import copy import json import os import datasets _CITATION = """\@inproceedings{parikh2020totto, title={{ToTTo}: A Controlled Table-To-Text Generation Dataset}, author={Parikh, Ankur P and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan}, booktitle={Proceedings of EMNLP}, year={2020} } """ _DESCRIPTION = """\ ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. """ _URLs = { "totto": { "data": "https://storage.googleapis.com/totto-public/totto_data.zip", "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/totto.zip", }, } def _add_adjusted_col_offsets(table): """Add adjusted column offsets to take into account multi-column cells.""" adjusted_table = [] for row in table: real_col_index = 0 adjusted_row = [] for cell in row: adjusted_cell = copy.deepcopy(cell) adjusted_cell["adjusted_col_start"] = real_col_index adjusted_cell["adjusted_col_end"] = ( adjusted_cell["adjusted_col_start"] + adjusted_cell["column_span"] ) real_col_index += adjusted_cell["column_span"] adjusted_row.append(adjusted_cell) adjusted_table.append(adjusted_row) return adjusted_table def _get_heuristic_row_headers(adjusted_table, row_index, col_index): """Heuristic to find row headers.""" row_headers = [] row = adjusted_table[row_index] for i in range(0, col_index): if row[i]["is_header"]: row_headers.append(row[i]) return row_headers def _get_heuristic_col_headers(adjusted_table, row_index, col_index): """Heuristic to find column headers.""" adjusted_cell = adjusted_table[row_index][col_index] adjusted_col_start = adjusted_cell["adjusted_col_start"] adjusted_col_end = adjusted_cell["adjusted_col_end"] col_headers = [] for r in range(0, row_index): row = adjusted_table[r] for cell in row: if ( cell["adjusted_col_start"] < adjusted_col_end and cell["adjusted_col_end"] > adjusted_col_start ): if cell["is_header"]: col_headers.append(cell) return col_headers def get_highlighted_subtable(table, cell_indices, with_heuristic_headers=False): """Extract out the highlighted part of a table.""" highlighted_table = [] adjusted_table = _add_adjusted_col_offsets(table) for (row_index, col_index) in cell_indices: cell = table[row_index][col_index] if with_heuristic_headers: row_headers = _get_heuristic_row_headers( adjusted_table, row_index, col_index ) col_headers = _get_heuristic_col_headers( adjusted_table, row_index, col_index ) else: row_headers = [] col_headers = [] highlighted_cell = { "cell": cell, "row_headers": row_headers, "col_headers": col_headers, } highlighted_table.append(highlighted_cell) return highlighted_table def linearize_subtable(subtable, table_page_title, table_section_title): """Linearize the highlighted subtable and return a string of its contents.""" table_str = "" if table_page_title: table_str += " " + table_page_title + " " if table_section_title: table_str += " " + table_section_title + " " table_str += " " for item in subtable: cell = item["cell"] row_headers = item["row_headers"] col_headers = item["col_headers"] # The value of the cell. item_str = " " + cell["value"] + " " # All the column headers associated with this cell. for col_header in col_headers: item_str += " " + col_header["value"] + " " # All the row headers associated with this cell. for row_header in row_headers: item_str += " " + row_header["value"] + " " item_str += " " table_str += item_str table_str += "
" return table_str def linearize(example): table = example["table"] table_page_title = example["table_page_title"] table_section_title = example["table_section_title"] cell_indices = example["highlighted_cells"] subtable = get_highlighted_subtable( table=table, cell_indices=cell_indices, with_heuristic_headers=True ) subtable_metadata_str = linearize_subtable( subtable=subtable, table_page_title=table_page_title, table_section_title=table_section_title, ) return subtable_metadata_str class Totto(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name="totto", version=datasets.Version("1.0.0"), description=f"GEM benchmark: struct2text task", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "gem_id": datasets.Value("string"), "gem_parent_id": datasets.Value("string"), "totto_id": datasets.Value("int32"), "table_page_title": datasets.Value("string"), "table_webpage_url": datasets.Value("string"), "table_section_title": datasets.Value("string"), "table_section_text": datasets.Value("string"), "table": [ [ { "column_span": datasets.Value("int32"), "is_header": datasets.Value("bool"), "row_span": datasets.Value("int32"), "value": datasets.Value("string"), } ] ], "highlighted_cells": [[datasets.Value("int32")]], "example_id": datasets.Value("string"), "sentence_annotations": [ { "original_sentence": datasets.Value("string"), "sentence_after_deletion": datasets.Value("string"), "sentence_after_ambiguity": datasets.Value("string"), "final_sentence": datasets.Value("string"), } ], "overlap_subset": datasets.Value("string"), "target": datasets.Value("string"), # single target for train "references": [datasets.Value("string")], "linearized_input": datasets.Value("string"), }, ), supervised_keys=None, homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_URLs[self.config.name]) challenge_sets = [ ("challenge_train_sample", "train_totto_RandomSample500.json"), ("challenge_validation_sample", "validation_totto_RandomSample500.json"), # ("challenge_test_scramble", "test_totto_ScrambleInputStructure500.json"), ] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join( dl_dir["data"], "totto_data/totto_train_data.jsonl" ), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join( dl_dir["data"], "totto_data/totto_dev_data.jsonl" ), "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( dl_dir["data"], "totto_data/unlabeled_totto_test_data.jsonl" ), "split": "test", }, ), ] + [ datasets.SplitGenerator( name=challenge_split, gen_kwargs={ "filepath": os.path.join( dl_dir["challenge_set"], self.config.name, filename ), "split": challenge_split, }, ) for challenge_split, filename in challenge_sets ] def _generate_examples(self, filepath, split, filepaths=None, lang=None): """Yields examples.""" if "challenge" in split: exples = json.load(open(filepath, encoding="utf-8")) if isinstance(exples, dict): assert len(exples) == 1, "multiple entries found" exples = list(exples.values())[0] for id_, exple in enumerate(exples): if len(exple) == 0: continue exple["gem_parent_id"] = exple["gem_id"] exple["gem_id"] = f"{self.config.name}-{split}-{id_}" exple["linearized_input"] = linearize(exple) yield id_, exple else: with open(filepath, "r", encoding="utf-8") as json_file: json_list = list(json_file) id_ = -1 i = -1 for json_str in json_list: result = json.loads(json_str) linearized_input = linearize(result) if split == "train": i += 1 for sentence in result["sentence_annotations"]: id_ += 1 response = { "gem_id": f"{self.config.name}-{split}-{id_}", "gem_parent_id": f"{self.config.name}-{split}-{id_}", "totto_id": i, "table_page_title": result["table_page_title"], "table_webpage_url": result["table_webpage_url"], "table_section_title": result["table_section_title"], "table_section_text": result["table_section_text"], "table": result["table"], "highlighted_cells": result["highlighted_cells"], "example_id": str(result["example_id"]), "overlap_subset": "none", "sentence_annotations": [sentence], "references": [sentence["final_sentence"]], "target": sentence["final_sentence"], "linearized_input": linearized_input, } yield id_, response else: id_ += 1 response = { "gem_id": f"{self.config.name}-{split}-{id_}", "gem_parent_id": f"{self.config.name}-{split}-{id_}", "totto_id": id_, "table_page_title": result["table_page_title"], "table_webpage_url": result["table_webpage_url"], "table_section_title": result["table_section_title"], "table_section_text": result["table_section_text"], "table": result["table"], "highlighted_cells": result["highlighted_cells"], "example_id": str(result["example_id"]), "overlap_subset": str(result["overlap_subset"]), "linearized_input": linearized_input, } response["sentence_annotations"] = ( [] if split == "test" else result["sentence_annotations"] ) response["references"] = [ sentence["final_sentence"] for sentence in response["sentence_annotations"] ] response["target"] = ( response["references"][0] if len(response["references"]) > 0 else "" ) yield id_, response