_ids + batch tensor:torch.Size([2, 8192]) +position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp:batch tensor: tokensattention_masktokens torch.Size([2, 1, 8192, 8192])torch.Size([2, 2048])torch.Size([2, 2048]) + + +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp:batch tensor: batch tensor after cp: labels position_idslabels torch.Size([2, 8192])torch.Size([2, 2048]) +torch.Size([2, 2048]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: batch tensor:labels torch.Size([2, 8192]) + batch tensor:tokens loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 8192])torch.Size([2, 1, 8192, 8192]) + +batch tensor: position_idsbatch tensor: torch.Size([2, 8192])labels + torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: batch tensor after cp:loss_mask loss_masktorch.Size([2, 2048]) +torch.Size([2, 2048])batch tensor after cp: + attention_maskbatch tensor after cp: attention_masktorch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp:torch.Size([2, 1, 2048, 8192]) +position_ids batch tensor after cp:torch.Size([2, 2048]) +position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: tokenstokens torch.Size([2, 2048]) +torch.Size([2, 2048]) +batch tensor after cp: batch tensor after cp:labels labelstorch.Size([2, 2048]) +torch.Size([2, 2048])batch tensor after cp: +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) + batch tensor after cp:loss_mask loss_masktorch.Size([2, 2048]) +torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: batch tensor after cp:attention_mask attention_mask torch.Size([2, 1, 2048, 8192]) +torch.Size([2, 1, 2048, 8192])batch tensor after cp: + batch tensor after cp:position_ids position_idstorch.Size([2, 2048]) +torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: position_ids tokens torch.Size([2, 2048]) +torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +Start exporting trace 3 +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +Done exporting trace 3 +batch tensor after cp: position_ids torch.Size([2, 2048]) + [2025-06-21 20:56:03] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 98.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokensbatch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +torch.Size([2, 8192])batch tensor: +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +labels batch tensor:torch.Size([2, 8192]) +labelsbatch tensor: torch.Size([2, 8192])loss_mask + batch tensor:torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +loss_mask batch tensor:torch.Size([2, 8192]) +attention_mask batch tensor: torch.Size([2, 1, 8192, 8192])attention_mask + torch.Size([2, 1, 8192, 8192])batch tensor: +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) + position_idsbatch tensor: torch.Size([2, 8192])position_ids + torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: batch tensor after cp:tokens tokens torch.Size([2, 2048]) +torch.Size([2, 2048])batch tensor after cp: +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: batch tensor:attention_mask torch.Size([2, 1, 2048, 8192])tokens + batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) + labelsbatch tensor after cp: torch.Size([2, 2048])labels + batch tensor after cp:torch.Size([2, 2048]) +loss_mask batch tensor after cp: torch.Size([2, 2048])loss_mask +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) + batch tensor after cp:torch.Size([2, 2048]) +attention_mask batch tensor after cp:torch.Size([2, 1, 2048, 8192]) +attention_mask batch tensor after cp: torch.Size([2, 1, 2048, 8192])position_ids +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) + torch.Size([2, 2048])batch tensor after cp: + position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor:batch tensor: tokens tokens torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor:batch tensor: labelslabels torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor:batch tensor: loss_maskloss_mask torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor:batch tensor: attention_maskattention_mask torch.Size([2, 1, 8192, 8192])torch.Size([2, 1, 8192, 8192]) + +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: batch tensor:position_ids position_idstorch.Size([2, 8192]) +torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 4 +Done exporting trace 4 + [2025-06-21 20:56:03] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 104.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_maskbatch tensor: torch.Size([2, 8192]) + batch tensor:tokens attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: tokenstokens torch.Size([2, 2048]) +torch.Size([2, 2048])batch tensor after cp: + labelsbatch tensor after cp: torch.Size([2, 2048])labels +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) + batch tensor after cp:torch.Size([2, 2048]) +loss_mask batch tensor after cp:torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +loss_maskbatch tensor after cp: torch.Size([2, 2048]) +attention_mask batch tensor after cp:torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +attention_maskbatch tensor after cp: torch.Size([2, 1, 2048, 8192])position_ids + torch.Size([2, 2048])batch tensor after cp: + position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_idsbatch tensor after cp: tokenstorch.Size([2, 8192]) +torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 5 +Done exporting trace 5 + [2025-06-21 20:56:03] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 99.4 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor:batch tensor: loss_mask torch.Size([2, 8192]) +tokens batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask batch tensor after cp:torch.Size([2, 8192]) +tokens batch tensor: torch.Size([2, 2048])attention_mask +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048])batch tensor after cp: + batch tensor after cp:tokens labels torch.Size([2, 2048])torch.Size([2, 2048]) + +torch.Size([2, 1, 8192, 8192])batch tensor after cp: + labelsbatch tensor: position_idstorch.Size([2, 2048]) +torch.Size([2, 8192])batch tensor after cp: + loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: loss_masklabels torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp:batch tensor after cp: attention_maskloss_mask torch.Size([2, 2048])torch.Size([2, 1, 2048, 8192]) + +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: attention_maskposition_ids torch.Size([2, 2048])torch.Size([2, 1, 2048, 8192]) + +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens batch tensor after cp:torch.Size([2, 8192]) +tokens batch tensor:torch.Size([2, 2048]) +labels batch tensor after cp:torch.Size([2, 8192]) +labelsbatch tensor: torch.Size([2, 2048])loss_mask + batch tensor after cp:torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +loss_mask batch tensor:torch.Size([2, 2048]) +attention_maskbatch tensor after cp: torch.Size([2, 1, 8192, 8192])attention_mask + batch tensor:torch.Size([2, 1, 2048, 8192]) +position_ids batch tensor after cp:torch.Size([2, 8192]) +position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels batch tensor:torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_masktokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +torch.Size([2, 8192])batch tensor after cp: position_ids +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) + torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +Start exporting trace 6 +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +Done exporting trace 6 +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) + [2025-06-21 20:56:03] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 97.1 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor:batch tensor: labels torch.Size([2, 8192]) + batch tensor:tokens loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 8192])torch.Size([2, 1, 8192, 8192]) + +batch tensor:batch tensor: position_idslabels torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: tokens attention_mask torch.Size([2, 2048])torch.Size([2, 1, 2048, 8192]) + +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: labelsposition_ids torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 7 +Done exporting trace 7 + [2025-06-21 20:56:03] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 111.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens batch tensor:torch.Size([2, 8192]) + batch tensor:tokens labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_masktorch.Size([2, 8192]) +torch.Size([2, 1, 8192, 8192]) +batch tensor:batch tensor: labelsposition_ids torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: tokenstokens torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp:batch tensor after cp: labelslabels torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp:batch tensor after cp: loss_maskloss_mask torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor:batch tensor after cp: tokens torch.Size([2, 2048])tokens + batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: attention_maskattention_mask torch.Size([2, 1, 2048, 8192])torch.Size([2, 1, 2048, 8192]) + +batch tensor after cp:batch tensor after cp: position_idsposition_ids torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp: loss_mask torch.Size([2, 2048]) +torch.Size([2, 8192])batch tensor after cp: +attention_mask torch.Size([2, 1, 2048, 8192])batch tensor: +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) + batch tensor after cp:labels position_ids torch.Size([2, 8192])torch.Size([2, 2048]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor:batch tensor: tokens tokens torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: batch tensor:labels labels torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: loss_maskbatch tensor: torch.Size([2, 8192]) +loss_mask torch.Size([2, 8192])batch tensor: + attention_mask batch tensor:torch.Size([2, 1, 8192, 8192]) +attention_maskbatch tensor: position_idstorch.Size([2, 1, 8192, 8192]) +torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp:batch tensor: tokenslabels torch.Size([2, 8192])torch.Size([2, 2048]) + +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: batch tensor after cp:loss_mask torch.Size([2, 8192])labels + batch tensor after cp:torch.Size([2, 2048]) +batch tensor: batch tensor after cp: tokens attention_mask loss_mask torch.Size([2, 2048])torch.Size([2, 2048]) +torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: +batch tensor after cp: batch tensor:labelsattention_mask position_idstorch.Size([2, 2048])torch.Size([2, 1, 2048, 8192]) + +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor:batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +torch.Size([2, 8192])batch tensor after cp:batch tensor after cp: + loss_maskposition_ids torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 8 +Done exporting trace 8 + [2025-06-21 20:56:03] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 126.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens batch tensor:torch.Size([2, 8192]) tokens + batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_masktorch.Size([2, 8192]) +torch.Size([2, 8192]) +batch tensor: batch tensor:labels attention_masktorch.Size([2, 8192]) +torch.Size([2, 1, 8192, 8192])batch tensor: + loss_maskbatch tensor: torch.Size([2, 8192])position_ids +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) + batch tensor: torch.Size([2, 8192])attention_mask + torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp:batch tensor after cp: tokenstokens torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: labelslabels torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp:batch tensor after cp: loss_maskloss_mask torch.Size([2, 2048])torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: + attention_maskbatch tensor after cp: attention_masktorch.Size([2, 1, 2048, 8192]) +batch tensor after cp:torch.Size([2, 1, 2048, 8192]) +position_ids batch tensor after cp:torch.Size([2, 2048]) +position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +Start exporting trace 9 +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Done exporting trace 9 +[after training is done] datetime: 2025-06-21 20:56:03 + [2025-06-21 20:56:03] iteration 10/ 10 | consumed samples: 10 | elapsed time per iteration (ms): 96.4 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 8388608.