Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
text-simplification
Languages:
English
Size:
100K - 1M
ArXiv:
License:
import csv | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{jiang-etal-2020-neural, | |
title = "Neural {CRF} Model for Sentence Alignment in Text Simplification", | |
author = "Jiang, Chao and | |
Maddela, Mounica and | |
Lan, Wuwei and | |
Zhong, Yang and | |
Xu, Wei", | |
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", | |
month = jul, | |
year = "2020", | |
address = "Online", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/2020.acl-main.709", | |
doi = "10.18653/v1/2020.acl-main.709", | |
pages = "7943--7960", | |
} | |
""" | |
_DESCRIPTION = """\ | |
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple | |
English Wikipedia as a resource to train sentence simplification systems. | |
The authors first crowd-sourced a set of manual alignments between sentences in | |
a subset of the Simple English Wikipedia and their corresponding versions in | |
English Wikipedia (this corresponds to the manual config in this version of the | |
dataset), then trained a neural CRF system to predict these alignments. | |
The trained alignment prediction model was then applied to the other articles in | |
Simple English Wikipedia with an English counterpart to create a larger corpus | |
of aligned sentences (corresponding to the auto and auto_acl configs here). | |
""" | |
_URLs = { | |
"train": "train.tsv", | |
"validation": "valid.tsv", | |
"test_turk": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_turk_detokenized.json", | |
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/wiki_auto_asset_turk_train_valid.zip", | |
"test_contract": "benchmarks/contract-benchmark.tsv", | |
"test_wiki": "benchmarks/wiki-benchmark.tsv", | |
} | |
# Add Asset files. | |
_URLs[ | |
"test_asset_orig" | |
] = "https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.orig" | |
for i in range(10): | |
_URLs[ | |
f"test_asset_{i}" | |
] = f"https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.simp.{i}" | |
class WikiAuto(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
DEFAULT_CONFIG_NAME = "wiki_auto_asset_turk" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"gem_id": datasets.Value("string"), | |
"gem_parent_id": datasets.Value("string"), | |
"source": datasets.Value("string"), | |
"target": datasets.Value("string"), | |
"references": [datasets.Value("string")], | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=datasets.info.SupervisedKeysData( | |
input="source", output="target" | |
), | |
homepage="", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_dir = dl_manager.download_and_extract(_URLs) | |
challenge_sets = [ | |
( | |
"challenge_train_sample", | |
"train_wiki_auto_asset_turk_RandomSample500.json", | |
), | |
( | |
"challenge_validation_sample", | |
"validation_wiki_auto_asset_turk_RandomSample500.json", | |
), | |
( | |
"challenge_test_asset_backtranslation", | |
"test_asset_wiki_auto_asset_turk_BackTranslation.json", | |
), | |
( | |
"challenge_test_asset_bfp02", | |
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json", | |
), | |
( | |
"challenge_test_asset_bfp05", | |
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json", | |
), | |
( | |
"challenge_test_asset_nopunc", | |
"test_asset_wiki_auto_asset_turk_WithoutPunctuation.json", | |
), | |
( | |
"challenge_test_turk_backtranslation", | |
"detok_test_turk_wiki_auto_asset_turk_BackTranslation.json", | |
), | |
( | |
"challenge_test_turk_bfp02", | |
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json", | |
), | |
( | |
"challenge_test_turk_bfp05", | |
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json", | |
), | |
( | |
"challenge_test_turk_nopunc", | |
"detok_test_turk_wiki_auto_asset_turk_WithoutPunctuation.json", | |
), | |
] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": dl_dir["train"], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": dl_dir["validation"], | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name="test_asset", | |
gen_kwargs={ | |
"filepath": "", | |
"split": "test_asset", | |
"filepaths": [dl_dir["test_asset_orig"]] | |
+ [dl_dir[f"test_asset_{i}"] for i in range(10)], | |
}, | |
), | |
datasets.SplitGenerator( | |
name="test_turk", | |
gen_kwargs={ | |
"filepath": dl_dir["test_turk"], | |
"split": "test_turk", | |
}, | |
), | |
datasets.SplitGenerator( | |
name="test_contract", | |
gen_kwargs={ | |
"filepath": dl_dir["test_contract"], | |
"split": "test_contract", | |
}, | |
), | |
datasets.SplitGenerator( | |
name="test_wiki", | |
gen_kwargs={ | |
"filepath": dl_dir["test_wiki"], | |
"split": "test_wiki", | |
}, | |
), | |
] + [ | |
datasets.SplitGenerator( | |
name=challenge_split, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
dl_dir["challenge_set"], "wiki_auto_asset_turk", filename | |
), | |
"split": challenge_split, | |
}, | |
) | |
for challenge_split, filename in challenge_sets | |
] | |
def _generate_examples(self, filepath, split, filepaths=None, lang=None): | |
"""Yields examples.""" | |
if split in ["train", "validation"]: | |
keys = [ | |
"source", | |
"target", | |
] | |
with open(filepath, encoding="utf-8") as f: | |
for id_, line in enumerate(f): | |
values = line.strip().split("\t") | |
assert ( | |
len(values) == 2 | |
), f"Not enough fields in ---- {line} --- {values}" | |
example = dict([(k, val) for k, val in zip(keys, values)]) | |
example["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}" | |
example["gem_parent_id"] = example["gem_id"] | |
example["references"] = ( | |
[] if split == "train" else [example["target"]] | |
) | |
yield id_, example | |
elif split == "test_turk": | |
examples = json.load(open(filepath, encoding="utf-8")) | |
for id_, example in enumerate(examples): | |
example["gem_parent_id"] = example["gem_id"] | |
for k in ["source_id", "target_id"]: | |
if k in example: | |
del example[k] | |
yield id_, example | |
elif split == "test_asset": | |
files = [open(f_name, encoding="utf-8") for f_name in filepaths] | |
for id_, lines in enumerate(zip(*files)): | |
yield id_, { | |
"gem_id": f"wiki_auto_asset_turk-{split}-{id_}", | |
"gem_parent_id": f"wiki_auto_asset_turk-{split}-{id_}", | |
"target": lines[1].strip(), | |
"source": lines[0].strip(), | |
"references": [line.strip() for line in lines[1:]], | |
} | |
elif split == "test_wiki" or split == "test_contract": | |
with open(filepath, 'r') as f: | |
reader = csv.DictReader(f, delimiter="\t") | |
for id_, entry in enumerate(reader): | |
yield id_, { | |
"gem_id": f"wiki_auto_asset_turk-{split}-{id_}", | |
"gem_parent_id": f"wiki_auto_asset_turk-{split}-{id_}", | |
"target": entry["simple"], | |
"source": entry["complex"], | |
"references": [entry["simple"]], | |
} | |
else: | |
exples = json.load(open(filepath, encoding="utf-8")) | |
if isinstance(exples, dict): | |
assert len(exples) == 1, "multiple entries found" | |
exples = list(exples.values())[0] | |
for id_, exple in enumerate(exples): | |
exple["gem_parent_id"] = exple["gem_id"] | |
exple["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}" | |
for k in ["source_id", "target_id"]: | |
if k in exple: | |
del exple[k] | |
yield id_, exple | |