# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WikiLingua: A benchmark dataset for multilingual abstractive summarization.""" import os import glob import pickle import re import datasets _CITATION = """\ @article{ladhak-wiki-2020, title = {WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization}, authors = {Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown}, journal = {arXiv preprint arXiv:2010.03093}, year = {2020}, url = {https://arxiv.org/abs/2010.03093} } """ _DESCRIPTION = """\ WikiLingua is a large-scale multilingual dataset for the evaluation of crosslingual abstractive summarization systems. The dataset includes ~770k article and summary pairs in 18 languages from WikiHow. The gold-standard article-summary alignments across languages was done by aligning the images that are used to describe each how-to step in an article. """ _HOMEPAGE = "https://github.com/esdurmus/Wikilingua" _LICENSE = "CC BY-NC-SA 3.0" _URL = "wikilingua_GEM_v2.tar.gz" VERSION = datasets.Version("2.0.0") valid_language_codes = { "ar", "cs", "de", "en", "es", "fr", "hi", "id", "it", "ja", "ko", "nl", "pt", "ru", "th", "tr", "vi", "zh", } valid_config_names = ( # multilingual list(valid_language_codes) + [ # crosslingual / bridge f"{src}_{tgt}" for src in valid_language_codes for tgt in valid_language_codes if src != tgt ] # load all multilingual / all crosslingual + ["multilingual", "crosslingual"] ) class WikilinguaModes: MULTILINGUAL = "multilingual" # L -> L CROSSLINGUAL = "crosslingual" # L1 -> L1, L2 -> L2, L1 -> L2, L2 -> L1 BRIDGE = "bridge" # L -> en, en -> L, L -> L class WikilinguaConfig(datasets.BuilderConfig): """BuilderConfig for WikiLingua.""" def __init__(self, name, **kwargs): """ Args: name (string): configuration name that indicates task setup and languages. 1. multilingual - 2. crosslingual - _ 3. english as bridge - en_ 4. load all multilingual - multilingual 5. load all crosslingual - crosslingual lang refers to the respective two-letter language code. note that the order of lang1/lang2 does not matter; for language pair (L1, L2), we load L1 <-> L2 and L1 -> L1, L2 -> L2. """ if name not in valid_config_names: raise ValueError( f"Expected config name to be one of: {', '.join(valid_config_names)}" ) eles = name.split("_") if name in (WikilinguaModes.MULTILINGUAL, WikilinguaModes.CROSSLINGUAL): self.mode = name self.source_lang = None self.target_lang = None description = f"Wikilingua summarization data ({self.mode}; all instances)" else: if len(eles) == 1: mode = WikilinguaModes.MULTILINGUAL source_lang, target_lang = name, name elif len(eles) == 2: source_lang, target_lang = eles if source_lang == "en" or target_lang == "en": mode = WikilinguaModes.BRIDGE else: mode = WikilinguaModes.CROSSLINGUAL self.source_lang = source_lang self.target_lang = target_lang self.mode = mode description = ( f"Wikilingua summarisation data ({mode}; {source_lang}, {target_lang})" ) self.languages = set([self.source_lang, self.target_lang]) super().__init__( name=name, description=description, **kwargs, ) class WikiLingua(datasets.GeneratorBasedBuilder): """WikiLingua: A benchmark dataset for multilingual abstractive summarization.""" BUILDER_CONFIG_CLASS = WikilinguaConfig BUILDER_CONFIGS = [ WikilinguaConfig( name=config_name, version=VERSION, ) for config_name in valid_config_names ] DEFAULT_CONFIG_NAME = "en" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "gem_id": datasets.Value("string"), "gem_parent_id": datasets.Value("string"), "source_language": datasets.Value("string"), "target_language": datasets.Value("string"), "source": datasets.Value("string"), "target": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_URL) data_dir = os.path.join(dl_dir, "GEM_V2") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir, "split": "validation"}, ), ] + [ datasets.SplitGenerator( name=re.search("wikilingua_(.+test)", fn).group(1).replace(".", "_"), gen_kwargs={"filepath": fn, "split": "test"}, ) for fn in glob.glob(os.path.join(data_dir, "wikilingua_*.test.pk")) ] def _generate_examples(self, filepath, split): """Yields examples.""" if split == "test": with open(filepath, "rb") as f: data = pickle.load(f) for d in data: idx = d["id"].replace(".", "-") yield idx, { "gem_id": idx, "gem_parent_id": idx, "source_language": d["source"], "target_language": d["target"], "source": d["document"].strip(), "target": d["summary"].strip(), } else: # filter data as needed for train & validation sets if split == "validation": filepaths = glob.glob(os.path.join(filepath, "wikilingua_*.val.pk")) else: filepaths = glob.glob(os.path.join(filepath, "wikilingua_*.train.pk")) for filepath in filepaths: # skip files if they are irrelevant to task mode if ( self.config.mode == WikilinguaModes.MULTILINGUAL and "crosslingual" in filepath ) or ( self.config.mode == WikilinguaModes.CROSSLINGUAL and "multilingual" in filepath ): yield from [] with open(filepath, "rb") as f: data = pickle.load(f) for d in data: idx = d["id"].replace(".", "-") src = d["document"].strip() tgt = d["summary"].strip() src_lang = d["source"] tgt_lang = d["target"] # if loading specific language pair, filter for those if any(self.config.languages): if not ( src_lang in self.config.languages and tgt_lang in self.config.languages ): continue # in bridge, we are inerested in L <-> en and L -> L, but not en -> en if self.config.mode == WikilinguaModes.BRIDGE: if src_lang == "en" and tgt_lang == "en": continue yield idx, { "gem_id": idx, "gem_parent_id": idx, "source_language": src_lang, "target_language": tgt_lang, "source": src, "target": tgt, }