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +saving checkpoint at iteration 10 to gpt-checkpoint in torch_dist format +DEBUG:megatron.training.checkpointing:rank: 11, takes 0.025539636611938477 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 14, takes 0.025539875030517578 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 10, takes 0.025639772415161133 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 9, takes 0.025640010833740234 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 13, takes 0.025706768035888672 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 8, takes 0.02617621421813965 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 18, takes 0.02699756622314453 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 22, takes 0.026990413665771484 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 19, takes 0.02703118324279785 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 12, takes 0.028824567794799805 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 23, takes 0.027108192443847656 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 17, takes 0.027118921279907227 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 20, takes 0.02712249755859375 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 21, takes 0.02712106704711914 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 16, takes 0.027545452117919922 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 29, takes 0.029440641403198242 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 30, takes 0.029445409774780273 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 25, takes 0.029430389404296875 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 27, takes 0.029448270797729492 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 31, takes 0.02945733070373535 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 7, takes 0.0320432186126709 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 3, takes 0.032071590423583984 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 26, takes 0.02950143814086914 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 28, takes 0.029510498046875 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 24, takes 0.029965877532958984 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 2, takes 0.03371429443359375 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 6, takes 0.03404688835144043 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 5, takes 0.034258365631103516 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 15, takes 0.0361020565032959 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 0, takes 0.035016536712646484 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 1, takes 0.039244651794433594 to prepare state dict for ckpt +DEBUG:megatron.training.checkpointing:rank: 4, takes 0.04013204574584961 to prepare state dict for ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(104857600), 0), (np.int64(106954752), 1), (np.int64(106954752), 2), (np.int64(102794240), 3)] +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(130149376), 0), (np.int64(132120576), 1), (np.int64(130149376), 2), (np.int64(130149376), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(130149376), 0), (np.int64(132120576), 1), (np.int64(130149376), 2), (np.int64(130149376), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(130149376), 0), (np.int64(132120576), 1), (np.int64(130149376), 2), (np.int64(130149376), 3)] +DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(130149376), 0), (np.int64(132120576), 1), (np.int64(130149376), 2), (np.int64(130149376), 3)] +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.201690673828125 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1955153942108154 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2041549682617188 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.202026605606079 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1935670375823975 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1961629390716553 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2140493392944336 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.202892541885376 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1961562633514404 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2216670513153076 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2150013446807861 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2022221088409424 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1935479640960693 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1963846683502197 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1963114738464355 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2145845890045166 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.208712100982666 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1939547061920166 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1941075325012207 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1970491409301758 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2151515483856201 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2026994228363037 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.194303274154663 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1964125633239746 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2157344818115234 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1945164203643799 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1968233585357666 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2219717502593994 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.1944713592529297 +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.2222392559051514 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 17, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 21, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 12, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 23, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 9, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 27, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 22, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 10, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 11, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 29, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 18, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 14, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 25, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 16, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 8, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 26, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 1.206094741821289 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 19, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 13, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 24, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 0.019889116287231445 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 15, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 31, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 30, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 28, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 7, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 5, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 6, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 4, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 3, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 2, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 1, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 20, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 21, plan time: 0.009929895401000977 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 17, plan time: 0.009941816329956055 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 14, plan time: 0.009310483932495117 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 13, plan time: 0.008681535720825195 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 11, plan time: 0.009601831436157227 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 16, plan time: 0.008751153945922852 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0870538 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 31, plan time: 0.008660554885864258 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 27, plan time: 0.009446382522583008 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 29, plan time: 0.00930476188659668 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 30, plan time: 0.007746219635009766 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 26, plan time: 0.008960485458374023 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 24, plan time: 0.008838415145874023 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0887125 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 18, plan time: 0.009644031524658203 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 8, plan time: 0.008725166320800781 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0869255 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.086928 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 28, plan time: 0.007058858871459961 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0869255 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0887241 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0870633 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 9, plan time: 0.009796857833862305 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0869355 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.08694 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0887344 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.087067 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 12, plan time: 0.010049581527709961 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0869384 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 25, plan time: 0.009090423583984375 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0887427 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.087099 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0870926 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.087104 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 10, plan time: 0.009682416915893555 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 15, plan time: 0.008646488189697266 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0869622 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0869768 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 23, plan time: 0.009906291961669922 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 19, plan time: 0.008664846420288086 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.747245788574219e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.748603820800781e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.82012939453125e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 8.58306884765625e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.43865966796875e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 5.793571472167969e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 0, starting state dict save +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.866455078125e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.087137 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.653236389160156e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 8.440017700195312e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0887845 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0871446 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00010013580322265625 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 22, plan time: 0.009908676147460938 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.341934204101562e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.961822509765625e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 8.20159912109375e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 8.869171142578125e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.62939453125e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0887985 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.270408630371094e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.390975952148438e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 20, plan time: 0.005280733108520508 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0888145 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 5, plan time: 0.006384134292602539 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.200241088867188e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.270408630371094e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0888484 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 6, plan time: 0.006211042404174805 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0885425 