--- license: mit task_categories: - feature-extraction language: - fr - en --- This dataset comes from a request on the HAL API (the French national open archive) limited to the UNIV-COTEDAZUR portal instance. The request collects the bibliographic records of the SHS articles with abstract published between 2013 and 2023 The parameters passed in the url request are : https://api.archives-ouvertes.fr/search/UNIV-COTEDAZUR/?q=docType_s:ART&fq=abstract_s:[%22%22%20TO%20*]&fq=domain_s:*shs*&fq=submittedDateY_i:[2020%20TO%202023]&fl=doiId_s,uri_s,title_s,subTitle_s,authFullName_s,producedDate_s,journalTitle_s,journalPublisher_s,abstract_s,domain_s,openAccess_bool The embeddings column stores the embeddings of the "combined" column values converted in vectors with the sentence-transformers/all-MiniLM-L6-v2 embeddinsg model. ## Metadata extraction ``` url = ""https://api.archives-ouvertes.fr/search/UNIV-COTEDAZUR/?q=docType_s:ART&fq=abstract_s:[%22%22%20TO%20*]&fq=domain_s:*shs*&fq=publicationDateY_i:[2013%20TO%202023]&fl=doiId_s,uri_s,title_s,subTitle_s,authFullName_s,producedDate_s,journalTitle_s,journalPublisher_s,abstract_s,domain_s,openAccess_bool" # Get the total number of records url_for_total_count = f"{url}&wt=json&rows=0" response = requests.request("GET", url_for_total_count).text data = json.loads(response) total_count = data["response"]["numFound"] print(total_cout) # return 3601 # Loop over the records and get metadata step = 500 appended_data = [] for i in range(1, int(total_count), int(step)): url = f"{url}&rows={step}&start={i}&wt=csv" df = pd.read_csv(url, encoding="utf-8") appended_data.append(df) appended_data = pd.concat(appended_data) # dedup appended_data = appended_data.drop_duplicates(subset=['uri_s']) appended_data.shape # returns 2405 ``` ## Add embeddings (CPU) ### Solution 1 : with HF Inference API ``` import requests import json from typing import Optional, List, Dict, Any HF_TOKEN = "" model_id = "sentence-transformers/all-MiniLM-L6-v2" embeddings_api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}" headers = {"Authorization": f"Bearer {HF_TOKEN}"} def embeddings_query(text:str) -> List: response = requests.post(embeddings_api_url, headers=headers, json={"inputs": text, "options":{"wait_for_model":True}}) return response.json() df = appended_data.replace(np.nan, '') df['embeddings'] = df.combined.apply(lambda x:embeddings_query(x.strip())) ``` ### Solution 2 : with sentence-transformers library ``` from sentence_transformers import SentenceTransformer model_id = "sentence-transformers/all-mpnet-base-v2" embedder = SentenceTransformer(model_id) def embeddings_query(text:str) -> List: return embedder.encode(text,convert_to_tensor=True) df['embeddings'] = df.combined.apply(lambda x:embeddings_query(x.strip().to_list())) ```