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.67572021484375e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.198883056640625e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 9.179115295410156e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 7, plan time: 0.006532430648803711 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 3, plan time: 0.005904436111450195 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.271766662597656e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 9.274482727050781e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.088567 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 2, plan time: 0.005816459655761719 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 5.5789947509765625e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0885923 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0885897 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0886106 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 4, plan time: 0.0061337947845458984 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 1, plan time: 0.005564451217651367 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.222724914550781e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0886517 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.580352783203125e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 7.081031799316406e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.0886557 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.842613220214844e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.365776062011719e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.651878356933594e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 0, plan time: 0.009147882461547852 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750539365.094876 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.699562072753906e-05 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.0435483455657959 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.04356026649475098 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1325097 rank: 6, write(async) time: 0.04394197463989258 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.13257 rank: 7, write(async) time: 0.04398179054260254 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.045594215393066406 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.04571175575256348 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1346173 rank: 3, write(async) time: 0.04602169990539551 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1346369 rank: 5, write(async) time: 0.046094655990600586 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05304265022277832 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1405065 rank: 14, write(async) time: 0.053450584411621094 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05315279960632324 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1406343 rank: 13, write(async) time: 0.05356907844543457 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.054367780685424805 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1434345 rank: 2, write(async) time: 0.05482125282287598 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05573582649230957 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05580282211303711 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1432936 rank: 10, write(async) time: 0.056154489517211914 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1449003 rank: 1, write(async) time: 0.05624127388000488 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05660510063171387 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05662894248962402 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.056342124938964844 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1441567 rank: 9, write(async) time: 0.057054996490478516 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1441786 rank: 11, write(async) time: 0.057108402252197266 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.059326171875 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1454093 rank: 4, write(async) time: 0.05674433708190918 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1467156 rank: 29, write(async) time: 0.05978512763977051 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.060307979583740234 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1495383 rank: 22, write(async) time: 0.06071925163269043 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05545806884765625 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1508098 rank: 0, write(async) time: 0.055931806564331055 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06297755241394043 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1520884 rank: 21, write(async) time: 0.06337571144104004 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06308126449584961 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1505506 rank: 25, write(async) time: 0.06357288360595703 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06390762329101562 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06373119354248047 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06355714797973633 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.151277 rank: 8, write(async) time: 0.06418466567993164 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1509252 rank: 30, write(async) time: 0.06398773193359375 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1530547 rank: 18, write(async) time: 0.06431007385253906 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06434297561645508 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.151705 rank: 26, write(async) time: 0.06476545333862305 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06455564498901367 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.151974 rank: 31, write(async) time: 0.0650477409362793 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06539463996887207 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06534337997436523 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06624841690063477 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.152982 rank: 15, write(async) time: 0.06583714485168457 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.152782 rank: 24, write(async) time: 0.06583857536315918 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1555223 rank: 19, write(async) time: 0.0667262077331543 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06731986999511719 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1564994 rank: 17, write(async) time: 0.06777286529541016 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06792044639587402 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.157165 rank: 23, write(async) time: 0.06837868690490723 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06822466850280762 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06839871406555176 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1558177 rank: 12, write(async) time: 0.06871175765991211 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1577084 rank: 20, write(async) time: 0.06886410713195801 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.06900811195373535 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.0689241886138916 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.158199 rank: 16, write(async) time: 0.06946110725402832 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.1564147 rank: 27, write(async) time: 0.06948685646057129 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.07109761238098145 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.158555 rank: 28, write(async) time: 0.07159066200256348 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 13, takes 1.7881393432617188e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, takes 2.288818359375e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, takes 1.7881393432617188e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 14, takes 1.7642974853515625e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, takes 1.9550323486328125e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 29, takes 1.7404556274414062e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, takes 1.7881393432617188e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 10, takes 1.71661376953125e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 30, takes 1.6927719116210938e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 25, takes 1.6450881958007812e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 31, takes 1.6927719116210938e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 11, takes 1.8358230590820312e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 26, takes 1.6450881958007812e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 22, takes 1.8358230590820312e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, takes 2.384185791015625e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 27, takes 1.6450881958007812e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, takes 1.6927719116210938e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 9, takes 2.4318695068359375e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, takes 1.9311904907226562e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 8, takes 1.811981201171875e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 20, takes 2.0265579223632812e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 28, takes 1.621246337890625e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 15, takes 2.4080276489257812e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 23, takes 1.621246337890625e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 12, takes 1.7881393432617188e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 24, takes 1.811981201171875e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 18, takes 1.811981201171875e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 17, takes 1.71661376953125e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 21, takes 1.621246337890625e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 19, takes 3.337860107421875e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, takes 0.024161577224731445 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, takes 0.02377915382385254 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, takes 0.02408432960510254 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, takes 0.026099681854248047 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 29, takes 0.031769514083862305 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 13, takes 0.03401541709899902 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 14, takes 0.033640146255493164 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 30, takes 0.034494638442993164 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 22, takes 0.03273296356201172 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 10, takes 0.0366513729095459 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 25, takes 0.033945560455322266 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 31, takes 0.034313201904296875 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, takes 1.5974044799804688e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 26, takes 0.035532474517822266 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 27, takes 0.033759117126464844 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, takes 0.03598141670227051 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, takes 0.035359859466552734 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 16, takes 2.2649765014648438e-05 to finish D2H +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 11, takes 0.03879976272583008 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, takes 0.03519010543823242 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 8, takes 0.0387883186340332 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 21, takes 0.034877777099609375 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 9, takes 0.04270339012145996 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 17, takes 0.035124778747558594 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 20, takes 0.03956031799316406 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 28, takes 0.03888583183288574 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 18, takes 0.03712105751037598 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 23, takes 0.043027400970458984 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 12, takes 0.04682421684265137 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 19, takes 0.045473575592041016 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 15, takes 0.050330162048339844 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 24, takes 0.05060124397277832 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 303104, before: 1887338496, after: 1887641600 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 143360, before: 1852743680, after: 1852887040 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 200704, before: 1865228288, after: 1865428992 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 278528, before: 1931010048, after: 1931288576 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 16, takes 0.03788352012634277 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, takes 0.04490089416503906 to schedule async ckpt +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 26, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 25, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 27, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 28, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 17, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 29, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 18, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 10, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 30, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 20, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 9, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 31, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 21, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 11, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 22, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 14, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 13, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 12, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 15, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 8, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 24, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 196608, before: 1835134976, after: 1835331584 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 23, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 200704, before: 1885913088, after: 1886113792 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 16, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 135168, before: 1906946048, after: 1907081216 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 19, joining self.process +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 57536512, before: 1833209856, after: 1890746368 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 57446400, before: 1835929600, after: 1893376000 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 59654144, before: 1876946944, after: 1936601088 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 55685120, before: 1852014592, after: 1907699712 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 57626624, before: 1901084672, after: 1958711296 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 55898112, before: 1847132160, after: 1903030272 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 55779328, before: 1876414464, after: 1932193792 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 59928576, before: 1824321536, after: 1884250112 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 55631872, before: 1854382080, after: 1910013952 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 57475072, before: 1820897280, after: 1878372352 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57450496, before: 1876946944, after: 1934397440 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 29974528, before: 2082267136, after: 2112241664 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 59727872, before: 1833209856, after: 1892937728 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 59568128, before: 1835929600, after: 1895497728 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results... +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 55484416, before: 1867857920, after: 1923342336 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 55799808, before: 1856843776, after: 1912643584 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 55566336, before: 1856479232, after: 1912045568 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57192448, before: 1852014592, after: 1909207040 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 57638912, before: 1840812032, after: 1898450944 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 59834368, before: 1901084672, after: 1960919040 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 59609088, before: 1862787072, after: 1922396160 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 59797504, before: 1831178240, after: 1890975744 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57597952, before: 1867857920, after: 1925455872 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57622528, before: 1862787072, after: 1920409600 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 59830272, before: 1849765888, after: 1909596160 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57536512, before: 1824321536, after: 1881858048 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109731840, before: 1865228288, after: 1974960128 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109662208, before: 1887338496, after: 1997000704 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57753600, before: 1876414464, after: 1934168064 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109346816, before: 1852743680, after: 1962090496 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57765888, before: 1847132160, after: 1904898048 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57671680, before: 1856843776, after: 1914515456 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57704448, before: 1831178240, after: 1888882688 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57597952, before: 1854382080, after: 1911980032 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109588480, before: 1931010048, after: 2040598528 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57532416, before: 1856479232, after: 1914011648 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 59637760, before: 1820897280, after: 1880535040 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57831424, before: 1849765888, after: 1907597312 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 72155136, before: 1926565888, after: 1998721024 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4669087, rank: 14, write(sync,parallel): 0.2391805648803711 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 59731968, before: 1840812032, after: 1900544000 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.47056, rank: 22, write(sync,parallel): 0.2345106601715088 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.470081, rank: 13, write(sync,parallel): 0.24259257316589355 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 72351744, before: 1901608960, after: 1973960704 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4776103, rank: 29, write(sync,parallel): 0.25049781799316406 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.481879, rank: 3, write(sync,parallel): 0.260547399520874 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.480167, rank: 31, write(sync,parallel): 0.24520063400268555 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 68317184, before: 1895747584, after: 1964064768 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4824748, rank: 10, write(sync,parallel): 0.24788284301757812 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4842424, rank: 6, write(sync,parallel): 0.2628757953643799 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.485995, rank: 21, write(sync,parallel): 0.23607325553894043 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4855952, rank: 5, write(sync,parallel): 0.2655210494995117 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4881833, rank: 18, write(sync,parallel): 0.23678088188171387 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4889984, rank: 27, write(sync,parallel): 0.251558780670166 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109670400, before: 1835134976, after: 1944805376 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.489638, rank: 26, write(sync,parallel): 0.2526364326477051 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109711360, before: 1885913088, after: 1995624448 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.48992, rank: 30, write(sync,parallel): 0.25714945793151855 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109424640, before: 1906946048, after: 2016370688 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 68456448, before: 1901613056, after: 1970069504 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.4941204, rank: 25, write(sync,parallel): 0.26084375381469727 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.49732, rank: 7, write(sync,parallel): 0.2760734558105469 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 57765888, before: 1883090944, after: 1940856832 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 72314880, before: 1895747584, after: 1968062464 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 70148096, before: 1926565888, after: 1996713984 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5074677, rank: 20, write(sync,parallel): 0.2572801113128662 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.31s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5121162, rank: 28, write(sync,parallel): 0.26287174224853516 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5162854, rank: 19, write(sync,parallel): 0.25456953048706055 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.519522, rank: 12, write(sync,parallel): 0.2610311508178711 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5195832, rank: 11, write(sync,parallel): 0.27901148796081543 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 59559936, before: 1876185088, after: 1935745024 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.33s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.32s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 59346944, before: 1875165184, after: 1934512128 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.33s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.33s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.33s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.33s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 57446400, before: 1816170496, after: 1873616896 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5322254, rank: 4, write(sync,parallel): 0.2900381088256836 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57585664, before: 1876185088, after: 1933770752 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.34s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5341303, rank: 1, write(sync,parallel): 0.29241061210632324 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.33s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5403056, rank: 2, write(sync,parallel): 0.30043816566467285 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 57700352, before: 1875165184, after: 1932865536 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 59891712, before: 1883090944, after: 1942982656 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5433526, rank: 16, write(sync,parallel): 0.261768102645874 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 109494272, before: 2082267136, after: 2191761408 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.35s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5484097, rank: 24, write(sync,parallel): 0.2849118709564209 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 59613184, before: 1816170496, after: 1875783680 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5619931, rank: 8, write(sync,parallel): 0.3147132396697998 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.36s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.35s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.36s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.37s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.36s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.38s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5810814, rank: 17, write(sync,parallel): 0.3305020332336426 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.38s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.35s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.588355, rank: 0, write(sync,parallel): 0.3039548397064209 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5903919, rank: 15, write(sync,parallel): 0.3298499584197998 +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.5926263, rank: 23, write(sync,parallel): 0.33603644371032715 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.39s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully +DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750539365.6068654, rank: 9, write(sync,parallel): 0.358227014541626 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.41s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.39s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.42s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.43s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.43s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 0.45s from forking +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6585948, 9, gather: 0.0027015209197998047 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6587198, 10, gather: 0.13190913200378418 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.658763, 11, gather: 0.0831766128540039 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6588597, 14, gather: 0.14974570274353027 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6605246, 18, gather: 0.1329636573791504 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.660523, 17, gather: 0.030699491500854492 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6605287, 21, gather: 0.12253475189208984 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6603582, 7, gather: 0.13338255882263184 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6588876, 13, gather: 0.1470966339111328 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.658908, 15, gather: 0.016938447952270508 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6587749, 30, gather: 0.12874770164489746 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.65878, 28, gather: 0.09456896781921387 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.658787, 26, gather: 0.13158082962036133 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.660636, 23, gather: 0.018386363983154297 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6604214, 6, gather: 0.14735651016235352 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6589966, 8, gather: 0.04515814781188965 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.65878, 24, gather: 0.06056547164916992 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6587884, 29, gather: 0.1433703899383545 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6606436, 22, gather: 0.14916038513183594 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6604297, 5, gather: 0.14650249481201172 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6589992, 12, gather: 0.08769917488098145 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6588402, 31, gather: 0.1364128589630127 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6606722, 19, gather: 0.09324431419372559 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6604366, 4, gather: 0.09269595146179199 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6604447, 2, gather: 0.07676410675048828 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.658858, 27, gather: 0.13234162330627441 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6589844, 25, gather: 0.12578940391540527 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6606436, 20, gather: 0.10526633262634277 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6604412, 1, gather: 0.09002137184143066 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6604989, 3, gather: 0.14917230606079102 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6607356, 16, gather: 0.07549095153808594 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6642425, 0, gather: 0.035695791244506836 +DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750539365.6799197, metadata_write: 0.01536417007446289 +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1055s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1093s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0387s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0248s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1689s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1716s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0671s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1546s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1683s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0537s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1118s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1144s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0985s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1508s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0829s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1165s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1583s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1534s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1476s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1653s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0528s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1711s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1542s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0974s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1695s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1552s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1550s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1152s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1273s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1447s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0404s +DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.1713s +DEBUG:megatron.training.checkpointing:rank: 17, takes 0.002699136734008789 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 18, takes 0.0026831626892089844 to finalize ckpt save + successfully saved checkpoint from iteration 10 to gpt-checkpoint [ t 1/8, p 1/1 ] +DEBUG:megatron.training.checkpointing:rank: 11, takes 0.0026803016662597656 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 12, takes 0.0026636123657226562 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 14, takes 0.0026776790618896484 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 15, takes 0.0026397705078125 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 13, takes 0.0026416778564453125 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 9, takes 0.0026509761810302734 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 16, takes 0.002608776092529297 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 20, takes 0.0026552677154541016 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 1, takes 0.002700328826904297 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 8, takes 0.0026464462280273438 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 10, takes 0.0026903152465820312 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 26, takes 0.0027000904083251953 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 25, takes 0.0026569366455078125 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 31, takes 0.0026934146881103516 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 28, takes 0.0026814937591552734 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 24, takes 0.002675771713256836 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 27, takes 0.0026884078979492188 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 29, takes 0.0026743412017822266 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 30, takes 0.002616405487060547 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 19, takes 0.0025243759155273438 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 21, takes 0.002719402313232422 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 0, takes 0.0026793479919433594 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 4, takes 0.0027017593383789062 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 23, takes 0.002718687057495117 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 22, takes 0.0027201175689697266 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 2, takes 0.0026922225952148438 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 3, takes 0.002676725387573242 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 7, takes 0.0027740001678466797 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 5, takes 0.0027740001678466797 to finalize ckpt save +DEBUG:megatron.training.checkpointing:rank: 6, takes 0.0027256011962890625 to finalize ckpt save +WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED +Evaluating on 1 samples +Evaluating iter 1/1 +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: batch tensor:attention_mask torch.Size([2, 1, 8192, 8192])tokens + batch tensor: position_ids torch.Size([2, 8192]) +torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp:batch tensor after cp: tokenstokens torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: labelslabels torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp:batch tensor after cp: loss_maskloss_mask torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: attention_maskattention_mask torch.Size([2, 1, 2048, 8192])torch.Size([2, 1, 2048, 8192]) + +batch tensor after cp:batch tensor after cp: position_idsposition_ids torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 10 +Done exporting trace 10 +(min, max) time across ranks (ms): + evaluate .......................................: (3233.34, 3239.19) +---------------------------------------------------------------------------------------------------------------- + validation loss at iteration 10 on validation set | lm loss value: 1.248797E+01 | lm loss PPL: 2.651284E+05 | +---------------------------------------------------------------------------------------------------------------- +WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED +WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED +WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED +Evaluating on 1 samples +Evaluating iter 1/1 +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor:batch tensor: tokens tokens torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor:batch tensor: labelslabels torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor:batch tensor: loss_maskloss_mask torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor:batch tensor: attention_maskattention_mask torch.Size([2, 1, 8192, 8192])torch.Size([2, 1, 8192, 8192]) + +batch tensor:batch tensor: position_idsposition_ids torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask batch tensor after cp:torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) + batch tensor after cp:tokens attention_mask torch.Size([2, 1, 2048, 8192])torch.Size([2, 2048]) + +batch tensor after cp:batch tensor after cp: position_idslabels torch.Size([2, 2048])torch.Size([2, 2048]) + +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokensbatch tensor: tokens torch.Size([2, 8192])torch.Size([2, 8192]) +batch tensor: labels +torch.Size([2, 8192]) +batch tensor:batch tensor: labelsloss_mask torch.Size([2, 8192])torch.Size([2, 8192]) + +batch tensor: attention_maskbatch tensor: loss_masktorch.Size([2, 1, 8192, 8192]) + torch.Size([2, 8192])batch tensor: + position_ids batch tensor:torch.Size([2, 8192]) +attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp:batch tensor after cp: tokenstokens torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp:torch.Size([2, 2048]) +position_ids batch tensor after cp:torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048])batch tensor: +batch tensor after cp: labelstokens torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp:torch.Size([2, 8192]) attention_mask +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) + torch.Size([2, 1, 2048, 8192])batch tensor: + batch tensor after cp:labels position_ids torch.Size([2, 8192])torch.Size([2, 2048]) + +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor: tokens torch.Size([2, 8192]) +batch tensor: labels torch.Size([2, 8192]) +batch tensor: loss_mask torch.Size([2, 8192]) +batch tensor: attention_mask torch.Size([2, 1, 8192, 8192]) +batch tensor: position_ids torch.Size([2, 8192]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: tokens torch.Size([2, 2048]) +batch tensor after cp: labels torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +batch tensor after cp: loss_mask torch.Size([2, 2048]) +batch tensor after cp: attention_mask torch.Size([2, 1, 2048, 8192]) +batch tensor after cp: position_ids torch.Size([2, 2048]) +Start exporting trace 11 +Done exporting trace 11 +WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED +(min, max) time across ranks (ms): + evaluate .......................................: (91.29, 97.37) +---------------------------------------------------------------------------------------------------------- + validation loss at iteration 10 on test set | lm loss value: 1.248797E+01 | lm loss PPL: 2.651284E+05 | +---------------------------------------------------------------------------------------------------------- +WARNING:megatron.core.rerun_state_machine:Setting RerunStateMachine mode RerunMode.DISABLED +Running ctx_length=8192, TP_SIZE=8, CP_SIZE=4, BATCH_SIZE=2 +Cleaning up checkpoint directory: gpt-checkpoint +Cleaning up checkpoint directory: gpt-checkpoint +Cleaning up checkpoint directory: gpt-checkpoint +-------------------------------- +CTX_LENGTH: 8192 +TP_SIZE: 8 +CP_SIZE: 4 +CHECKPOINT_PATH: gpt-checkpoint +PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron +-------------------------------- +CTX_LENGTH: 8192 +TP_SIZE: 8 +CP_SIZE: 4 +CHECKPOINT_PATH: gpt-checkpoint +-------------------------------- +PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron +-------------------------------- +/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3 +/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3 +-------------------------------- +CTX_LENGTH: 8192 +TP_SIZE: 8 +CP_SIZE: 4 +CHECKPOINT_PATH: gpt-checkpoint +PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron +-------------------------------- +/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3 +Cleaning up checkpoint directory: gpt-checkpoint +-------------------------------- +CTX_LENGTH: 8192 +TP_SIZE: 8 +CP_SIZE: 4 +CHECKPOINT_PATH: gpt-checkpoint +PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron +-------------------------------- +/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written. +WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +using world size: 32, data-parallel size: 1, context-parallel size: 4, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0 +Number of virtual stages per pipeline stage: None +WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used +using torch.float16 for parameters ... +------------------------ arguments ------------------------ + account_for_embedding_in_pipeline_split ......... False + account_for_loss_in_pipeline_split .............. False + accumulate_allreduce_grads_in_fp32 .............. False + adam_beta1 ...................................... 0.9 + adam_beta2 ...................................... 0.999 + adam_eps ........................................ 1e-08 + add_bias_linear ................................. True + add_position_embedding .......................... True + add_qkv_bias .................................... True + adlr_autoresume ................................. False + adlr_autoresume_interval ........................ 1000 + align_grad_reduce ............................... True + align_param_gather .............................. False + app_tag_run_name ................................ None + app_tag_run_version ............................. 0.0.0 + apply_layernorm_1p .............................. False + apply_query_key_layer_scaling ................... False + apply_residual_connection_post_layernorm ........ False + apply_rope_fusion ............................... False + async_save ...................................... None + async_tensor_model_parallel_allreduce ........... True + attention_backend ............................... AttnBackend.auto + attention_dropout ............................... 0.1 + attention_softmax_in_fp32 ....................... False + auto_detect_ckpt_format ......................... False + barrier_with_L1_time ............................ True + bert_binary_head ................................ True + bert_embedder_type .............................. megatron + bert_load ....................................... None + bf16 ............................................ False + bias_dropout_fusion ............................. True + bias_gelu_fusion ................................ True + bias_swiglu_fusion .............................. True + biencoder_projection_dim ........................ 0 + biencoder_shared_query_context_model ............ False + block_data_path ................................. None + calc_ft_timeouts ................................ False + calculate_per_token_loss ........................ False + check_for_large_grads ........................... False + check_for_nan_in_loss_and_grad .................. False + check_for_spiky_loss ............................ False + check_weight_hash_across_dp_replicas_interval ... None + ckpt_assume_constant_structure .................. False + ckpt_convert_format ............................. None + ckpt_convert_save ............................... None + ckpt_convert_update_legacy_dist_opt_format ...... False + ckpt_format ..................................... torch_dist + ckpt_fully_parallel_load ........................ False + ckpt_fully_parallel_save ........................ True + ckpt_fully_parallel_save_deprecated ............. False + ckpt_step ....................................... None + classes_fraction ................................ 1.0 + clip_grad ....................................... 1.0 + clone_scatter_output_in_embedding ............... True + config_logger_dir ............................... + consumed_train_samples .......................... 0 + consumed_valid_samples .......................... 0 + context_parallel_size ........................... 4 + cp_comm_type .................................... ['p2p'] + create_attention_mask_in_dataloader ............. True + cross_entropy_fusion_impl ....................... native + cross_entropy_loss_fusion ....................... False + cuda_graph_scope ................................ full + cuda_graph_warmup_steps ......................... 3 + data_args_path .................................. None + data_cache_path ................................. None + data_parallel_random_init ....................... False + data_parallel_sharding_strategy ................. no_shard + data_parallel_size .............................. 1 + data_path ....................................... None + data_per_class_fraction ......................... 1.0 + data_sharding ................................... True + dataloader_type ................................. single + ddp_average_in_collective ....................... False + ddp_bucket_size ................................. None + ddp_num_buckets ................................. None + ddp_pad_buckets_for_high_nccl_busbw ............. False + decoder_first_pipeline_num_layers ............... None + decoder_last_pipeline_num_layers ................ None + decoder_num_layers .............................. None + decoder_seq_length .............................. None + decoupled_lr .................................... None + decoupled_min_lr ................................ None + decrease_batch_size_if_needed ................... False + defer_embedding_wgrad_compute ................... False + deprecated_use_mcore_models ..................... False + deterministic_mode .............................. False + dino_bottleneck_size ............................ 256 + dino_freeze_last_layer .......................... 1 + dino_head_hidden_size ........................... 2048 + dino_local_crops_number ......................... 10 + dino_local_img_size ............................. 96 + dino_norm_last_layer ............................ False + dino_teacher_temp ............................... 0.07 + dino_warmup_teacher_temp ........................ 0.04 + dino_warmup_teacher_temp_epochs ................. 30 + disable_bf16_reduced_precision_matmul ........... False + disable_mamba_mem_eff_path ...................... False + disable_straggler_on_startup .................... False + dist_ckpt_format_deprecated ..................... None + dist_ckpt_strictness ............................ assume_ok_unexpected + distribute_saved_activations .................... False + distributed_backend ............................. nccl + distributed_timeout_minutes ..................... 10 + embedding_path .................................. None + empty_unused_memory_level ....................... 0 + enable_cuda_graph ............................... False + enable_ft_package ............................... False + enable_gloo_process_groups ...................... True + enable_msc ...................................... True + enable_one_logger ............................... True + encoder_num_layers .............................. 2 + encoder_pipeline_model_parallel_size ............ 0 + encoder_seq_length .............................. 8192 + encoder_tensor_model_parallel_size .............. 0 + end_weight_decay ................................ 0.1 + eod_mask_loss ................................... False + error_injection_rate ............................ 0 + error_injection_type ............................ transient_error + eval_interval ................................... 16 + eval_iters ...................................... 1 + evidence_data_path .............................. None + exit_duration_in_mins ........................... None + exit_interval ................................... None + exit_on_missing_checkpoint ...................... False + exit_signal_handler ............................. False + exp_avg_dtype ................................... torch.float32 + exp_avg_sq_dtype ................................ torch.float32 + expert_model_parallel_size ...................... 1 + expert_tensor_parallel_size ..................... 8 + external_cuda_graph ............................. False + ffn_hidden_size ................................. 16384 + finetune ........................................ False + first_last_layers_bf16 .......................... False + flash_decode .................................... False + fp16 ............................................ True + fp16_lm_cross_entropy ........................... False + fp32_residual_connection ........................ False + fp8 ............................................. None + fp8_amax_compute_algo ........................... most_recent + fp8_amax_history_len ............................ 1 + fp8_interval .................................... 1 + fp8_margin ...................................... 0 + fp8_param_gather ................................ False + fp8_recipe ...................................... delayed + fp8_wgrad ....................................... True + fsdp_double_buffer .............................. False + global_batch_size ............................... 1 + grad_reduce_in_bf16 ............................. False + gradient_accumulation_fusion .................... True + gradient_reduce_div_fusion ...................... True + group_query_attention ........................... True + head_lr_mult .................................... 1.0 + heterogeneous_layers_config_encoded_json ........ None + heterogeneous_layers_config_path ................ None + hidden_dropout .................................. 0.1 + hidden_size ..................................... 4096 + hierarchical_context_parallel_sizes ............. None + high_priority_stream_groups ..................... [] + hybrid_attention_ratio .......................... 0.0 + hybrid_mlp_ratio ................................ 0.0 + hybrid_override_pattern ......................... None + hysteresis ...................................... 2 + ict_head_size ................................... None + ict_load ........................................ None + img_h ........................................... 224 + img_w ........................................... 224 + indexer_batch_size .............................. 128 + indexer_log_interval ............................ 1000 + inference_batch_times_seqlen_threshold .......... -1 + inference_dynamic_batching ...................... False + inference_dynamic_batching_buffer_guaranteed_fraction 0.2 + inference_dynamic_batching_buffer_overflow_factor None + inference_dynamic_batching_buffer_size_gb ....... 40.0 + inference_dynamic_batching_chunk_size ........... 256 + inference_dynamic_batching_max_requests_override None + inference_dynamic_batching_max_tokens_override .. None + inference_max_batch_size ........................ 8 + inference_max_seq_length ........................ 2560 + inference_rng_tracker ........................... False + init_method_std ................................. 0.02 + init_method_xavier_uniform ...................... False + init_model_with_meta_device ..................... False + initial_loss_scale .............................. 4294967296 + inprocess_active_world_size ..................... 32 + inprocess_barrier_timeout ....................... 120 + inprocess_completion_timeout .................... 120 + inprocess_empty_cuda_cache ...................... False + inprocess_granularity ........................... node + inprocess_hard_timeout .......................... 90 + inprocess_heartbeat_interval .................... 30 + inprocess_heartbeat_timeout ..................... 60 + inprocess_last_call_wait ........................ 1 + inprocess_max_iterations ........................ None + inprocess_monitor_process_interval .............. 1.0 + inprocess_monitor_thread_interval ............... 1.0 + inprocess_progress_watchdog_interval ............ 1.0 + inprocess_restart ............................... False + inprocess_soft_timeout .......................... 60 + inprocess_termination_grace_time ................ 1 + is_hybrid_model ................................. False + iter_per_epoch .................................. 1250 + iterations_to_skip .............................. [] + keep_fp8_transpose_cache_when_using_custom_fsdp . False + kv_channels ..................................... 64 + kv_lora_rank .................................... 32 + lazy_mpu_init ................................... None + load ............................................ gpt-checkpoint + load_model_opt_format ........................... False + local_rank ...................................... 0 + log_interval .................................... 1 + log_loss_scale_to_tensorboard ................... True + log_memory_to_tensorboard ....................... False + log_num_zeros_in_grad ........................... False + log_params_norm ................................. False + log_progress .................................... False + log_straggler ................................... False + log_throughput .................................. False + log_timers_to_tensorboard ....................... False + log_validation_ppl_to_tensorboard ............... False + log_world_size_to_tensorboard ................... False + logging_level ................................... 0 + loss_scale ...................................... None + loss_scale_window ............................... 1000 + lr .............................................. 0.0005 + lr_decay_iters .................................. 150000 + lr_decay_samples ................................ None + lr_decay_style .................................. cosine + lr_warmup_fraction .............................. None + lr_warmup_init .................................. 0.0 + lr_warmup_iters ................................. 2 + lr_warmup_samples ............................... 0 + lr_wsd_decay_iters .............................. None + lr_wsd_decay_samples ............................ None + lr_wsd_decay_style .............................. exponential + main_grads_dtype ................................ torch.float32 + main_params_dtype ............................... torch.float32 + make_vocab_size_divisible_by .................... 128 + mamba_head_dim .................................. 64 + mamba_num_groups ................................ 8 + mamba_num_heads ................................. None + mamba_state_dim ................................. 128 + manual_gc ....................................... False + manual_gc_eval .................................. True + manual_gc_interval .............................. 0 + mask_factor ..................................... 1.0 + mask_prob ....................................... 0.15 + mask_type ....................................... random + masked_softmax_fusion ........................... True + max_position_embeddings ......................... 8192 + max_tokens_to_oom ............................... 12000 + memory_snapshot_path ............................ snapshot.pickle + merge_file ...................................... merges.txt + micro_batch_size ................................ 1 + microbatch_group_size_per_vp_stage .............. None + mid_level_dataset_surplus ....................... 0.005 + min_loss_scale .................................. 1.0 + min_lr .......................................... 0.0 + mlp_chunks_for_prefill .......................... 1 + mmap_bin_files .................................. True + mock_data ....................................... True + moe_apply_probs_on_input ........................ False + moe_aux_loss_coeff .............................. 0.0 + moe_enable_deepep ............................... False + moe_expert_capacity_factor ...................... None + moe_extended_tp ................................. False + moe_ffn_hidden_size ............................. None + moe_grouped_gemm ................................ False + moe_input_jitter_eps ............................ None + moe_layer_freq .................................. 1 + moe_layer_recompute ............................. False + moe_pad_expert_input_to_capacity ................ False + moe_per_layer_logging ........................... False + moe_permute_fusion .............................. False + moe_router_bias_update_rate ..................... 0.001 + moe_router_dtype ................................ None + moe_router_enable_expert_bias ................... False + moe_router_force_load_balancing ................. False + moe_router_group_topk ........................... None + moe_router_load_balancing_type .................. aux_loss + moe_router_num_groups ........................... None + moe_router_padding_for_fp8 ...................... False + moe_router_pre_softmax .......................... False + moe_router_score_function ....................... softmax + moe_router_topk ................................. 2 + moe_router_topk_scaling_factor .................. None + moe_shared_expert_intermediate_size ............. None + moe_shared_expert_overlap ....................... False + moe_token_dispatcher_type ....................... allgather + moe_token_drop_policy ........................... probs + moe_use_legacy_grouped_gemm ..................... False + moe_use_upcycling ............................... False + moe_z_loss_coeff ................................ None + mrope_section ................................... None + mscale .......................................... 1.0 + mscale_all_dim .................................. 1.0 + mtp_loss_scaling_factor ......................... 0.1 + mtp_num_layers .................................. None + multi_latent_attention .......................... False + nccl_all_reduce_for_prefill ..................... False + nccl_communicator_config_path ................... None + nccl_ub ......................................... False + no_load_optim ................................... None + no_load_rng ..................................... None + no_persist_layer_norm ........................... False + no_rope_freq .................................... None + no_save_optim ................................... None + no_save_rng ..................................... None + non_persistent_ckpt_type ........................ None + non_persistent_global_ckpt_dir .................. None + non_persistent_local_ckpt_algo .................. fully_parallel + non_persistent_local_ckpt_dir ................... None + non_persistent_save_interval .................... None + norm_epsilon .................................... 1e-05 + normalization ................................... LayerNorm + num_attention_heads ............................. 64 + num_channels .................................... 3 + num_classes ..................................... 1000 + num_dataset_builder_threads ..................... 1 + num_distributed_optimizer_instances ............. 1 + num_experts ..................................... None + num_layers ...................................... 2 + num_layers_at_end_in_bf16 ....................... 1 + num_layers_at_start_in_bf16 ..................... 1 + num_layers_per_virtual_pipeline_stage ........... None + num_query_groups ................................ 16 + num_virtual_stages_per_pipeline_rank ............ None + num_workers ..................................... 2 + object_storage_cache_path ....................... None + one_logger_async ................................ False + one_logger_project .............................. megatron-lm + one_logger_run_name ............................. None + onnx_safe ....................................... None + openai_gelu ..................................... False + optimizer ....................................... adam + optimizer_cpu_offload ........................... False + optimizer_offload_fraction ...................... 1.0 + output_bert_embeddings .......................... False + overlap_cpu_optimizer_d2h_h2d ................... False + overlap_grad_reduce ............................. False + overlap_p2p_comm ................................ False + overlap_p2p_comm_warmup_flush ................... False + overlap_param_gather ............................ False + overlap_param_gather_with_optimizer_step ........ False + override_opt_param_scheduler .................... False + params_dtype .................................... torch.float16 + patch_dim ....................................... 16 + per_split_data_args_path ........................ None + perform_initialization .......................... True + pin_cpu_grads ................................... True + pin_cpu_params .................................. True + pipeline_model_parallel_comm_backend ............ None + pipeline_model_parallel_size .................... 1 + pipeline_model_parallel_split_rank .............. None + position_embedding_type ......................... learned_absolute + pretrained_checkpoint ........................... None + profile ......................................... False + profile_ranks ................................... [0] + profile_step_end ................................ 12 + profile_step_start .............................. 10 + q_lora_rank ..................................... None + qk_head_dim ..................................... 128 + qk_l2_norm ...................................... False + qk_layernorm .................................... False + qk_pos_emb_head_dim ............................. 64 + query_in_block_prob ............................. 0.1 + rampup_batch_size ............................... None + rank ............................................ 0 + recompute_granularity ........................... None + recompute_method ................................ None + recompute_modules ............................... None + recompute_num_layers ............................ None + record_memory_history ........................... False + relative_attention_max_distance ................. 128 + relative_attention_num_buckets .................. 32 + replication ..................................... False + replication_factor .............................. 2 + replication_jump ................................ None + rerun_mode ...................................... disabled + reset_attention_mask ............................ False + reset_position_ids .............................. False + result_rejected_tracker_filename ................ None + retriever_report_topk_accuracies ................ [] + retriever_score_scaling ......................... False + retriever_seq_length ............................ 256 + retro_add_retriever ............................. False + retro_attention_gate ............................ 1 + retro_cyclic_train_iters ........................ None + retro_encoder_attention_dropout ................. 0.1 + retro_encoder_hidden_dropout .................... 0.1 + retro_encoder_layers ............................ 2 + retro_num_neighbors ............................. 2 + retro_num_retrieved_chunks ...................... 2 + retro_project_dir ............................... None + retro_verify_neighbor_count ..................... True + rope_scaling_factor ............................. 8.0 + rotary_base ..................................... 10000 + rotary_interleaved .............................. False + rotary_percent .................................. 1.0 + rotary_scaling_factor ........................... 1.0 + rotary_seq_len_interpolation_factor ............. None + run_workload_inspector_server ................... False + sample_rate ..................................... 1.0 + save ............................................ gpt-checkpoint + save_interval ................................... 16 + scatter_gather_tensors_in_pipeline .............. True + seed ............................................ 1234 + seq_length ...................................... 8192 + sequence_parallel ............................... False + sgd_momentum .................................... 0.9 + short_seq_prob .................................. 0.1 + skip_train ...................................... False + skipped_train_samples ........................... 0 + spec ............................................ None + split ........................................... None + squared_relu .................................... False + start_weight_decay .............................. 0.1 + straggler_ctrlr_port ............................ 65535 + straggler_minmax_count .......................... 1 + suggested_communication_unit_size ............... None + swiglu .......................................... False + swin_backbone_type .............................. tiny + symmetric_ar_type ............................... None + te_rng_tracker .................................. False + tensor_model_parallel_size ...................... 8 + tensorboard_dir ................................. tensorboard-logs/ + tensorboard_log_interval ........................ 1 + tensorboard_queue_size .......................... 1000 + test_data_path .................................. None + test_mode ....................................... False + tiktoken_num_special_tokens ..................... 1000 + tiktoken_pattern ................................ None + tiktoken_special_tokens ......................... None + timing_log_level ................................ 0 + timing_log_option ............................... minmax + titles_data_path ................................ None + tokenizer_model ................................. None + tokenizer_type .................................. GPT2BPETokenizer + torch_fsdp2_reshard_after_forward ............... True + tp_comm_bootstrap_backend ....................... nccl + tp_comm_bulk_dgrad .............................. True + tp_comm_bulk_wgrad .............................. True + tp_comm_overlap ................................. False + tp_comm_overlap_ag .............................. True + tp_comm_overlap_cfg ............................. None + tp_comm_overlap_rs .............................. True + tp_comm_overlap_rs_dgrad ........................ False + tp_comm_split_ag ................................ True + tp_comm_split_rs ................................ True + train_data_path ................................. None + train_iters ..................................... 10 + train_samples ................................... None + train_sync_interval ............................. None + transformer_impl ................................ transformer_engine + transformer_pipeline_model_parallel_size ........ 1 + untie_embeddings_and_output_weights ............. False + use_checkpoint_args ............................. False + use_checkpoint_opt_param_scheduler .............. False + use_cpu_initialization .......................... None + use_custom_fsdp ................................. False + use_dist_ckpt ................................... True + use_dist_ckpt_deprecated ........................ False + use_distributed_optimizer ....................... False + use_flash_attn .................................. False + use_legacy_models ............................... False + use_mp_args_from_checkpoint_args ................ False + use_one_sent_docs ............................... False + use_persistent_ckpt_worker ...................... False + use_precision_aware_optimizer ................... False + use_pytorch_profiler ............................ False + use_ring_exchange_p2p ........................... False + use_rope_scaling ................................ False + use_rotary_position_embeddings .................. False + use_sharp ....................................... False + use_tokenizer_model_from_checkpoint_args ........ True + use_torch_fsdp2 ................................. False + use_torch_optimizer_for_cpu_offload ............. False + use_tp_pp_dp_mapping ............................ False + v_head_dim ...................................... 128 + valid_data_path ................................. None + variable_seq_lengths ............................ False + virtual_pipeline_model_parallel_size ............ None + vision_backbone_type ............................ vit + vision_pretraining .............................. False + vision_pretraining_type ......................... classify + vocab_extra_ids ................................. 0 + vocab_file ...................................... vocab.json + vocab_size ...................................... None + wandb_exp_name .................................. + wandb_project ................................... + wandb_save_dir .................................. + weight_decay .................................... 0.1 + weight_decay_incr_style ......................... constant + wgrad_deferral_limit ............................ 0 + world_size ...................................... 32 + yaml_cfg ........................................ None +-------------------- end of arguments --------------------- +INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1 +> building GPT2BPETokenizer tokenizer ... + > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200) +INFO:megatron.training.initialize:Setting logging level to 0 +WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED +> initializing torch distributed ... +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +INFO:megatron.training.initialize:Setting logging level to 0 +> initialized tensor model parallel with size 8 +> initialized pipeline model parallel with size 1 +> setting random seeds to 1234 ... +> compiling dataset index builder ... +make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets' +make: Nothing to be done for 'default'. +make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets' +>>> done with dataset index builder. Compilation time: 0.040 seconds +> compiling and loading fused kernels ... +>>> done with compiling and loading fused kernels. Compilation time: 2.683 seconds +time to initialize megatron (seconds): 9.421 +[after megatron is initialized] datetime: 2025-06-21 20:56:48 +building GPT model ... +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding>>> embedding + +>>> decoder +>>> decoder>>> output_layer + +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 103872000 > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 103872000 + + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 103872000 +INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False) +INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1 +Params for bucket 1 (103872000 elements, 103872000 padded size): + module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias + module.decoder.layers.0.mlp.linear_fc2.weight + module.decoder.layers.1.mlp.linear_fc1.bias + module.decoder.final_layernorm.weight + module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias + module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias + module.embedding.position_embeddings.weight + module.decoder.layers.1.self_attention.linear_qkv.weight + module.decoder.layers.1.self_attention.linear_proj.weight + module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight + module.decoder.layers.1.mlp.linear_fc2.weight + module.decoder.layers.1.self_attention.linear_proj.bias + module.decoder.layers.0.mlp.linear_fc1.weight + module.decoder.layers.0.self_attention.linear_proj.weight + module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias + module.decoder.layers.0.self_attention.linear_qkv.weight + module.decoder.layers.0.self_attention.linear_proj.bias + module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight + module.decoder.layers.1.self_attention.linear_qkv.bias + module.decoder.layers.1.mlp.linear_fc1.weight + module.decoder.layers.0.mlp.linear_fc2.bias + module.decoder.layers.0.mlp.linear_fc1.bias + module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight + module.embedding.word_embeddings.weight + module.decoder.final_layernorm.bias + module.decoder.layers.1.mlp.linear_fc2.bias + module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight + module.decoder.layers.0.self_attention.linear_qkv.bias +INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=, config_logger_dir='') +>>> embedding +>>> embedding>>> decoder + +>>> output_layer +>>> decoder +>>> output_layer +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 103872000 + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 103872000 +INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 103872000 +>>> embedding +>>> decoder +>>> output_layer + > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 103872000 +WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt + will not load any checkpoints and will start from random +(min, max) time across ranks (ms): + load-checkpoint ................................: (55.48, 55.93) +[after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 20:56:49 +> building train, validation, and test datasets ... + > datasets target sizes (minimum size): + train: 10 + validation: 1 + test: 1 +INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None +INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True +INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)] +> building train, validation, and test datasets for GPT ... +INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=8192, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None) +INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices +DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False +WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None +DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.006632 seconds +INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 8324 +INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1 +INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices +DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False +WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None +DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001835 seconds +INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 8320 +INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1 +INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices +DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False +WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None +DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001702 seconds +INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 8335 +INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1 +> finished creating GPT datasets ... +[after dataloaders are built] datetime: 2025-06-21 20:56:49 +done with setup ... +training ... +(min, max) time across ranks (ms): + model-and-optimizer-setup ......................: (902.12, 936.74) + train/valid/test-data-iterators-setup ..........: (19.44, 135.70) +Setting rerun_state_machine.current_iteration to 0... +[before the start of training step] datetime: 2025-06-21 20:56:49 +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor: tokens torch.Size([2, 16384]) +batch tensor: labels torch.Size([2, 16384]) +batch tensor: loss_mask torch.Size([2, 16384]) +batch tensor: attention_mask torch.Size([2, 1, 16384, 16384]) +batch tensor: position_ids torch.Size([2, 16384]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp:batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384])tokens +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) + batch tensor after cp: position_ids torch.Size([2, 4096]) +torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096]) +batch tensor after cp: tokens torch.Size([2, 4096]) +batch tensor after cp: labels torch.Size([2, 4096]) +batch tensor after cp: loss_mask torch.Size([2, 4096]) +batch tensor after cp: attention_mask torch.Size([2, 1, 4096, 16384]) +batch tensor after cp: position_ids torch.Size([2, 4096])